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ABSTRACT 
 

Buckling Failure Boundary for Cylindrical  
Tubes in Pure Bending 

 
 

Daniel Peter Miller 
Department of Mechanical Engineering 

Master of Science 
 

Bending of thin-walled tubing to a prescribed bend radius is typically performed by 
bending it around a mandrel of the desired bend radius, corrected for spring back. By eliminating 
the mandrel, costly setup time would be reduced, permitting multiple change of radius during a 
production run, and even intermixing different products on the same line. 

The principal challenge is to avoid buckling, as the mandrel and shoe are generally 
shaped to enclose the tube while bending. Without the shaped mandrel, buckling will likely 
occur sooner, that is, at larger bend radii. 

A test apparatus has been built for arborless bending. It has been used to determine the 
limits of bend radius, wall thickness, material properties, etc. on buckling. Key to the process is a 
set of moveable clamps, which grip the tube and rotate to produce the bend. A complex control 
system moves the clamps radially to maintain pure bending, without superimposing tension or 
compression.  

A series of tests were performed to document the safe region of operation to avoid 
buckling. Charts have been created to assist the operator, as well as the design engineer, in 
determining the minimum bend radius. Similar tests will be required for each additional tube 
size, thickness, material, etc. 
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1 INTRODUCTION 

 Conventional bending of round tubing requires a shaped fixture, called an arbor, around 

which the tube is bent, by means of a similarly shaped forming tool called a shoe. Both the arbor 

and shoe are shaped to enclose the tube, which assures that the tube retains its circular cross 

section throughout the bending process, preventing cross section ovalization and buckling.  

 

Figure 1—1: Conventional methods of tube bending 

 Figure 1—1 illustrates two main types of conventional benders employing an arbor, with 

the main difference between them being the moving part. In compression bending, the clamp, 

arbor and end of tube are fixed and a part called a wiper shoe sweeps the tube around the form, 

sliding along it as it goes. In draw bending, the part is clamped to the arbor, and the clamp, arbor 

and end of the tube are pulled and rotated around the arbor’s form. Both of these options require 

Metals Handbook 
Desk Addition 
American Society for 
Metals, 1985 
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the part to be clamped to the arbor and they require a die form that ensures the part is bending 

around the die.  

 

Figure 1—2: Burr Oak’s current coil forming machine 

However, the arbor creates undesirable constraints on the process, preventing the conversion to 

modern, quick-changeover times, and flexible manufacturing. The arbor tooling and fixtures 

must be changed each time there is a change of tube size or bend radius. This is a major task, 

which shuts production down for an extended period of time. Large production runs are required 

in order to spread the cost of tooling changes over a large number of parts. 

  For specialty bends of finned tubes, such as refrigeration coils shown in Figure 1—3, the 

clamps do not make direct contact with the tubing due to the closely spaced fins supporting each 

tube. The arbor is therefore a smooth cylinder of the proper radius for the coil assembly. Without 

the formed mandrel and shoe, there is increased risk of the tube buckling. Although the fins 

provide some support to the tube cross section, buckling is still a critical issue. Bending forces 

must be applied through the fins, so there is also danger of deforming the fins, causing 

undesirable heat transfer properties. 

BurrOak.com 
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Figure 1—3: Bent refrigerator coils 

 To eliminate costly tooling changes for each tube size or bend radius, a process called 

arborless bending has been proposed. In contrast to conventional bending, an arborless bend is an 

air bend. An air bending process is shown conceptually in Figure 1—4. It is accomplished by 

clamping the ends of the tubing and leaving the center unsupported. A pure moment is applied to 

the tube by holding one clamp stationary, while rotating the other through the specified bend 

angle. Linear actuators attached to the clamps move each clamp axially to maintain a constant 

length of neutral axis. The clamps are the only hardware that must be changed, and they are only 

changed when a new outer diameter tube is bent. There are no parts that must be adjusted for 

different bend radius needs. For finned coils, the clamps are flat plates, capable of clamping any 

thickness coil. Arborless bending allows the bend to occur without any direct contact to the fins 

in the bend zone.  

 All of these features allow the user to take a single tube or coil and make multiple bends 

of multiple radii in succession without changing a single tool. The only change that is required is 

the input into the software interface that communicates to the machine what the final bend radius 
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will be. Lot size could then be reduced to a single part if required, or a single coil with multiple 

parallel bend radii.  

 

Figure 1—4: Air bending 

 

Figure 1—5: Arbor bending 
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1.1 Arbor Bending vs. Air Bending 

 In arbor bending, a single cross section is bent to the final radius, then the bend is 

advanced sequentially to the next cross section, as the shoe sweeps the length of the tube, as 

shown in  

Figure 1—5. Arborless bending, on the other hand, maintains a uniform radius over the entire 

length between the clamps, smoothly decreasing the radius of all of the cross sections at once, 

until the final radius is reached over the full length simultaneously (see Figure 1—4: Air 

bending). 

1.2 Brief History: How this Project Originated 

 This project began as a capstone design project in the mechanical engineering department 

at BYU. Originally it was intended to be finished in a school year through the work of a Senior 

Capstone design team. Their work was sponsored by Burr Oak Tools and was intended for 

production. Their goal was to produce a machine that would allow arborless bending of 

refrigerator coils, complete with fins, such as those shown in Figure 1—3, to be bent without 

damaging the coils or buckling the tubes. In addition, all deformation must be in the range 
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between initial plastic deformation and buckling failure. Working within known boundaries, 

users will be able to bend the tube as required, so understanding the failure boundary is essential. 

 By the end of the school year, the students had designed and built a functioning machine, 

but it experienced mechanical failure before any testing could be performed, which left work to 

be done in repairing and testing the machine, making the software user friendly, perfecting the 

control system, and understanding the mathematical models driving the deformation. The work 

of this thesis, funded by BYU, is essentially a continuation of their project, with the additional 

scholarly goal of understanding three-dimensional deformation of a thin-walled tube in pure 

bending and documenting the failure boundary. 

 In order to define a failure boundary, a laboratory apparatus has been assembled which 

places a pure bending load on a tube. With this system and the associated controls, a pure 

bending load is produced that will create the desired geometry. By bending the tube to a radius 

that buckles the tube, the critical factors associated with that buckling were determined. 

1.3 Approach  

 Arborless bending has a number of positive features, including quick changeovers and 

lower invasive contact with the part. However, it permits ovalization of the cross-section, which 

leads to buckling. This buckling failure mode is a function of the tube size, wall thickness, bend 

radius, and material properties. In addition to designing a machine and a control system for air 

bending, the goal of this research is to establish a buckling failure boundary for hollow tubes in 

pure bending. In order to do this, empirical testing has been accomplished. Tubes of three 

different materials have been bent to buckling and the test results have been recorded. The three 

materials tested are aluminum, copper, and EMT steel. Three different dimensions of copper 

tubing have been tested. Two have the same outer diameter, but different wall thicknesses, and 
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the third has a similar wall thickness, but a larger outer diameter. The aluminum and EMT were 

only tested at one wall thickness and outer diameter. Overall, nearly 200 tests were performed 

allowing for a range of data to be analyzed. 

 Along with the empirical testing, a theoretical analysis of the strain that occurs in the tube 

is provided herein. This theoretical model, in combination with the empirical results, allows a 

failure boundary to be established as a function of tube diameter, wall thickness, bend radius, and 

material. 

 Throughout the following report, examples are given from the data. These examples all 

come from a single test, labeled Test #126, so that a detailed example can be used to demonstrate 

the whole testing process. The data on Test #126 is given in Table 1—1. The calculation 

example was given at 30° due to ovalization beginning at that time, which always preceded 

buckling. 

Table 1—1: Data for Test #126 

Test # 126 

Tube ID # Cu-5-90-08 

Material Copper, Alloy 122 

Nominal Dimensions ¾” Type M 

Tube Diameter 0.625” 

Wall Thickness 0.027” 

Buckling Angle (visual reading) 30° (shown as 60° on the protractor) 

  

Angle Minor Axis (in) Major Axis (in) 

10° 0.625 0.625 
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20° 0.624 0.627 

30° 0.599 0.647 

40° 0.409 0.770 

50°-90° Past buckling, 
Not recorded 

Past buckling, 
Not recorded 

1.4 Challenges 

 There were many challenges that stood in the way of understanding the failure boundary. 

Understanding one-dimensional column buckling was an important step, but studying three-

dimensional effects on buckling was required in order to understand the effects of ovalization on 

tube buckling. This is due to the tri-axial strains that are applied to the tubing. Tri-axial strains 

are caused by the material deforming in three orthogonal directions: it deforms 1) axially, normal 

to the cross section, 2) transversely, within the cross-section, and 3) radially, through the wall 

thickness. These strains are shown Figure 1—6. 

 

a) Axial   b) Cross Sectional   c) Radial 

Figure 1—6: Tri-axial strain modes 

 Axial deformation is due to primary bending of the tube around an imaginary mandrel. 

The outer fibers are in tension and the inner are compressive, while the neutral axis experiences 

zero deformation. Cross sectional deformation results in the originally circular tube becoming 
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elliptical, which increases as the bend radius decreases. The third dimension of deformation is a 

change in the wall thickness due to biaxial strains of bending and ovalization. Each of these 

directions and their interactions need to be understood in order to know which will fail due to 

catastrophic buckling first. This is coupled with the fact that materials do not act linearly in the 

plastic range, so estimates were made to account for the nonlinearity. 

 Capturing and recording the data was difficult as well. Recording the strain throughout 

the bend would have been optimal, but because of the large deformations, strain gauges were not 

an option. Gathering load data from the voltage of the motor was considered, but the response 

data was too noisy to see any sort of trend. Because of these limitations, strain data was gathered 

through visual recording from above through the use of a web camera. The camera’s limitations 

on focus, frames per second, and stability proved to be challenges when trying to record the point 

of buckling. 

 Ovalization data was recorded on a number of tests by pausing the bend process every ten 

degrees. Calipers were then used to measure the maximum and minimum axes of the ovalizing 

cross section.  

1.5 Objective 

 The first objective of this thesis is to define the boundaries and necessary conditions to 

achieve an arborless bend with a pure bending moment load. The task includes providing the 

desired geometry of the specimen, while minimizing unnecessary ovalization and without 

causing buckling to occur. Process boundary limits were established by extensive testing to 

define the critical bend radius and bend angle combination where buckling occurs within the 90° 

final bend radius limit. A variety of tube diameters, wall thicknesses, and materials were tested. 
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This has all been done with a focus on industry needs. The failure boundary theory has been laid 

out in a form that is usable for a design engineer or manufacturing process personnel. 

 The secondary objective of this thesis is to prototype a machine that achieves arborless 

bending without buckling. The Capstone team previously provided a nearly functional machine, 

but much work was required to get the machine to function consistently and without mechanical 

failure. This work included creating clamps to fit the tubing, fixing software issues, and ensuring 

that the linear actuators drive at the appropriate rate at each stage of the bend test.  
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2 LITERATURE SEARCH 

2.1 Standard Mechanics of Materials Equations 

 Standard buckling, pure bending, neutral axis theory, and curved beam analysis equations 

can be found in many standard text books, but are referenced herein from three common texts, 

namely Robert Norton’s Machine Design: An Integrated Approach (Norton 2006), James Gere’s 

Mechanics of Materials (Gere 2001), and Richard Budynas’ Mechanical Engineering Design. 

They lay the foundation to the rest of the analysis approach presented.  

2.2 Bending Tubing 

 Based on the basics of the mechanics of a material in pure bending set forth by Datsko 

(Datsko, 1966), a better understanding of the maximum strain to failure can be realized. Also 

from Datsko, it is established that the ultimate engineering strain (εu) is equal to the exponent m 

in the true stress-strain Equation (2—1).  

 𝜎 = 𝜎0𝜀𝑚 (2—1) 

This allows us to calculate the maximum bend radius based on failure due to the ultimate strain. 

Datsko also dictates a more descriptive notation for the stresses and strains in a system where 

strain occurs in all three dimensions, clearing up some of the ambiguity in the system. (Datsko 

1966) 
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 Calladine’s additions to the subject include establishing the equations for the critical 

buckling moment, curvature, and strain for a part, considering both the bifurcation point, which 

splits the tube at one main buckling point, versus corrugated buckling at multiple points, also 

called wrinkling. This reading is applicable in that our test follows the non-corrugated function, 

but helps us understand that the other exists. (Calladine 1974) 

 Brazier observed that buckling at a single location on a tube corresponds to a certain 

point on the moment-curvature plot. This behavior is called the Brazier Buckling phenomenon. 

He also established equations to predict the ovalization displacement along the cross section and 

the process of finding the maximum point on the moment-versus-curvature plot. This point 

defines the point where buckling occurs. (Brazier 1927) 

 Korol showed empirically that Brazier’s work was valid by using a moment-curvature 

plot using original data to show where buckling occurred. (Korol 1978) 

 K. Pan and K. A. Stelson cite Von Karman’s research in establishing that ovalization 

occurs due to a continual change of direction of the forces parallel to the center line or neutral 

axis, thus describing ovalization and what brings it about. (Pan and Stelson 1995) 

 Finally, P. Cheng of MIT published a thesis on pure bending and compression bending of 

tubes containing composite support structures within the outer shell of the tube. Her discussion 

of pure bending is invaluable for this project, as it not only brings much of the previous research 

together on tube bending and buckling, but she also corrects some of the ovalization equations 

and correcting some typographical errors in the equations set forth by Karam and Gibson and 

Calladine. (Cheng 1996) 

 Wang and Cao offer a buckling failure boundary theory for an arbor bend on a rotary 

draw bending machine. Their theory has been used as a pattern of a failure boundary. The failure 
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boundary shown herein for arborless buckling was created using a similar set of axes. (Wang et 

al. 2001, 430) 

 Although pure bending of hollow structures has been covered theoretically by Cheng and 

others, none of the research described above has been applied to an arborless bender designed for 

production. Empirical data must be established in order to know where the moment-curvature 

buckling condition occurs in relation to the arborless machine setup. Ovalization of the tube in 

this configuration needs to be understood along with moment-curvature values in relation to the 

bend angle. Through empirical data, as well as mathematical models, these relationships have 

been investigated and a theoretical and empirical failure boundary for arborless bending has been 

established. This data is useful to understand the details of the moment’s effect of the buckling, 

although a different approach was taken here.  
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3 ANALYTICAL MODEL 

3.1 Pure Bending Explained 

 Pure bending is defined as flexure of a beam under a pure bending moment. Pure bending 

only occurs in regions of a beam where the shear force is zero. This is because the shear force is 

defined as the derivative of the moment along the beam. 

 V =
dM
dx

= 0    If M = Constant (3—1) 

This is in contrast to non-uniform bending, which occurs in the presence of shear forces. When a 

beam is subject to a pure moment the longitudinal axis is deformed into a curve with a constant 

radius of curvature along the whole axis, causing it to form an arc of a circle. (Gere 2001) 

 Putting a beam in pure bending causes the beam to be in tension on its outer edge and 

compression on its inner edge. Cross sections of this beam are assumed to remain plane if the 

moment load is pure, and the cross sections are symmetric about the Y or Z-axis, so throughout 

the calculations that follow, this assumption will be held. In pure bending, plane cross sections 

rotate about an axis perpendicular to the XY plane as shown in Figure 3—1.  
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Figure 3—1: Bending coordinate axis 

 

 

Figure 3—2: Coordinate axis on tube cross-section 

 This situation requires that a surface between the inner and outer curve of the bent 

material be free from loading. The load-free surface intersects the cross section, forming an axis 

called the Neutral Axis of the cross section. The bending strain occurring anywhere in the cross 

section is proportional to its distance from the neutral axis. For small strains, the value can be 

found through Equation (3—2), 

 ϵx = −
y
ρ

 (3—2) 

where y is the distance from the neutral axis and ρ is the radius of curvature of the beam’s 

neutral axis. This equation shows that the strain varies linearly with Y across the cross section, a 

theory that is central to the work that follows. This is the case regardless of the shape of the 
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stress-strain curve of the material. Finally, longitudinal strains in the beam also produce 

transverse strains due to Poisson’s ratio. 

3.2 Locating the Neutral Axis 

 The neutral axis of a beam is defined as the intersection of the no-load plane and the 

cross-section in question. For small strains, 𝑦𝑁𝐴 = 𝑦�, so the distance from the neutral axis is 

given in the following equations as 𝑦 − 𝑦�. It can be found by setting the longitudinal force acting 

on the cross section to zero, or, where the strain is zero. This is shown through Equation (3—3). 

 � σxdA = −�
E y
ρ

dA =
 

A
0

 

A
 (3—3) 

By dividing out the constants E and ρ, Equation (3—3) can be simplified to: (Gere 2001) 

 

�(y − y�)dA = 0 

� y dA = y�A
 

A
 

𝑦� =
∫𝑦𝑑𝐴
𝐴

 

 

 

 

(3—4) 

3.3 Curved Beam Theory 

 Most structural applications employ straight beams, for which the deflections are kept 

small to avoid exceeding the elastic limit, causing permanent deformation. If the beam has initial 

curvature under no load, or if a forming operation is performed to produce permanent 

deformation, then curved beam analysis must be applied. 
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 Understanding the strains in a curved beam requires a similar process to understanding 

strains in a straight beam. In order to do this analysis, six conditions must be maintained 

(Budynas et al. 2011): 

1. The applied load is distant from the segment analyzed 

2. Loading occurs along a plane of symmetry 

3. Plane sections remain plane and perpendicular to the neutral axis 

4. The material is homogeneous and obeys Hooke’s law 

5. Stresses remain below the elastic limit and the deflection analyzed is small 

6. Pure bending is applied to the beam with no axial or shear loads 

 The key differences with the process given herein are that the neutral axis will no longer 

be coincident with the centroidal axis, as it is with straight beams, and strains will no longer be 

below the elastic limit. The neutral axis is initially shifted toward the center of curvature by a 

distance e from the centroidal radius of curvature. The neutral axis can be found through 

Equation (3—5) 

 𝑅𝑁𝐴 =
𝐴

∫𝑑𝐴𝑟
 (3—5) 

where r is the radius of curvature of the differential area dA. The evaluation of this integral for 

our circular beam cross section is found in 0. 

3.4 Standard Buckling Model: Euler’s vs. J.B. Johnson’s Equations 

 Standard buckling is a failure mode that occurs commonly in long slender beams 

subjected to a compression load along the axis of the beam. Buckling causes an axially loaded 

beam to collapse, damaging the supported structure. A similar behavior applies to our tube-

bending process in that a localized buckle occurs when the tube is bent beyond a limiting 
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compressive strain. Here, classical column buckling is described in order to increase 

understanding of the failure modes of the tube. 

 (Gere 2001) Buckling of a column occurs when long, slender structural members are 

loaded axially. Column buckling can also occur locally, any time a load path is concentrated in 

compression along a section of a surface. Although the bending machine used does not apply an 

axial load, due to the nature of pure bending, there are areas where compression results in a 

concentrated load line, which can cause buckling. Buckling can be better understood by looking 

at an idealized beam, shown in Figure 3—3. 

 

Figure 3—3: Idealized column with buckling loads 

If the axial force P is relatively small, the action of a restoring moment will cause the structure to 

return to its initial straight position. If the axial force reaches a crucial point, it will overcome the 

Figure courtesy of Gere text (Gere 2001) 



20 
 

restoring moment and render the structure unstable, causing it to collapse by lateral buckling. 

This critical load is found by considering the entire structure as a free body.  

 An ideal column is one with no impurities and a constant cross section of a material that 

follows Hooke’s law. Using an ideal column, as shown in Figure 3—4, we see that the only 

stresses are the uniform compressive stresses. 

 

Figure 3—4: Idealized column with compressive load 

If this is the case, the column is in stable equilibrium: it will return to the straight position after a 

disturbance. If the load P is increased, eventually a critical load will be reached in which the 

column becomes unstable. As this case occurs, any side load or deformity in material on the 

column will allow the beam to fail by buckling. For a column with pinned ends, the predicted 

critical load is found through Equation (3—6) (Gere 2001). 

Figure courtesy of Gere text (Gere 2001) 
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 𝑃𝑐𝑟 =
𝜋2𝐸𝐼
𝐿2

𝑛 (3—6) 

where n is a correction factor, between 0.25 and 4, which accounts for different end supports. 

This mode of buckling is called “Euler buckling” and occurs under idealized elastic conditions. 

A non-dimensional ratio related to this mode of buckling is called the slenderness ratio. The 

slenderness ratio is defined as  

 𝑆𝑙𝑒𝑛𝑑𝑒𝑟𝑛𝑒𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 = 𝐿/𝑟 (3—7) 

where L is the axial length of the column. The variable r is the radius of gyration, defined as  

 𝑟 = �𝐼
𝐴

 (3—8) 

where I is the moment of inertia for the principal axis about which buckling occurs. The 

slenderness ratio depends only on the dimensions of the column. A long slender column will 

have a high slenderness ratio, and a short stocky column will have a low slenderness ratio. 

 There is another mode of buckling that occurs under plastic stress conditions, which 

follows the J.B. Johnson buckling curve. This curve is used when the slenderness ratio is less 

than the slenderness ratio found by solving Equation (3—9). This condition occurs when the 

column is on the shorter end of the spectrum with a larger diameter. 

 (𝑆𝑟)1 = 𝜋�
2𝐸
𝑆𝑦𝑐

𝑛 (3—9) 

 
𝐼𝑓 𝑆𝑟 > (𝑆𝑟)1   𝑇ℎ𝑒𝑛 𝐸𝑢𝑙𝑒𝑟 𝑐𝑢𝑟𝑣𝑒 

𝐼𝑓 𝑆𝑟 < (𝑆𝑟)1   𝑇ℎ𝑒𝑛 𝐽.𝐵. 𝐽𝑜ℎ𝑛𝑠𝑜𝑛 𝑐𝑢𝑟𝑣𝑒 
 

where 𝑆𝑦𝑐 is the compressive yield strength of the column’s material and n denotes the end 

condition of the column.  



22 
 

 At the point where the slenderness ratio is exactly equal to (𝑺𝒓)𝟏 in Equation (3—9), 
the Euler curve and the J.B. Johnson curve are tangent, creating the continuous curve 

shown in  
Figure 3—5. 

 

 

 
Figure 3—5: Euler and J.B. Johnson curve  

 

 

The critical buckling load based on a cross sectional area with a slenderness ratio less than the 

limit can be found using the J.B. Johnson equation, Equation (3—10). 

 𝑃𝑐𝑟
𝐴

= 𝑆𝑦𝑐 −
1
𝐸
�
𝑆𝑦𝑐𝑆𝑟

2𝜋
�
2

 (3—10) 

3.5 Ovalization Generally 

 Ovalization is the term given to the cross section deformation a tube goes through as it is 

bent into an arc. The cross section has been shown to change from a circular shape to a 

noticeable oval, whose minor axis is contracting continuously until buckling occurs. It is caused 

by the tri-axial forces applied to the material due to its geometry. Buckling, in the case of a 

Image courtesy of physicsarchives.com 
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tubular member, results in the inside portion of the cross section collapsing inward, causing the 

member to fold in a sharp bend. 

3.6 Strain Equations 

 In order to orient the reader, several color-coded visuals have been created. The specimen 

is shown with a blue outer and inner surface and a red material that can be seen when a cross 

section view is taken (Section A-A). The tubular test specimen is made of one type of material 

with consistent properties throughout. The specimen is shown in these visuals without the clamps 

attached, but it is important to note that the bend radius used in the calculations is measured to 

the inner edge of the clamp. This can be seen best in Figure 3—6.  

 

Figure 3—6: Bend radius measured to the inner edge of the clamp 

 The rest of the images show the bend radius as the South point on the tube. This is a close 

estimate, and will keep the images simpler for the reader allowing orientation to be clear. This 

specimen is depicted in Figure 3—7 and others with this adjustment. 
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                      a)Bending plane       b)Cross-section plane A-A               c) Detail view of critical point  

Figure 3—7: Tube in bending 

 The goal of the analysis is to accurately determine and ultimately predict the failure 

location of a tube bent by a pure bending moment. This is accomplished through a study of the 

geometry of the bend and the cross section and correlating it to the instantaneous bend radius. 

This information is then used to determine the principal strains at the inner and outer walls of 

three critical points on the tube, shown in Figure 3—7, which will be defined as North, East and 

South, the fourth, or West, being a mirrored case and equivalent to East. This section will lay out 

the process for calculating the strain and safety factor of the load case from information taken 

from a bend test.  

3.6.1 Axial Bending 

 This process is described as if the process is stopped and the analysis completed ,while 

the specimen sits in the machine. Cross section measurements are taken during a pause of the 

test, and used to calculate the strains during analysis of the data after the test. 
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 To find the strains that occur due to axial bending, the intended final bend angle and bend 

radius are input into the machine and separately recorded. This is to determine the proper length 

specimen to achive the desired angle and radius. Also, the wall thickness and outer diameter of 

the tubing are recorded. This information is then used to find the inner and outer radius of the 

undeformed cross section of the tubing. These dimensions are noted as R1 and R2 in Figure 3—

8.  

 
Figure 3—8: Bend radius and cross-section inner and outer radii 

 As the test is performed, the apparatus is paused every ten degrees. Calipers are used 

during each pause to measure the major and minor axes of the elliptical cross-section of the 

tube,(2a and 2b,  respectively) near the expected buckling point and the instantanious bend angle 

θ is recorded. The major and minor axes are visualized in the section view of Figure 3—9. The 

inner bend radius of the tube, BR, is shown in both views without the clamps. It is important to 

remember that the bend radius, for calculation purposes, is measured to the inside of the clamps, 

as mentioned above and shown in Figure 3—6. 
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Figure 3—9 : Bend radius and cross-section oval dimensions a and b 

 Note that the offset, U, between the axis of the rotational motor and the centroidal axis of 

the tubing is recorded before the test is run. This is done by measuring half the distance between 

the clamp jaws, because the inner side of the clamp jaw is aligned with the axis of the rotational 

motor as shown in Figure 3—10. The choise of bend axis was selected as a well defined 

reference surface. Since tubes of different sizes are to be tested, it would be inconvenient to 

adjust the test apparatus to align with the centerline of each specimen. The offset, U, was 

accounted for in the calculations and included in the clamp motions to keep the neutral axis 

length constant during the test. When a fixture is used, the inside bend radius is difficult to 

measure. Alternatively, it is convenient to use the inside edge of the fixture as the reference 

point, instead of the tube.  
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Figure 3—10: Rotational axis offset (u) 

 The final centroidal radius, the axis of the tube, is then found based on the final desired 

bend radius. This is simply done by adding the fixture offset, U, to the desired final bend radius 

𝐵𝑅𝑓. Equation (3—11) can be used for calculating all the centroidal radii throughout the test. 

 r̅i = BRi + u (3—11) 

 

Figure 3—11: Centroidal radius, based off the fixture 

 Once this data is recorded, the radius of the neutral axis at the final step of the test is 

calculated using Equation (3—12). The derivation of the equation governing this shift has been 

included in 0. 

 
RNA𝑓 =

R1
2−R2

2

2���r̅𝑓2 − R2
2� − ��r̅𝑓2 − R1

2��
 

(3—12) 
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 Due to ovalization being a local phenomenon, and minor prior to the onset of buckling, 

the equation above assumes that the cross section is circular at the final bend angle. This 

simplification will give adequate results, but future work may be done in this area. 

 Using the final angle and the final neutral axis radius, the length of the neutral axis at its 

final intended postion can be found using the arclength equation. This length is set as the initial 

length between the clamps and should be held constant throughout the test. 

  L𝑁𝐴𝑓 = RNA𝑓 ∗ θ𝑓 (3—13) 

 The initial length between the clamp and the center of rotation is half the length of the 

final neutral axis. This dimension is shown as distance a in Figure 3—12 

 a =
L𝑁𝐴𝑓

2
 (3—14) 

 

Figure 3—12: Distance from clamp to center of rotation 

 

 In order to find the bend radius for the intermediate steps of the test, the new distance 

between the rotational axis and the clamp must be found. To find this distance, it is first assumed 
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that there is no clamp adjustment. Using the geometry in Figure 3—12, a new value for the bend 

radius is found. 

 BR𝑖 =
a

Tan �θ𝑖2 �
 (3—15) 

 Using this bend radius, a new centroidal radius is calculated using Equation (3—11). This 

new centroidal radius is used in Equation (3—12) to find a candidate neutral axis radius. This 

neutral axis radius is too long, as can be shown by finding the arclength of this neutral axis with 

the angle 𝜃𝑖. This length will be different from the initially calculated length of the neutral axis, 

and so the clamps must be adjusted. This adjustment, Δa, is simply half the difference between 

what the neutral axis radius is calculated as, and what it should be. 

 
Δa =

L𝑁𝐴,𝑓 − 𝐿𝑁𝐴,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

2
 (3—16) 

 This Δa is the clamp adjustment, and is added to the origional distance between the 

rotation point and the clamp.  

 a𝑖 = a + Δa𝑖 (3—17) 

 Using this new value, a new bend radius is calculated for the given angle using Equation 

(3—15), which is then used to find a new centroidal radius from Equation (3—11). This new 

centroidal radius is used to calculated a new neutral axis radius using Equation (3—12). This 

new neutral axis radius forms an arc with the angle being analyzed whose arclength is equal to 

the length of the final angle neutral axis. 

 To check this solution, the constant arclength is compared at two known points using 

Equation (3—18). This neutral axis length can be shown to be very close, within 0.004” at 30° 

with an intended bend radius of 5”. If a more precise value is desired, an interative solution can 

be used. 
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RNAi =

RNAfθf
θi

 (3—18) 

 By taking the difference of this newly calculated neutral axis radius and the centroidal 

radius at each pausing angle the neutral axis shift, e, is found.  

 ei = r̅i − RNAi (3—19) 

 Next the distance, y, between the the neutral axis and the point of maximum bending 

stress is found. For example, the point on the outer sides of the bend are shown below with 

Equation (3—20) and Figure 3—13. 

 yNorth = bi + ei 

ySouth = bi − ei 
(3—20) 

 

Figure 3—13: Dimensions within the cross section 

 The change in axial strain in the tube is then calculated using the change of angle, since 

the last measurement was taken. 

 
∆𝜖 =

𝑦 ∗ ∆𝜃
(𝑟𝑁𝐴 + 𝑦) ∗ 𝜃𝑖

 (3—21) 
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 An example of this process is given for the South point of Test #126 as it reaches a 30° 

bend angle. The first step is to find the inner and outer radii of the cross-section. These values 

can be found using the wall thickness and measured outer diameter as shown: 

𝑅1 =
𝑂𝐷
2

=
0.625

2
= 0.3125 

𝑅2 = 𝑅1 − 𝑡 = 0.3125 − 0.0270 = 0.2855 

 Using the intended bend radius of 5 inches, the final centroidal radius is found using 

Equation (3—11) 

 r̅𝑓 = 5 + 0.7155 = 5.7155  

 The final expected neutral axis can then be found using Equation (3—12) 

RNAf =
0.31252 − 0.28552

2 ��(5.71552 − 0.28552) −�(5.71552 − 0.3125^2)�
= 5.7077 

 This radius, at 90°, gives the length of the neutral axis that is intended to stay constant 

throughout the bend. 

LNAf = 5.7077 ∗ �90° ∗
π

180°
� = 8.9656 

and the distance between the point of rotation and the clamp at the starting position is  

a =
8.9656

2
= 4.4828 

 This value is used to find the candidate bend radius using Equation (3—15) 

BR30° =
4.4828

Tan �30°
2 �

= 16.7300 

 Using Equation (3—11), a candidate centroidal radius is found 

r̅i = 16.7300 + 0.7155 = 17.4455 

 This centroidal radius candidate is used to find a candidate neutral axis radius 
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RNA,30° =
0.31252 − 0.28552

2 ��(17.44552 − 0.28552) −�(17.44552 − 0.3125^2)�
= 17.4429 

 At 30°, this neutral axis radius creates a length of the neutral axis that is longer than the 

neutral axis length at the final point, which is supposed to be unchanging. 

𝐿𝑁𝐴,30° = 17.4429 ∗ �30° ∗
𝜋

180° 
� = 9.1331 > 8.9656 

 This means that the clamps must be moved to adjust for this difference. The distance they 

must move is found using Equation (3—16) 

Δa =
8.9656 − 9.1331

2
= 0.08376 

 This change in distance must be added to the intial distance between the clamp and the 

axis of rotation. 

a𝑖 = 4.4828 + 0.08376 = 4.3990 

 Plugging this value into Equation (3—15), a more accurate bend radius is calculated. 

BR30° =
4.3990

Tan �30°
2 �

= 16.4174 

 This bend radius allows a more accurate centroidal radius to be calculated using Equation 

(3—11). 

r̅i = 16.4174 + 0.7155 = 17.1329 

 This centroidal radius, applied to the neutral axis radius equation, Equation (3—12), 

results in a more accurate netural axis radius. 

RNA,30° =
0.31252 − 0.28552

2 ��(17.13292 − 0.28552) −�(17.13292 − 0.3125^2)�
= 17.1303 

 This neutral axis radius results in an arclength, which can be found using Equation (3—13) 
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𝐿𝑁𝐴,30° = 17.1303 ∗ �30° ∗
𝜋

180° 
� = 8.9694 

 This neutral axis radius is approximately three times the final neutral axis radius 

calculated, which is as expected. This can be proven by comparing the neutral axis length at 30° 

and at 90°.  

𝐿𝑁𝐴 = 𝑅𝑁𝐴𝑓 ∗ 𝜃𝑓 ≈ 𝑅30° ∗ 𝜃30° 

𝐿𝑁𝐴 = 8.96557 ≈ 8.96938 

𝑒𝑟𝑟𝑜𝑟 = 8.96557 − 8.96938 = .00382 

 The neutral axis shift can be found at this point by taking the difference of the radius of 

the neutral axis and the centroidal radius. 

𝑒 = 𝑟̅30° − RNA30° = 17.1329 − 17.1303 = 0.002615 

 At the South point, the Y values are as follows: 

𝑌𝑆𝑜𝑢𝑡ℎ,𝑜𝑢𝑡𝑒𝑟 = −𝑏 − 𝑒 = −0.3235 − 0.002615 = −0.3261 

𝑌𝑆𝑜𝑢𝑡ℎ,𝑖𝑛𝑛𝑒𝑟 = 𝑌𝑆𝑜𝑢𝑡ℎ,𝑜𝑢𝑡𝑒𝑟 + 𝑡 = −0.3264 + 0.0270 = −0.2991 

 The change in strain can then be found as shown 

∆𝜖𝑆𝑜𝑢𝑡ℎ,𝑜𝑢𝑡𝑒𝑟,30° =
𝑦𝑆𝑜𝑢𝑡ℎ,𝑜𝑢𝑡𝑒𝑟 ∗ ∆𝜃

(𝑟𝑁𝐴,30° + 𝑦𝑆𝑜𝑢𝑡ℎ,𝑜𝑢𝑡𝑒𝑟) ∗ 𝜃20°
=

−0.3261 ∗ 10°
(17.1303 − 0.3261) ∗ 20°

= −0.00635 

∆𝜖𝑆𝑜𝑢𝑡ℎ,𝑖𝑛𝑛𝑒𝑟,30° =
𝑦𝑆𝑜𝑢𝑡ℎ,𝑖𝑛𝑛𝑒𝑟 ∗ ∆𝜃

(𝑟𝑁𝐴,30° + 𝑦𝑆𝑜𝑢𝑡ℎ,𝑖𝑛𝑛𝑒𝑟) ∗ 𝜃20°
=

−0.2991 ∗ 10°
(17.1303 − 0.2991) ∗ 20°

= −0.00582 

 This change in strain is then added to all the previous strains to get the following total 

strain at the location. 

𝜖𝑆𝑜𝑢𝑡ℎ,𝑜𝑢𝑡𝑒𝑟,30° = �∆𝜖
30°

0°

 

 To simplify this process, below is a step-by-step simplified guide through this process: 
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1. Set 𝑩𝑹𝒇 and 𝜽𝒇  

2. Measure the tube OD and ID in 
order to gather 𝑹𝟏and 𝑹𝟐  

3. 𝐫̅𝐢 for the final step  
( Eq. (3—11)) 

r̅f = BRf + u 

4. 𝐑𝐍𝐀  for the final step  
(Eq. (3—12)) 

RNA =

 
R1
2−R2

2

2 ��(r̅ 
2 − R2

2) −�(r̅ 
2 − R1

2)�
 

Assume no clamp adjustment 

5 Final neutral axis length  
(Eq. (3—13)) 

L𝑁𝐴𝑓 = RNA𝑓 ∗ θ𝑓 

6 Distance from axis of rotation to 
clamp edge  
(Eq. (3—14)) 

a =
L𝑁𝐴𝑓

2
 

7 Candidate bend radius  
(Eq. (3—15)) 

BRi =
a

Tan �θi2�
 

8 Candidate centroidal radius  
(Eq. (3—11)) r̅i = BR𝑖 + u 

9 Candidate neutral axis radius  
(Eq. (3—12)) RNA,i =

 
R1
2−R2

2

2 ���r𝚤�  
2 − R2

2� − ��r𝚤�  
2 − R1

2��
 

10 Candidate neutral axis length  
(Eq. (3—13)) 𝐿𝑁𝐴,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = RNA𝑖 ∗ θ𝑖 

Use clamp adjustment 

11 Clamp adjustment  
(Eq. (3—16)) Δa =

L𝑁𝐴,𝑓 − 𝐿𝑁𝐴,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

2
 

12 New distance from axis of rotation 
to clamp edge  
(Eq. (3—17)) 

a𝑖 = a + Δa𝑖 

13 New bend radius  
(Eq. (3—15)) 

BRi =
a𝑖

Tan �θi2�
 

14 New centroidal radius  
(Eq. (3—11)) r̅i = BR𝑖 + u 

15 New neutral axis radius  
(Eq. (3—12)) RNA,i =

 
R1
2−R2

2

2 ���r𝚤�  
2 − R2

2� − ��r𝚤�  
2 − R1

2��
 

16 Calculate e for all angles 
(Eq. (3—19)) ei = r̅i − RNAi 
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17 Find y at each point of interest  
(Eq. (3—20)) yi,south = bi − ei 

18 Find ∆є at each point of interest  
(Eq. (3—21)) ∆𝜖 =

𝑦 ∗ ∆𝜃
(𝑟𝑁𝐴 + 𝑦) ∗ 𝜃𝑖

 

 
 The calculations shown above have been applied to Test #126. Figure 3—14, Figure 3—

15, and Figure 3—16 show the axial strain for each point calculated throughout the bend using 

these calculations. Due to the small neutral axis shift, and the East point laying on the centroidal 

axis, it can be seen in Figure 3—16 that the East point’s axial strain is minimal. 

 
Figure 3—14: Axial strain versus the bend angle for the South point 
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Figure 3—15: Axial strain versus the bend angle for the North point 

 
Figure 3—16: Axial strain versus the bend angle for the East point 

3.6.2 Cross Sectional Strain 

 There are two orthogonal planes in which curved beam bending occurs. The first is the 

main bending plain, in which the tube is being bent to its desired bend radius. This is shown in 

Figure 3—17a. Orthogonal to this, is the cross section of the tube, which starts out as a circular 

thin walled cylinder and then deforms locally to an oval as shown enlarged in Figure 3—17b.  
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 In order to orient the reader, Figure 3—17c shows a three dimensional view of the critical 

point of cross-section analyzed in the process below. Each critical point on the cross section is 

analyzed independently as if the section of the beam around the critical point was a curved plate 

in bending due to ovalization. The North and South points of this oval are flattening out and the 

East point is becoming more curved due to this ovalization. The critical points occur locally, near 

the cross-section where buckling occurs. 

 

Figure 3—17: Tube in bending 

a)Bending plane b)Cross-section plane A-A c) Detail view of critical point 

 As mentioned in the last section, it is important to remember that the bend radius is 

measured to the inner edge of the clamp, not the inner edge of the tube. This can be seen clearly 

in Figure 3—6 

 In order to determine the strain in the cross sectional direction, the radius of curvature for 

the critical points must be determined. Note that the radius of curvature of the cross section is not 

the same as the bend radius. Figure 3—17 shows the two orthogonal planes of a tube in bending: 

a) shows the axis of the tube being bent to a constant radius in the bending plane; b) shows the 
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elliptical cross section, which is perpendicular to the tube axis and has a varying radius of 

curvature in the plane of the cross section; and c) shows a detail of a critical point on the cross-

section. The radius of curvature for the cross sectional ellipse is given in Equation (3—22) 

 
𝜌 = �

𝑎2sin2s +  𝑏2cos2s
𝑎 ∗ 𝑏

�
3
2�

 (3—22) 

where (a) and (b) are half of the major and minor diameters of the ellipse and s is a parametric 

variable that can be determined by Equation (3—23) 

 
𝑠 = �

𝑦 ≥ 0         𝑐𝑜𝑠−1 �𝑥𝑎�

𝑦 < 0   2𝜋𝑐𝑜𝑠−1 �𝑥𝑎�
� (3—23) 

using the coordinate axis, where X follows the axis of the tube, YZ is the plane of the bend, and 

Y is positive away from the bend radius center as shown in Figure 3—18. 

 

Figure 3—18: Coordinate axis on tube cross-section 
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 Therefore, the values at the critical points for the variable s are 

 𝑠𝑁𝑜𝑟𝑡ℎ =
𝜋
2

 

𝑠𝐸𝑎𝑠𝑡 = 0 

𝑠𝑆𝑜𝑢𝑡ℎ = −
𝜋
2

 

(3—24) 

 Inputting these values into Equation (3—22) quickly simplifies the solution. For the 

initial conditions, the radius of curvature is the outer radius of the un-deformed specimen. After 

ovalization, the curvature at the end of a minor axis, the South point in our example, is given as: 

 
𝜌𝑁𝑜𝑟𝑡ℎ = 𝜌𝑆𝑜𝑢𝑡ℎ =

𝑎2

𝑏
 (3—25) 

At the end of a major axis, the East point in our example, the radius of curvature is given as 

 
𝜌𝐸𝑎𝑠𝑡 =

𝑏2

𝑎
 (3—26) 

 From that radius of curvature, we assume that a slice is taken out of the wall and the 

radius of the inner wall, 𝝆𝒊, and the centroidal radius of curvature, 𝝆�, are concentric with the 

outer radius of curvature, 𝝆𝒊. This allows us to calculate the radius of curvature for the inner wall 

and the centroidal axis using Equations (3—27) and (3—28). 

 𝜌̅ = 𝜌𝑜 −
𝑡
2

 (3—27) 

 𝜌𝑖 = 𝜌𝑜 − 𝑡 (3—28) 

 The radius of the neutral axis can then be determined using Equation (3—29) 

 𝜌𝑁𝐴 =
𝑡

ln �𝜌𝑜𝜌𝑖
�
 (3—29) 
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Figure 3—19: Detail of critical point 

 The difference can then be found between the neutral axis and the centroidal axis. This is 

listed as the variable e and is called the neutral axis shift.  

 𝑒 = 𝜌̅ − 𝜌𝑁𝐴 (3—30) 

 The distance in the Y direction from the neutral axis to the point being analyzed is found 

next. The points on the outer and inner surfaces of the tube wall are given in Equations (3—31) 

and (3—32). 

 𝑦𝑜 = 𝜌𝑜 − 𝜌𝑁𝐴 (3—31) 

 𝑦𝑖 = 𝜌𝑁𝐴 − 𝜌𝑖 (3—32) 

 At this point the segment of the specimen is analyzed by examining a small section with 

an assumed angle of 10° across the bend. This small section is the focus of the analysis. 

 The arc length,𝑳𝑵𝑨, of the neutral axis is found using the radius of the neutral axis and 

the assumed angle. This is done using Equation (3—33) and is shown in Figure 3—20:  

 𝐿𝑁𝐴 = 𝜌𝑁𝐴 ∗ 𝛼 (3—33) 
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 At this point the specimen is bent to a new bend angle and paused again. The process is 

repeated the same as above, where the new bend angle and the major and minor axes are 

recorded. The new bend radius, centroidal radius, and neutral axis are found using the same 

equations as above. Using the new neutral axis and the minor axis measurement the new distance 

to the point in question, referred to as y, is found.  

 

Figure 3—20: Length of the neutral axis at a critical point 

 Because the material at the neutral axis has no strain, it can be assumed that the length, 

𝑳𝑵𝑨 , of the neutral axis, that we focused on above, has not changed length. Using this length, 

and the new neutral axis radius, the change of angle is found that corresponds to a change of 

length at the point of interest. This angle change is determined with Equation (3—35) and can be 

seen in Figure 3—21. 

 𝐿𝑁𝐴 = 𝜌𝑁𝐴 ∗ 𝑎 = 𝜌𝑁𝐴,𝑛𝑒𝑤 ∗ 𝛼𝑛𝑒𝑤 (3—34) 

 
𝛼𝑛𝑒𝑤 =

𝐿𝑁𝐴
𝜌𝑁𝐴,𝑛𝑒𝑤

=
𝜌𝑁𝐴 ∗ 𝛼
𝜌𝑁𝐴,𝑛𝑒𝑤

 (3—35) 
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 Once this new angle is known the old length, found by the swept previous angle α is 

related to the new length swept using the new angle using Equation (3—36) 

 
∆𝜖 =

∆𝐿
𝐿

=
𝑦 ∗ ∆𝛼

(𝜌𝑁𝐴 + 𝑦) ∗ 𝛼𝑖−1
 (3—36) 

 

Figure 3—21: Detail of angle change if curvature increases 

 On the outer surface, this is equal to  

 
∆𝜖 =

(𝜌𝑜 − 𝜌𝑁𝐴)𝑑𝛼1
𝜌𝑜𝛼1

=
�𝑡2 + 𝑒�𝑑𝛼1

𝜌𝑜𝛼1
 (3—37) 

and on the inner edge it becomes  

 
∆𝜖 =

(𝜌𝑁𝐴 − 𝜌𝑖)𝑑𝛼1
𝜌𝑖𝛼1

=
�𝑒 − 𝑡

2� 𝑑𝛼1
𝜌𝑖𝛼1

 (3—38) 

 At this point, the tubing is bent another 10 degrees and new measurements for the major 

and minor axes are made, which can be repeated above.  

 It is important to note that the sign change between the points analyzed should always be 

checked. Y values on the inside of the curve should be negative due to the positive Y vector 

pointing away from the center of curvature. Also, if a radius of curvature is decreasing, the angle 
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change will be negative. In the case of the tube in pure bending, this relates to the North and 

South points on the cross section. 

 To illustrate these calculations, the following investigates the South point of Test #126 as 

it is bent from a 20° to a 30° bend angle. The final form of the tube is expected to reach a 90° 

bend with a 5 inch radius. Calculations have already been made for the initial conditions and the 

10° and 20° bend angles. Measurements were taken of the major and minor axes, when the tube 

was bent to 30° and 20° bend angles and their half diameter values and thickness are as follows: 

𝑡 = 0.0270 𝑖𝑛 

𝑎30° = 0.2993 𝑖𝑛 

𝑏30° = 0.3235 𝑖𝑛 

 
𝑎20° = 0.3118 𝑖𝑛 

𝑏20° = 0.3138 𝑖𝑛 

 From these values we can find the radius of curvature at the outer surface of the South 

point in the plane of the cross section. 

𝜌30°,𝑜𝑢𝑡𝑒𝑟 𝑤𝑎𝑙𝑙 =
𝑎2

𝑏
=

0.29932

0.3235
= 0.2769 

 The radius of curvature for the inner wall and centroidal neutral axis are then calculated 

as follows 

𝜌̅30° = 𝜌30°,𝑜𝑢𝑡𝑒𝑟 𝑤𝑎𝑙𝑙 −
𝑡
2

= 0.2769 −
0.0270

2
= 0.2634 

𝜌30°,𝑖𝑛𝑛𝑒𝑟 𝑤𝑎𝑙𝑙 = 𝜌30°,𝑜𝑢𝑡𝑒𝑟 𝑤𝑎𝑙𝑙 − 𝑡 = 0.2769 − 0.0270 = 0.2499 

 The radius of the Neutral Axis is  

𝜌30°,𝑁𝐴 =
𝑡

ln �
𝜌30°,𝑜𝑢𝑡𝑒𝑟
𝜌30°,𝑖𝑛𝑛𝑒𝑟

�
=

0.0270

ln �0.2769
0.2499�

= 0.2632 
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 The neutral axis shift, given as the variable e is found to be 

𝑒30° = 𝜌̅30° − 𝜌30°,𝑁𝐴 = 0.2634 − 0.2632 = 0.002 

 The angle change that is applied to the cross section at the point of interest is found using 

the arc length formula and the value of the radius of curvature at the chosen angle, 10° 

(ρ10°,NA = 0.2988 in), as follows: 

𝛼30° =
𝐿𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
𝜌30°,𝑁𝐴

=
𝜌10°,𝑁𝐴 ∗ 10° ∗ � 𝜋

180°�
𝜌30°,𝑁𝐴

=
0.2988 ∗ 0.1745

0.2632
= 0.1981 

 Following the same process, α20° = 0.1761. This allows the change in angle to be found: 

𝑑𝛼30° = 𝛼20° − 𝛼30° = 0.1761 − 0.1981 = −0.0220 

 This gives us all the information needed to find the strain change due to the bend angle 

change for both the outer and inner wall of the tube, as shown below. 

∆𝜖30°,𝑜𝑢𝑡𝑒𝑟 𝑤𝑎𝑙𝑙 =
�𝑡2 + 𝑒30°� 𝑑𝛼30𝑜

𝜌30°,𝑜𝑢𝑡𝑒𝑟 𝑤𝑎𝑙𝑙 ∗ 𝛼20𝑜
=
�0.0270

2 + 0.0002� ∗ −0.0220
0.2769 ∗ 0.1761

= −0.0062 

∆𝜖30°,𝑖𝑛𝑛𝑒𝑟 𝑤𝑎𝑙𝑙 =
�𝑡2 − 𝑒30°� 𝑑𝛼30𝑜

𝜌𝑖𝑛𝑛𝑒𝑟 𝑤𝑎𝑙𝑙 ∗ 𝛼20𝑜
=
�0.0002 − 0.0270

2 � ∗ −0.0220
0.2769 ∗ 0.1761

= 0.0059 

 To summarize the procedure, the following numbered list has been given. The subscript 

character s refers to the initial condition, i refers to the inner surface of the tube and o refers to 

the outer surface of the tube.  
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Initial Conditions 

1. Initial arbitrary angle  𝛼𝑠 = 10° = 0.01745 𝑟𝑎𝑑 

2. Outer radius of curvature Equation (3—25) 𝜌𝑜 = 𝑂𝐷/2 

3. Centroidal radius of curvature Equation (3—27) 𝜌̅ = 𝜌𝑜 −
𝑡
2

 

4. Inner radius of curvature Equation (3—28) 𝜌𝑖 = 𝜌𝑜 − 𝑡 

5. Neutral Axis radius of curvature Equation (3—29) 𝜌𝑁𝐴 =
𝑡

ln � 𝑂𝐷/2
(𝑂𝐷/2 − 𝑡)�

 

6. Length of Neutral Axis Equation (3—33) 𝐿𝑠 = 𝜌𝑁𝐴,𝑠 ∗ 𝛼𝑠 

7. Neutral Axis Shift Equation (3—30) 𝑒 = 𝜌̅ − 𝜌𝑁𝐴 

8. Initial strain change, outer point  ∆𝜖𝑜 = 0 

9. Initial strain change, inner point  ∆𝜖𝑖 = 0 
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Iteration Steps 

10. Outer radius of curvature Equation (3—25) 

𝜌𝑜,𝑁𝑜𝑟𝑡ℎ 𝑜𝑟 𝑆𝑜𝑢𝑡ℎ =
𝑎12

𝑏1
 

𝜌𝑜,𝐸𝑎𝑠𝑡 =
𝑏12

𝑎1
 

11. Centroidal radius of curvature Equation (3—27) 𝜌̅ = 𝜌𝑜 −
𝑡
2

 

12. Inner radius of curvature Equation (3—28) 𝜌𝑖 = 𝜌𝑜 − 𝑡 

13. Neutral axis’s radius of curvature Equation (3—29) 𝜌𝑁𝐴 =
𝑡

ln �𝜌𝑜𝜌𝑖
�
 

14. Neutral axis shift Equation (3—30) 𝑒 = 𝜌̅ − 𝜌𝑁𝐴 

15. New angle Equation (3—35) 

𝛼𝑛𝑒𝑤 =
𝐿𝑠

𝜌𝑁𝐴,𝑛𝑒𝑤

=
𝜌𝑁𝐴,𝑠 ∗ 𝛼𝑠
𝜌𝑁𝐴,𝑛𝑒𝑤

 

16. Angle change  ∆𝛼 = 𝛼𝑛𝑒𝑤 − 𝛼𝑠 

17. Strain change, outer surface Equation (3—37) ∆𝜖𝑜 =
��𝑡2 + 𝑒� ∗ ∆𝛼�

𝜌𝑜 ∗ 𝛼𝑛𝑒𝑤
 

18. Strain change, inner surface Equation (3—38) ∆𝜖𝑖 =
��𝑒 − 𝑡

2� ∗ ∆𝛼�

𝜌𝑖 ∗ 𝛼𝑛𝑒𝑤
 

19. Iterate steps 10 through 19   

20. Sum the strain changes for the 
total strain 

 𝜖𝑇𝑜𝑡𝑎𝑙 = �∆𝜖 

  
  



47 
 

 Figure 3—22 and Figure 3—23 show the cross-sectional strain calculated for each angle 

increment throughout the bend. Due to the curvature increasing at the East point, and decreasing 

at the North and South points, it can be seen that the direction of the strain is switched between 

the plots. It is important to note that ovalization mainly occurs just prior to buckling. Most of the 

cross sectional strain occurs at this time as well. 

 

Figure 3—22: Cross-sectional strain versus the bend angle for the North and South points 

 

Figure 3—23: Cross-sectional strain versus the bend angle for the East point 
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3.6.3 Radial Strain 

 As mentioned above, radial strain is a function of the other two strains and is driven by 

the assumption that the sum of the strains must equal zero for post yield, constant volume 

behavior: 

 𝜖𝐴𝑥𝑖𝑎𝑙 + 𝜖𝐶𝑟𝑜𝑠𝑠−𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 + 𝜖𝑅𝑎𝑑𝑖𝑎𝑙 = 0 (3—39) 

 The radial strains are then used to determine the new thickness of the material. This is 

done by taking the average of the inner and outer strain percentages and then multiplying the 

previous thickness to that percentage. This simple assumption is used as an approximation, 

because the middle of the material will be deforming at a non-linear rate. 

 This calculation has been applied to Test #126. Figure 3—24, Figure 3—25, and Figure 

3—26 show the radial strain for each point calculated throughout the bend. Due to the summing 

effect of the two strains (axial and cross sectional) both being in compression on the outer wall 

of the South point, the maximum strain will occur at this point and be shown in Figure 3—24.  

 

Figure 3—24: Radial strain versus bend angle for the South point 
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Figure 3—25: Radial strain versus the bend angle for the North point 

 

Figure 3—26: Radial strain versus the bend angle for the East point 
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3.7 Discussion 

3.7.1 Failure Boundary 

 In order for the tube bending machine to be useful in industry it is crucial that a failure 

boundary be established. With the current set of calculations, a failure boundary cannot be 

predicted prior to testing due to the inputs needed. Specifically, the major and minor diameters of 

the ovalized section cannot be predicted, but, rather, are only observed. Once a set of tests has 

been run and an empirical failure boundary is proposed it can be used by the machinist to know 

if the bend they need to make is possible on an arborless tube bender or if the bend must be 

created on a standard tube bender.  

3.7.2 Results 

 These equations have been validated using data from the empirical tests. For example, a 

test was done on ½” M alloy 122 copper with the intended bend radius of 5.” Measurements of 

the major and minor axis were taken every 10° and buckling visually occurred at 30°. Using the 

equations described herein, the incremental tri-axial strain on the tubing was calculated to be as 

follows: 

Table 3—1: Calculated incremental strains predicted at a 30° bend. 

Configuration: ½ x M alloy 122 copper, free length: 7.85” 

 Axial Strain Cross Sectional Strain Radial Strain 

South, inner surface -0.582% 0.561% 0.020% 

South, outer surface -0.635% -0.622% 1.257% 
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Total strains for this same test specimen are shown in Table 3—2. This expected strain is near 

the 2.74% yield strain for alloy 122 copper discussed in Section 5.2. 

Table 3—2: Calculated total strains predicted at a 30° bend. 

Configuration: ½ x M alloy 122 copper, free length: 7.85” 

 Axial Strain Cross Sectional Strain Radial Strain 

South, inner surface -1.693% 0.602% 1.091% 

South, outer surface -1.852% -0.663% 2.515% 

 

 Strain calculations were run for all the tests of copper tubing for which data on the major 

and minor axes was recorded throughout the bend. The maximum strain was found to occur in 

the South Outer surface in the radial, or thickness, direction. This is due to the axial and cross 

sectional strains occurring in the same sign, in orthogonal planes, so that transverse strains in the 

radial direction are additive. The maximum strain calculated for each copper test is shown 

plotted in Figure 3—27. 

 

Figure 3—27: Buckling strain compared to yield strain 
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 This data was found by calculating the strain, as shown in Section 3.6, in each of the 

three directions, at each bend angle throughout the test process. The buckling angle was 

determined visually as described in Section 4.4, and this angle frequently fell between two of the 

10° increments of the test. Because cross section strain calculations can only be run if the 

ovalization data is recorded, the radial strain at the buckling point was estimated by linear 

interpolation, from the bend angle immediately preceding and after the buckling occurred. The 

bend angle at which buckling occurred is recorded on video to within 1°. Assuming 

approximately linear behavior, the buckling strain may be estimated by the ratio  

 
𝜖𝑟𝑎𝑑𝑖𝑎𝑙 𝑎𝑡 𝐵𝑢𝑐𝑘𝑙𝑖𝑛𝑔 =

𝜃𝐵𝑢𝑐𝑘𝑙𝑖𝑛𝑔 − 𝜃30°
𝜃40° − 𝜃30°

∗ (𝜖40° − 𝜖30°) (3—40) 

 This corresponds to the buckling angle visually recorded which gives an estimate of the 

actual strain at buckling. This can be shown in Figure 3—28. This estimate will always be higher 

than the predicted strain, due to the function being concave, unless buckling occurred right at one 

of the 10° increments, where ovalization was measured. 

 The data presented in Figure 3—28 comes from Test #126 and is a repeat of the data 

shown in Figure 3—24. For this test, buckling was seen first occurring at 30°, but for illustrative 

purposes the buckling angle has been exaggerated to 35°. This data would show a strain at the 

data point taken just before buckling occurred, or “rounded down” data point of approximately 

0.024, or 2.4% strain, which is close to the yield strain. The strain at the data point just after 

buckling would be approximately 0.26, or 26%. The line fit estimate using these two points 

would give an estimated buckling strain at 35° of 0.15, or 15%, but if a curve was fit to this data 

the buckling strain would be estimated at closer to 0.05, or 5%. This is due to the rapid change of 

the strain after buckling. The line fit approximation will always be higher than the curve fit 

strain, but it gives a quickly estimated value.  
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Figure 3—28: Estimating the maximum buckling strain 

 It is important to note that the strains at the rounded down point (the last measured value 

before buckling,) shown in Figure 3—27 are mostly all near, and typically below, the expected 

yield strain of alloy 122 copper. Also, the estimated buckling strains are all above the yield strain 

of alloy 122 copper. This shows that the failure occurred just after the yield point was reached. 

Copper is shown here to fail quickly after it reaches yielding, just as the published data predicts, 

which will be discussed in more detail in Section 5.2 
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4 APPARATUS AND TEST SET UP 

4.1 Components of the Machine 

4.1.1 Hardware Description 

 An arborless tube bending machine has been provided by the BYU capstone program and 

their sponsor, Burr Oak Tool Inc. The control system was built and programmed by Kevin Cole. 

The machine is controlled by a feedback control loop using a Compact RIO controller by 

National Instruments, which is run with LabView and a desktop computer. The system controls 

three motors: two linear actuators and a central rotary drive motor. The central motor is an AC 

gear motor, which drives the angular displacement of the bender arm. Two linear actuators 

attached to the movable clamps, which grip the ends of the tubing, make up the rest of the 

control system. One of the actuators is fixed to the table and the other is on the rotating arm, 

whose angle is controlled by the central motor. The arm rotates about its pivot, and the clamp 

grips one end of the tube as it moves through the bend angle. The control system simultaneously 

changes the position of the linear actuators in an attempt to keep the neutral axis of the tube at its 

original length. The continuous position adjustments of the clamps keep axial pressure from 

developing in the tube’s neutral axis and allow the system to apply only a pure bending moment.  
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Figure 4—1: Bending machine controls schematic 

 Views of the bend site from above are recorded by the computer through a web camera, 

which allows the operator to see when buckling occurs. The critical instant when the tube begins 

to collapse is detected, and, after the test when the video recording is being reviewed, it may be 

paused to record the angle. The bend specifications and the buckling angle are then recorded on a 

spreadsheet. 

 The individual components of the machine are described in detail in the Capstone report. 

These components include the clamping mechanism, the sliders, the fixed structural arm, and the 

structural arm that swings through the bend, the linear actuators, and the torque motor. A 

description of the specifications for each part is located with its description in the report. 

4.1.2 Control System 

 In order for the apparatus to meet the required functional specification of applying only a 

pure moment to the tube, a Data Acquisition System (DAQ) is required. This system precisely 

controls the amount of movement in the linear actuators in relation to the bend angle. It is able to 

start and stop the machine manually at any time in order to collect data, as well as know when 



57 
 

the bend is complete and stop the bend at that point. It is directed by the program LabView, 

which allows the user to easily see and manipulate the configuration of the system parameters.  

 Using the equations in Section 3.6.1, the computer can find the expected radius of 

curvature for the tube at every given angle throughout the bend. By inputting the expected final 

bend radius and bend angle, the user is specifying the final, and constant, length of the neutral 

axis. Using this information, the offset value u, and the neutral axis shift e, the control system 

can calculate the change needed in the length of the centroidal axis that would keep the neutral 

axis constant.  

 This formula has been programmed into the LabView program and governs the linear 

actuator position. This equation has been set up to keep the neutral axis length unchanging 

throughout the bend, which will make the applied axial pressure negligible. This is what 

maintains the pure bending moment. The equation as it was coded into the program is shown in 

Equation (4—1). The derivation for this equation can be found in 0. 

 𝑎 = �
𝑅𝑓𝛼𝑓
𝛼

− 𝑈� tan �
𝛼
2
� (4—1) 

 A computer interface and display has been designed which allows technicians to enter 

test parameters and monitor the process to assure the bend is properly controlled. Through this 

system they are able to see the expected location of both linear actuators, compared to their 

actual position, as read by means of potentiometers, and plotted together on one graph. They also 

are able to manually start and stop the machine at any time. When the bend has gone to its pre-

programmed position, the DAQ automatically stops the machine, and the technician can then 

remove the specimen from the clamps. To repeat the test, the technician resets the clamps to the 

initial position, based on inputs that were put into the user interface, by simply pressing the reset 
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button. This system has been designed with the user in mind and attempts to be simple for a 

technician to run. A user manual has been included in 0.  

 

Figure 4—2: Screen shot of bending machine control systems in LabView 

4.1.3 Instrumentation 

 The feedback data that is used in the control system comes from a set of three 

potentiometers located on the linear actuators and the rotary motor. This data controls the action 

of the motors through a set of relays, which allow the power to be turned on or off or which 

switches the direction of the current to reverse the motor as needed. In case of a failure, limit 
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switches have been included at 0 and 90 degrees that will shut off the power to the rotary motor 

if they are triggered. Specifications on each of these components have been listed in the 

Capstone report. 

4.2 Machine Limits 

 The machine is limited in the angle in which it can bend a specimen. Limit switches have 

been installed at locations on the table corresponding to approximately -10° and 95° which stop 

the program if tripped. When deemed necessary, the limit switches may be removed and bends 

larger than 90° may be reached. 

 The clamps on the machine have fixtures that are shaped specifically to match the outer 

diameter of the tubing. They are replaced with each change of tubing size to keep the grip area 

consistent. Currently, there are two different grip fixtures matching the two tubing diameters 

which have been tested. If a different diameter is to be tested new clamps will have to be made. 

Finned coils or other flat-sided material have been bent by removing the fixtures and holding the 

material directly in the clamp jaws. 

4.3 Recording Methods 

 Many of the challenges relating to correlating the bend angle with the buckling load are 

centered on the method of recording the exact instant of buckling and corresponding bend angle. 

Potential concepts were tried that each had their difficulties and benefits. The three concepts that 

were tried were 1) a visual reading from a web camera, 2) an attached elastomer strain gauge, 

and 3) measuring the current drawn by the motor. The following examines why the visual 

reading was chosen and the others discarded. 
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4.3.1 Concept Generation and Selection  

Visual reading 

 Buckling on a tube is obvious once the whole tube has failed, but it is much harder to 

detect when it actually begins. By recording the instant when buckling becomes visible, it was 

possible to get a consistent and repeatable data point that could be used for comparison to the 

theoretical equations. The difficulties involved with this were based around the ability of the 

operator to find the buckling point consistently, but it was found that, through training, this could 

be done. After the test, the operator would playback the video, watching it to see when the inner 

edge of the tubing no longer formed an arch with a constant radius along the whole bend. When 

this frame in the video was found, the user paused the video and recorded the angle, based on the 

protractor, which is also visible in the screen. This method allows the data to be recorded without 

interference. The data could then be reviewed after the test to find the critical point. 

 An in-depth description of this method, with examples of when the technician marked the 

buckling point is found in the User Manual supplied in 0 

Elastomer Strain Gauge 

 Concurrent with this project was a project headed by Dr. Fullwood of BYU, where 

elastomer strain gauges were being tested. These strain gauges consisted of a strip of rubber-like 

material which, when formed, had been infused with conductive carbon shavings. They had the 

capability to read strains in the range that we were interested in, but were still experimental. 

Unfortunately, we were not able to get a good reading from them due to adhesion issues between 

the strain gauge and the metal. The gauge would detach itself midway through the bend causing 

the key data to be lost.  
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Current Reading from Motor 

 Another technique for detecting buckling was based upon reading the current supplied to 

the motor. It was based on the motor current being proportional to the torque load on the motor, 

which would equal the bending moment on the tubing. The moment applied was expected to 

drop suddenly when buckling occurred due to the tube walls no longer resisting the moment and 

this should produce a sudden change in the motor current.  

 In order to read the current supplied to the motor, the wire connecting the motor was 

wrapped around a current transformer, which produced a signal. In the end, this signal was much 

too weak. Even with filtering and amplification, a reliable buckling point could not be detected.  

Manual Caliper Readings 

 Prior to buckling, the cross section surrounding the buckling point begins to deform from 

circular to oval. The major axis of the oval is normal to the bending plane and the minor axis 

parallel to the bending plane. In order to quantify this ovalization, measurements were taken at 

10° intervals throughout the bend of the major and minor axes at the buckling point along the 

tube.  

 Unfortunately, the gear system had enough play between the gears to allow the tube to 

spring back a degree or so while the measurement was being taken, but this did not seem to 

affect the final buckling angle and so it is assumed that the test was not critically different. The 

spring back also had a negligible effect on the major/minor axis measurements. These readings 

were carried out on a smaller number of tubes because of the time required to stop and start the 

machine. The ovalization measurements turned out to be a valuable metric for the transverse 

strain calculations. 
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4.3.2 Running the Machine 

 The machine is monitored by a computer, on which LabView is installed. Within 

LabView, the technician runs the custom program, FlexTech. Once the program is running, the 

technician enters the desired final position to the computer in terms of final bend angle and final 

bend radius as well as the offset. They also may input the angle increment at which to pause in 

order to take measurements during the test. Each input allows the technician to control an aspect 

of the bend. 

 The initial length of the specimen is determined from the specified final bend angle and 

final bend radius. The initial grip position is then calculated through the arc length formula 

 𝐿𝑎𝑟𝑐 = 𝑅𝑓𝜃𝑓 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑔𝑟𝑖𝑝𝑠 (4—2) 

where the initial distance between the grips is equal to the final neutral axis arc length. This is 

the value to which the neutral axis will be maintained, using the linear actuators, as it proceeds 

through the bend.  

 In order to maintain a constant length neutral axis, it is important to know its precise 

length throughout the bend process. The offset is input into the program in order to define the 

initial position of the neutral axis. It is defined as the distance between the axis of rotation for the 

rotary motor and the neutral axis in the plane of bending. The offset is labeled U in the figure 

below. Calculations for the neutral axis location versus the bend angle are derived in 0. The 

addition of the effect made the neutral axis shift calculations much more complex. 
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Figure 4—3: Tube in bending 

 

4.3.3 Recording Video 

 During the bend tests, a video is recorded that allows the technician to collect the raw 

data. A webcam is placed above the table at approximately the rotational motor’s axis. This 

camera captures the center section of the specimen throughout the bend.  

 Once the test specimen is prepared for a test, the camera is turned on and controlled 

through Windows Movie Maker or equivalent video capturing software. The camera is kept 

running through the full bend regardless of pauses or failed tests. This allows the technician to 

concentrate fully on the test apparatus. At the end of the test, the video recording is stopped, and 

the video is reviewed in order to determine the buckling angle based on the profile of the 

specimen. 
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4.3.4 Recording Major/Minor Axes Measurements 

 For many tests, the technician paused the machine at every 10° of the bend cycle and 

took measurements of the major and minor axis of the tubing cross section. This measurement, 

taken manually via calipers, was recorded on the same spreadsheet as the buckling angle. Other 

tests were run without stopping the machine, and the results show that stopping the process had 

no significant effect on the buckling angle.  

 The program allows the user to choose any interval for the distance travelled before the 

manual pause is reached, based on the pause angle input. For the purposes of this test, the pause 

angle has been every ten degrees. After the pause, the test is resumed right where it left off, 

recovering the small spring back that occurred during the pause. The sudden increase in 

ovalization measurements are another clear indication that buckling has occurred.  

4.3.5 Interpreting Results 

 Once the test has been run and the video has been captured, the technician reviewed the 

video and recorded the buckling angle of the tubing. They did this through visually watching the 

video, frame-by-frame near the point when buckling was expected, and stopping the video when 

they saw buckling occur. They specifically watched the inner edge of the specimen for the 

uniform radius of curvature to become non-uniform. At the point they were able to see the radius 

of curvature change from a smooth curve, constant throughout, to a point failure, they then read 

the protractor which has been installed below the clamps, right over the rotary motor axis. The 

angle was then recorded in a spreadsheet, along with the test number and material specifications.

 This process is obviously easier and more valid for materials that fail suddenly, like 

copper, than with materials that fail subtly, like aluminum. For both those that fail suddenly, and 

those that are more subtle, this process has proven to be valid when compared to tests where the 
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major and minor axes are measured. When these measurements are taken, it is clear when the 

failure occurs due to the rapid decrease in minor diameter and increase of major diameter, which 

are clear signs that the ovalization is changing rapidly, which is when buckling occurs. This 

relationship can be seen below in Figure 4—4.  

 

Figure 4—4: Ovalization of ½” x M copper tubing 

 The point of buckling recorded through this system of measurement is repeatable with a 

standard deviation of approximately 1.5° for copper, and 5° for aluminum and EMT steel, off the 

expected buckling angle. This is shown in more detail in the linearity analysis in Section 5.4. 

This is not a large variation considering the unstable nature of this mode of failure. It is sensitive 

to small surface variations, grain orientation, local hardening variations, etc. 

4.4 Raw Data  

 Two forms of raw data have been recorded: Video recordings of the tests and manual 

measurements of the major and minor axes. Each adds some insight into the buckling failure and 



66 
 

where it occurred. Below, each form of raw data is shown and the spreadsheet showing the 

analysis is described. 

4.4.1 Video Data 

 Figure 4—5 is a series of screen shots that show what the technician sees frame-by-

frame. They use the frame-by-frame view to see more precisely where the radius of curvature 

becomes non-uniform along the inner edge of the specimen. 

 

 

 Using the frame-by-frame viewing available in Windows Movie Maker allows 

comparison of the sample at 62°, 61°, 60°, and 59° protractor angles, as shown in Figure 4—5 

above. Buckling has clearly occurred by 60°, but may be beginning at 61°. This specimen’s 

buckling angle has been recorded as 61°. The test shown in the figure is not the Test #126 used 

throughout the rest of this report, but is an EMT sample. Test #126 buckled at 60° as shown on 

the spreadsheet shown in Figure 4—6. The compliment of this angle, 30°, is the value used in the 

theoretical analysis.  

Figure 4—5: Determining the buckling angle by viewing footage frame- 
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Figure 4—6: Table for recording buckling angle data  

4.4.2 Hand Measurement Data 

 Hand calculations taken with calipers at the buckling point every 10° are recorded in the 

following spreadsheet. Not all tests were recorded this way due to the time intensive nature of 

the process. This process was used to validate the data recorded visually. Figure 4—7 shows how 

this data was recorded. 

 

Figure 4—7: Table for recording raw ovalization data 
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 This data has been plotted along with the buckling angle recorded via the video. An 

example of this data as it is plotted is shown in Figure 4—4 which is repeated below for 

convenience. The graph includes the percentage change in the major and minor axis diameters 

versus the original tubing diameter. It also confirms that the buckling point recorded from the 

frame-by-frame video method was measured at the same point at which the major and minor axis 

deformation begins to increase dramatically, as shown by the inflection of the plot.  

 
Figure 4—4: Ovalization of ½” x M copper tubing
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5 TEST RESULTS 

5.1 Introduction 

 The tests runs were analyzed in two different ways. One was to determine the reliability 

of the tests and to see if failures occurred at the same angle with respect to the bend radius. The 

second was to determine the failure boundary for a single material, alloy 122 copper. This 

material was varied by wall thickness and outer diameter, but material properties and the 

intended bend radius at 90° was held constant. This section describes this analysis and the 

results. 

5.2 Materials Used 

 Tests were run using three different materials: aluminum, steel, and copper. Each of these 

materials were kept constant in alloy, but varied in tube diameter and wall thickness. The 

aluminum and steel were only tested in a single set of dimensions, but the copper, due to its clear 

buckling reaction, was tested in a range of dimensions in order to observe and present the failure 

boundary surface. 

 The aluminum was only tested with a 0.75” diameter and a 0.065” wall thickness. It acted 

more elastic and ductile than the other materials. Results were more difficult to read and 

buckling occurred with less repeatability, yet the standard deviation of the data was only 4.7° off 

the expected angle as shown by the trend line. (See Appendix A.1)  
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 The steel specimens were EMT (Electrical metallic tubing) conduit. This tubing is used 

as electrical conduit and is readily available. This steel tubing had an outer diameter of 0.7” and 

a wall thickness of 0.045”. The results from tests using steel showed less ductility than 

aluminum, but were still more variable than the failures for copper. The standard deviation in 

this data was only 5.75° off the expected angle as shown by the trend line. (See Appendix A.2) 

 Copper tubing buckles quickly and repeatedly, so it was used to test the buckling failure 

boundary. It came in a selection of wall thicknesses and outer diameters as well. The copper 

specimens were common water line pipe, which have standard dimension call-outs. All copper 

specimens were copper alloy 122. The standard deviation in their data was, on average, only 

1.33° off the expected angle as shown by the trend line. (See Appendix A.3) 

 Alloy 122 has a published Young’s modulus of 18,900 psi and tensile strength of 51,800 

psi. It can be expected to reach its elastic limit at 2.74% strain. Published studies are 

purposefully conservative about their values, so the actual expected elastic limit would be higher 

than this value. Because the tubes are being deformed in the plastic, rather than the elastic range, 

buckling, and plastic deformation, should occur after the elastic strain limit, but before the 

ultimate strain. According to the stress-strain curve shown in Figure 5—1, final failure in tension 

doesn’t occur until after 17% strain (295˚K test, approximately 71˚F). 

 It is noteworthy that in Figure 5—1, the stress-strain curve reaches the elastic limit and 

immediately drops off due to necking. This may be why we are seeing strains around the yield 

strain at buckling for copper tubes. 
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Figure 5—1: Stress strain curve for alloy 122 copper at cold temperatures  

Source: http://www.copper.org 

 According to the ASTM B88 standard, copper pipe comes in three varieties: M, L, and K, 

which refer to the wall thickness. Type M has the thinnest, and type K has the thickest walls. 

This notation does not intentionally imply that each type M has the same wall thickness; just that 

Type M has a thinner wall than type K. The diameter call out is given by a nominal size.  

 Tests were run on four different sizes of tubing. The specimens included type M and type 

L wall thickness, and nominal diameters of ½” and ¾”. Although the nominal size refers to the 

inner diameter, accurate measurements could only be taken of the outer surface during testing. 

The actual dimensions of the specimen are shown in Table 5—1 and Figure 5—2. 
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Table 5—1: Copper specimen dimensions 

   
Wall thickness 

Nominal Size Type OD Nominal  Tolerance 
3/4 M 0.875 0.032 0.003 
1/2 M 0.625 0.028 0.003 
3/4 L 0.875 0.045 0.004 
1/2 L 0.625 0.04 0.004 

 

 

 

Figure 5—2: Copper specimen dimensions 

5.3 Number of Tests Run 

 The number of runs varied, based on the availability of the material and the type of 

analysis desired. For the reliability analysis, multiple runs were performed for each material at 

each expected bend radius. For the failure boundary analysis, two to three runs were performed 

for each configuration. 

 There were 48 tests run with the aluminum material, testing at 4”, 6”, 8”, and 10” 

expected final bend radii. 36 of these tests were run at the 4” final bend radii with the intent to 
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gather some statistically significant data. Each of the other three final bend radii were tested 4 

times each in order to get a range for the results. 

Table 5—2: Number of tests run in aluminum 

Aluminum 
Final Expected 
Bend Radius 

Number 
of Runs 

4 36 
6 4 
8 4 

10 4 
Total 48 

 

 EMT steel was tested in 37 runs at one inch intervals in bend radii between the 4” and 

10” expected final bend radii. An expected final bend radius of 3.5” was also tested, but only 

once. The rest of the number of runs were mostly between a final bend radius of 4”, 6”, and 8”, 

with a few scattered tests between in order to check for linearity of the test results. 

Table 5—3: Number of tests run in EMT steel 

EMT Steel 
Final Expected 
Bend Radius 

Number 
of Runs 

3.5 1 
4 13 
5 2 
6 35 
7 2 
8 11 
9 2 

10 2 
Total 68 

 

 Copper was tested for the linearity analysis and then some of the tests were used as part 

of the empirical data that helped build the failure boundary. For the linearity analysis, the copper 
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was tested over the same range as the EMT steel, with expected final bend radii between 3.5” 

and 10”, with every inch represented between 4” and 10”. Table 5—4 shows the number of runs 

for each expected final bend radius for each of the configurations of copper. 

Table 5—4: Number of tests run in alloy 122 copper tubing 

Copper 
½” Type M 

 

Copper 
½” Type L 

Final Expected 
Bend Radius 

Number 
of Runs 

 

Final Expected 
Bend Radius 

Number 
of Runs 

3.5 2 
 

4 5 
4 5 

 
5.5 1 

5 5 
 

6 3 
6 5 

 
8 3 

7 5 
 

10 4 
8 5 

 
Total 16 

9 5 
   10 5 
   Total 37 
   

Copper 
¾” Type M 

 

Copper 
¾” Type L 

Final Expected 
Bend Radius 

Number 
of Runs 

 

Final Expected 
Bend Radius 

Number 
of Runs 

4 2 
 

4 4 
5 2 

 
6 3 

6 2 
 

8 3 
7 2 

 
10 4 

8 2 
 

Total 14 
9 2 

   10 2 
   Total 14 
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5.4 Linearity Analysis 

 The first analysis was intended to show the linearity of the results as the machine is used 

and materials are tested. The tests were grouped by material specifications and dimensions and 

results were plotted as the observed buckling angle against the expected final bend radius. The 

results are shown in Figure 5—3, which shows each material’s results and includes a trend line 

for each. This trend line was used as an expected value when analyzing the normal probability. 

 

Figure 5—3: Buckling angle vs. bend radius for each material configuration 

 From the linearity analysis, it is shown that the buckling angle is approximately linearly 

proportional to the free length being bent. For copper this relationship is very clear. For 

aluminum and EMT, this data is clear, yet a larger spread is seen in the data. A trend line was 

taken and residuals were plotted for each material. These residuals were then analyzed through a 
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normal probability plot and their data appears to describe a normal distribution around the trend 

line. The residuals show whether there is a good fit between the data and the curve fit line. The 

normal probability plot shows how well the data can be described with a normal probability 

curve about the curve fit line. The data from the copper tests show that the curve fit line 

accurately predicts the data and that the data falls in an approximately normal distribution about 

this line. This indicates that the tests that were done were reliable over the range of specimen 

dimensions and that the material and machine function in a reliable manner. The plots 

corresponding to this analysis can be found in 0. An example is shown here for 3/4” Type M 

Copper. 

 

Figure 5—4:Failure angle data for ½” x L copper tubing 
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Figure 5—4a:Statistical analysis of residuals for ½” x L copper tubing  
 

 

Figure 5—4b: Normal probability plot of the residuals for ½” x L copper tubing  
 

5.5 Buckling Failure Boundary Analysis 

 The results from the copper tests were used to find the buckling failure boundary 

empirically. Copper was used because, as is shown, copper acted the most predictably at each 
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bend radius. As mentioned above, the standard deviation in its buckling angles was only 1.33° 

compared to 5° for the other materials. Materials other than copper can be tested in the same 

way, although more data will need to be gathered in order to produce a statistically significant 

result.  

 The copper was tested at four configurations of outer diameter and wall thickness, as 

mentioned above. Each of these configurations was tested at an expected final bend radius of 4”, 

6”, 8”, and 10” and at least two times in order to show repeatability. The number of runs for each 

final bend radius can be seen above in Table 5—4. This data is plotted in Figure 5—5 showing 

each individual specimen’s expected bend versus its buckling angle. 

 

Figure 5—5: Failure limits for alloy 122 copper tubing 

 This data was analyzed in a surface plot with the values of the intended final bend radius 

and the thickness divided by the outer diameter forming the XY plane and the buckling failure 

angle forming the Z axis. The thickness divided by the outer diameter was used as an axis in 

order to relate the specimen shape to the failure angle. As can be seen in Figure 5—6, the data 

shows an upward trend where the larger the intended bend radius, the higher the failure angle. 
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Also the data shows a similar upward trend with respect to the thickness divided by outer 

diameter, although this relationship does not hold true for larger intended bend radii.  

 

Figure 5—6: 3D plot of the surface failure boundary for copper tubing. 

 Due to the lack of a clear relationship between the buckling angle and the specimen 

dimensions, the initial two dimensional plot was preferred (Figure 5—7). To create this plot the 

trend lines were then plotted with the Y axis charting the failure limit and the X axis giving the 

way the specimen was held. This was done in two ways. First, the buckling angle was plotted 

with respect to the radius the machine was trying to reach at 90°. The data was plotted in a way 

that shows the information as it was given to and read from the machine. At setup, the machine 

asks for the final expected bend radius. Then, as the user observes buckling, they record the 

buckling angle off the protractor.  
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 A second plot is made using data the design engineer or the technician would use. When 

the expected final bend radius is put into the machine it is converted into a free length by 

multiplying by the final expected bend angle, 90° (π/2 radians) in these tests. The final buckling 

angle can be converted into a final buckling radius by dividing the free length by the buckling 

angle. In the second plot the free length has been plotted versus the buckling radius.  

 These two plots are therefore essentially equivalent. The final expected bend radius and 

the free length are essentially the same term due to the final expected bend angle always being 

90°. The buckling angle and the buckling radius both describe the buckling phenomenon, but 

show it in somewhat opposite ways. As the angle increases, the bend radius decreases, therefore, 

they are inversely related. The results from this test are shown plotted in Figure 5—7. The 

plotted points form a limit where any bend angle configuration above the buckling limit is 

expected to fail.  

 The buckling failure boundary analysis for the copper materials shows the relationship 

between bend radius, or free length, and the failure angle, or the failure radius. The angle, or 

radius, at which the material will fail increases as the bend radius, or free length, is increased. 

Also, there is a relationship between the dimensions (thickness and outer diameter) of the cross-

section of the tube that affects the expected buckle angle. This can be seen in Figure 5—5 above 

where the thinner wall tubes buckle sooner (lower buckling limit). 
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a) Buckling angle vs. expected final bend radius 

  

b) Buckling radius vs. free length  

Figure 5—7: Failure limits for alloy 122 copper 

5.6 Discussion 

 The air bending process is shown here to be a reliable process for bending a tube and 

failure happens at the expected parameters. Due to this information a machine operator can be 
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confident that if the parameters can be plotted below the surface shown in Figure 5—7, the tube 

will not be expected to buckle. If a material other than alloy 122 copper is intended to be bent, a 

similar plot can be created.  
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6 CONCLUSIONS 

6.1 Summary of Work 

 The work performed by this thesis includes modifying a prototype for an arborless 

bending machine and improving its practical use as a tube bending apparatus, developing a 

sophisticated control system, testing the repeatability of the system, and creating a failure 

boundary for buckling, which has been validated through testing and analysis. Although the 

prototype was nearly usable at the start of the project, much work was done to test the control 

systems, improve the instrumentation, and make the software more user-friendly and the 

apparatus more reliable. Once a usable prototype was established, tests were performed to 

determine the repeatability of the system on a number of different materials, for a range of sizes 

and bend radii. 

 A buckling failure boundary was empirically created through testing a variety of 

dimensional configurations of copper tubes. This empirical study has been examined through an 

analytical model, which has shown the viability of the empirical tests. It has been demonstrated 

that bending tubing is possible without the use of an arbor, as long as a pure bending moment is 

applied and the neutral axis of the tubing is held at a constant length. The free length and 

dimensions of the tubing turned out to be the driving factors in predicting the buckling angle. 

 The scope of work included running nearly 200 tests on a variety of sizes and materials of 

tubes, over a range of bend radii, in order to validate the test apparatus’ repeatability. Alloy 122 
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copper was tested in enough configurations and free lengths that an empirical failure boundary 

was able to be completed. Also included in the scope of the project, was an analysis of the tri-

axial strains that are applied to the material as it bends and ovalizes. 

6.2 Discussion Comparing Analytical and Empirical Results 

 Data calculated from the empirical tests using the analytical study was predictably close 

to the data expected from published stress-strain data. The example given in the discussion at the 

end of the analytical study was of a test specimen that had a maximum strain of 2.67% occurring 

in the radial direction (thickness change) at the south outer point at the time of buckling. 

According to the data reference in the empirical section, the total strain should reach about 

2.74% at the elastic limit, but then fall off quickly after that. Because failure occurred near the 

yield value for all of the copper tests, we can confirm that the equations can be used to validate 

the empirical study. Any discrepancy is most likely due to unintentionally applied axial loads 

applied to the material. Compressive axial strain data was not accessible for this material. 

6.3 Observed Results  

 From the tests and discussion, it is shown that bending a tube without the use of an arbor 

is possible with the right configuration of the apparatus. In order to accomplish this, it is 

important to keep the length of the neutral axis of the tubing constant throughout the bend and 

apply a pure bending moment. There is some room for error in this area, but if the calculated 

neutral axis is not close to its original length, an axial load will be applied to the tubing and will 

result in a non-pure bending moment. In a bend where a 5 inch bend radius is desired at 90°, the 

neutral axis is shifted by 0.008624” toward the center of curvature, resulting in an increase in arc 

length, and consequential clamp adjustment, of approximately 0.5” required in order to avoid 
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applying the axial load. This was accounted for by moving the clamps as described in Section 

4.1.1. Without this adjustment, pure bending could not be achieved. 

 It was observed that failure typically occurred directly centered between the two clamps, 

and that the typical mode of failure was ovalization, followed by buckling at that center point. 

Occasionally, a wrinkle buckling failure would occur near the clamp, but it was a rare 

occurrence. The main buckling failure occurred inside the bend, at the South point, where the 

bending strain and cross-section strain are compressive, when the tube reached the buckling 

point due to the bending moment applied. Failure would also, in part, occur due to the non-

uniformity of the material and possible failure of the linear actuators to keep up with the desired 

motion. 

 It was also shown that the angle at which a tube will buckle depends directly on the 

length of the unsupported section as well as the physical dimensions of the specimen. This was 

shown through an empirical failure boundary, consisting of a three-dimensional surface plotted 

with the axis being the unsupported length, the dimensions of the tube, and the dependent 

variable being the angle at which a specimen exhibited the onset of buckling. This boundary is 

limited due to the low number of actual tests at each point, but the test was shown to be 

repeatable. 

6.3.1 Contributions 

 The work contained herein is significant due to its contribution to a new kind of tube 

bending apparatus. The ability to form a tube without the use of an arbor has the potential to 

improve the change-over time in manufacturing procedures, as well as to allow finned coils to be 

bent predictably without buckling the coils. In order to accomplish this arborless bend, a set of 

movable clamps have been analyzed, which keep the moment pure throughout the forming 
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process. No finned coils were tested, but as the tubes within the finned coils are copper the 

failure boundary created for the tubes is informative. This research was done with the intent to 

gather understanding of the buckling phenomenon that could then be applied to finned tubes. 

 The work is not exhaustive, but a variety of types and dimensions of tubes have been 

tested in order to validate the system. A failure boundary model has been offered as a basis to 

build failure boundaries for other materials, within which would allow the machine operator to 

avoid buckling on any material they are interested in working with. 

6.4 Future Work 

 In order for this work to be more comprehensive, an extensive study of different 

materials should be done with different diameters and wall thicknesses. Specifically, materials 

such as aluminum and the EMT steel studied have high variability due to their slow buckling 

failures. A higher number of tests of these could be done that would allow for a more statistically 

significant failure boundary to be created.  

 Initially, this project was given to a Capstone team with the intent to be able to bend 

finned coils without damaging the fins or the coils. Tests of finned coils under pure bending will 

be necessary to determine how much the close-fitting fins reinforce the tubes, resisting 

ovalization and buckling. The fins are expected to support the tubing and delay buckling, 

however, the foregoing analysis only approximates their behavior by testing copper tubing 

without the fins. The analysis here looks at the fundamental behavior of a tube in pure bending, 

and from there, assumptions may be made that would aid in predicting buckling in a finned coil 

assembly. 

 The analysis and data presented here provide an opportunity for future work in the fields 

of the post-yield behavior and flow law associated with buckling. The comparison of the analysis 
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results to the empirical data should be studied to understand how the material behaves under 

post-yielding. Providing a flow law for this behavior would be beneficial as well. The successful 

development of a model for tri-axial strains in a tube bending process could provide a well-

defined strain field for development of a tri-axial flow law. Further tests to determine the 

associated tri-axial stresses are under investigation. 
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APPENDIX A: User Manual 

 The following pages contain a user manual that was developed by Joel Bloomer 

throughout the project. It includes a user manual for the machine as well as instructions on how 

to create a new clamp that aligns properly with the machine and will not cause unintentional 

loads.  
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Running the machine 

Opening LabView and starting the program. 
The bending machine is run by a LabView program. On the computer currently in use, this 
program can be found on the desktop, in the “Flextech v16” folder as shown below in Figure 1. 

 
 
 

Figure 1: Finding and starting the LabView program. 
From the Flextech folder, go to “Flextech.lvproj,” “Main.vi,” and then hit the “Run” button. Save all changes suggested by the 
program. 
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Using LabView to operate the machine 
Once the program is running, the basic process for using the machine is as shown in Figure 2. 

 

Preparing and securing samples 
In order to prepare to run a bend test, it will be necessary to cut a piece of tubing to fit the 
bending machine. The length of this sample should be just barely longer than the distance from 
the far edges of the vise jaw inserts, as shown in Figure 3. If it is any shorter than that distance 
and there is a burr on the outside of the cut edge, it may interfere with the clamping action and 
cause inconsistent bend behavior. This can be avoided by de-burring the tubing before clamping 
it. It can also be avoided by using a cutting method that does not leave a burr on the outside of 
the tubing, such as a rotating pipe-cutter. 

Figure 2: Running the LabView program, clockwise from the left: 
1. Set the desired final dimensions, and then hit “Reset” to position the clamps. It is sometimes necessary to hit “Reset” a 

second time after the clamps have stopped moving in order to get them to the proper position.  
2. After the pipe specimen has been cut (if desired—see Figure 3) and then secured in the clamps, measure the offset (see 

Figure 6) and enter its value. 
3. Verify that the pause angle is correct. 
4. Hit “Start Bend Cycle” to run the machine. 
 
NOTE: Lengths are given in inches, angles in degrees. 
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In order to ensure that the vise jaws are uniformly gripping the tubing, the spacer in each set of 
jaws must be adjusted. A poorly adjusted spacer will either prevent the vise from gripping the 
tubing, or will cause the vise to pinch one point of the tube while leaving the rest of it 
unsupported. A poorly adjusted vise spacer will result in inconsistent bend behavior. The 
vise jaw spacer can be adjusted as shown in Figure 4. 

 
 

Figure 3: Determining the length to cut tubing for bending tests. 
Tubing samples for bend tests should be cut to this length after the clamps’ positions have been reset in the 
LabView program. 

Figure 4: Adjusting the vise jaw spacers. 
The spacer is located diagonally opposite the clamping point and is intended to ensure that the vise jaws remain aligned 
while clamping the tubing. The fixed spacer is highlighted in the picture on the left. It can be removed if necessary to 
accommodate smaller tubing or thinner vise jaws. The spacing can also be adjusted using the bolt highlighted in the picture 
on the right. 
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The vises themselves are low quality and very finicky; however, if the tubing is not clamped 
tightly enough, then it will cause problems in finding a consistent buckling angle. I have used a 
5" long piece of EMT as a handle extension on the vise in order to get a sufficient clamping 
force. Once the specimen has completed a bend cycle, it takes a somewhat longer handle 
extension to get the vises to release the specimen. This will probably break the vises eventually, 
but seems to be necessary to make the current equipment work. 
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Determining the offset 
The motion of the clamps during a bend cycle is calculated to allow the tubing to bend without 
buckling for as long as possible. Correctly calculating this motion depends on knowing the 
distance between the neutral axis of the tubing and the central pivot point of the bending 
machine. This is called the “Offset.” The inside face of the fixed jaw of each vise is lined up with 
the machine’s pivot point, so the offset for a given tubing specimen is simply the distance from 
the fixed clamp jaw face to the center of the tube in question. This is illustrated in Figure 5. 

 

Pausing the machine 
During the bending process, it may be necessary to stop the machine—usually to take extra 
measurements, but perhaps for other reasons, too. While the “Cancel” button will stop the 
machine, it will also make it impossible to complete the bend cycle you have started. A better 
option is to use the “Manual Pause” button, which will pause the bend cycle until you hit the 
button a second time. 
 

Figure 5: Measuring the offset 
The offset is the distance from the fixed face of the clamp to the center of the clamped tubing. 
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The best option is to plan ahead and use the “Pause Angle” setting. If, for instance, you need to 
pause the bend cycle every 10° so that you can measure the changing cross section then you can 
follow these steps: 

1. Before you start the bend cycle, set the “Pause Angle” to 10° 
2. Start the bend cycle. It will automatically run until it hits 10°, and then it will automatically 

stop and wait for further input. 
3. When you are ready to go on another 10°, enter 20° in the “Pause Angle” field; the machine 

will not go on until you either hit “Enter” or click outside of the “Pause Angle” field. 
4. Repeat as necessary. 

 
The machine then uses the rotational potentiometer to track its angle and will pause the machine 
at 10°. One special case requires the combination of an input "Pause Angle" as well as the use of 
the "Manual Pause" button. Some very springy materials may reach the preset pause angle and 
then spring back far enough that the machine will turn on again in order to bring them back to 
the pause angle. This can result in an oscillation that makes taking any measurements next to 
impossible. "Manual Pause" will stop the oscillations, and a new pause angle can be input while 
the machine is stopped. 
  

 
 

The “Manual Pause” button and the “Pause Angle” setting. “Manual Pause” pauses the bend cycle with one 
click and lets it continue with a second click. The “Pause Angle” setting allows you to stop the machine at a 
specific point. Entering a new “Pause Angle” after it has reached the first one allows the machine to continue 
from its current position to the new angle specified. 
 

Figure 6: The "Manual Pause" button and the "Pause Angle" setting. 
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Recording Video and Interpreting Results 
While LabView runs the actual bending of the samples, it does not take any data. The operator 
must either simultaneously watch the sample for buckling and the angle of the machine, or 
he/she can record the sample bend cycle on video for later review. This latter route is much more 
reliable, especially because determining the precise buckling angle can be very subjective. If all 
of the experimental runs are recorded, they can later be compared to one another in order to 
ensure consistent measurements. 
 

Capturing Video with Windows Movie Maker 
All of the bend samples that have been run so far have been recorded using Windows Movie 
Maker. While the program is capable of far more advanced operations, capturing video with the 
program is fairly simple. The basic program startup is shown in Figure 7, and the settings used 
for video capture in the tests so far are shown in Figure 8. 
 

 
 
 

Figure 7: Finding Windows Movie Maker and initiating a video capture 
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Figure 8: Capturing video in Windows Movie Maker 
1. Select the video capture device. The current setup uses a Logitech QuickCam Pro 3000. The audio input can also be 

specified, but is largely unimportant. 
2. The file names used indicate several of the test parameters. They follow the format [Material]-[Bend Radius]-[Bend Angle]-

[Test Number]. EMT-4-90-05 is the fifth test of EMT bent in a four inch radius to 90°. 
3. The default video setting is "Best quality." This is what has been used so far. 
4. On the final screen, "Start Capture" starts recording video. You can start and stop several times, and all of the videos will be 

stitched together into one clip until you hit the "Finish" button. This allows you to stop recording if you need to take 
measurements of the tubing dimensions or if you need to stop the bend cycle for any other reason. 
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Reviewing Video Frame-by-Frame 
Once the video has been saved, Windows Movie Maker also proves to be a good tool to view the 
videos and determine the buckling angle. It provides the option of moving the video forward and 
backward one frame at a time, thus allowing comparison of the tubing at every degree of bending 
angle. Finding the buckling angle while letting the video play or by trying to pause at the correct 
point in the video gives a resolution in the range of about ±5°, as shown in Figure 9. Moving 
frame-by-frame allows a resolution as fine as within 1° of buckling, as shown in Figure 10.  
 

 
Simply watching the video and pausing it at the right time reveals that this copper 
sample buckled between 65° and 55° (protractor angle). 

Figure 9: Determining buckling angle with "Play" and "Pause" alone 
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Note that the angle shown on the protractor is the compliment angle to the bend angle. This 
means that when the protractor shows 90°, the bend angle is 0°, and when the protractor says 0°, 
the bend angle is 90°. For some samples, frame-by-frame viewing ensures that you can 
determine a buckling angle accurately to the degree. In other cases, the difficulty in determining 
the buckling angle is due to a very gradual buckling process. For the purposes of this experiment, 
buckling occurs as soon as the curve of the tubing goes from a uniform radius to a sharper radius 
near the middle of the sample. This is followed by a rapid decrease in tubing width at the 
buckling site, and finally by the formation of an obvious kink in the tube. In some cases, as with 
the copper tubing in Figure 10, these three stages of buckling occur almost simultaneously and 
the buckling angle is clear. For other samples, they occur so gradually that it is nearly impossible 
to decide at what angle they actually begin. This illustrated in Figure 11 and Figure 12. 

Using the frame-by-frame viewing available in Windows Movie Maker allows comparison of the sample at 62°, 61°, 60°, 
and 59° protractor angles, as shown above. Buckling has clearly occurred by 60° but is uncertain at 61°.  I interpreted this 
sample as buckling at 61°. 
 

– 62° – – 61° – – 60° – – 59° – 
Figure 10: Determining buckling angle by viewing footage frame-by-frame 
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Simply viewing the video and pausing it at the right time reveals that this EMT sample buckled between 50° and 30° (protractor 
angles). 40° looks like it's very close to the actual buckling angle, but there is no definite kinking point. 

Figure 11: Using "Play" and "Pause" for a more ambiguous sample 

– 50° – – 40° – – 30° – 
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The examples shown in this section use the "protractor angle" to measure buckling. A pin on the 
moving arm of the bending machine points to a plastic protractor taped to the fixed arm of the 
machine during the bend cycle. When the tube is completely straight, this instrument reads 90°, 
and at the completion of a 90° bend cycle it reads 0°. A more meaningful measurement for 
analysis is the actual "bend angle," which is simply 90° minus the protractor angle. 

Using the frame-by-frame viewing available in Windows Movie Maker allows comparison of the sample at small increments 
from 46° to 32° (protractor angles). There seems to be a clear kinking point by about 36°. The sample has undergone a 
noticeable decrease in cross-section by 40° or 38°.  The curve of the tube is no longer continuous somewhere around 42°.  I 
interpreted this sample as buckling at 41°. 
 

– 46° – – 44° – – 42° – – 40° – 

– 38° – – 36° – – 34 – – 32° – 

Figure 12: Stages of the buckling process viewed frame-by-frame 
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Building Clamp Jaw Inserts for the Machine: 
In order for the samples to bend consistently, they must be gripped properly in the bending 
machine clamp jaws. The clamp jaws themselves are flat, which would tend to flatten the tubing 
specimens and make them buckle prematurely right next to the clamp jaws. To prevent this, there 
are different sizes of clamp jaw inserts that are shaped to fully support and uniformly clamp the 
tubing specimens; these are shown in Figure 16. Using the best-fit clamp jaw will provide the 
most consistent experimental results.  

Critical Dimensions:  
When it becomes necessary to build new clamp jaw inserts, the critical features are: diameter, 
fixed-jaw offset, concentricity, leading-edge spacing, and bolt spacing. 

Diameter: 
Of course, the diameter of the channels in the vise jaw inserts should match the outside diameter 
of the tubing that you want to bend. 

 

Figure 13: Various sizes of clamp jaw inserts 
The curvature of the clamp jaw insert should match the tubing diameter. There are clamp jaws sized to fit 
tubing of three different diameters so far: ⅝", 0.7", and ⅞". 
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Fixed-Jaw Offset: 
The offset on both clamps needs to be the same. That means that the thickness of the clamp jaw 
insert should be the same for the fixed side of the clamp jaw on both clamps. The thickness of 
the insert will not matter on the moving side of the clamps, because they can be moved in and 
out to accommodate variations in thickness. This fixed-jaw offset is the alignment of the inserted 
clamp jaws, not the offset from the centroidal radius to the rotational motor axis (u) used in the 
strain calculations. 

 

Figure 14: Aligning the tube in both vises. 
Only the thickness of the fixed side (shown at left with red brackets) matters, as the moving side of each clamp can 
be moved to accommodate variations in thickness on that side. 
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Concentricity 
The channels of the four vise jaw inserts have to line up with each other in order to hold one 
piece of tubing. Perhaps the easiest way to achieve this is to mark the position of the bolt holes in 
the four inserts (the holes that pass the bolt that connects the jaw to the clamp) while clamping a 
piece of tubing. This bolt pattern should be marked so that alignment will stay the same if the 
jaws are removed and then replaced. 
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Leading-Edge Spacing: 
Make sure that the space between the two clamps, as measured from the leading edge of the vise 
jaw insert, matches what the LabView program says it should be for a given bend radius. 

 

Bolt Spacing: 
Each of the clamp jaws has a slightly different, irregular bolt pattern. The clamp jaw insert for 
each jaw must be drilled and tapped to match that specific clamp. 

 
 

Figure 15: Initial Dist btw Clamps 
The initial space between the vise jaw inserts should match the distance specified in the LabView program. 

Figure 16: Matching bolt pattern on vise and vise jaw inserts 
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APPENDIX B: Derivations 

 This section includes derivations of different formulas that were derived by Joel Bloomer 

during his efforts with the project. Included are the following derivations:  

• The area of the cross section of a tube cut along its length 
• Clamp adjustments based on offset 
• The shift in the neutral axis 
• Neutral axis dimension for a tube with a hollow circular cross section 
• Stress and strain due to large deflection bending 
• Cross-sectional bending due to ovalization.  
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B.1 Deriving a formula for the cross-sectional area of a section of tubing cut 
normal to its tube axis. 

 

  
Figure 1—1: Chord and Cross-Section of a tube 

B.1.1 Trigonometric relationships: 
  

sin(𝜃) =
𝑜𝑝𝑝.
ℎ𝑦𝑝.

=
𝑐ℎ𝑜𝑟𝑑

2�
𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑑𝑖𝑎𝑚.

2�
=

𝑐ℎ𝑜𝑟𝑑
𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

 

 

𝜃 = sin−1 �
𝑐ℎ𝑜𝑟𝑑
𝑜.𝑑.

� 
 
 
 

B.1.2 Geometric relationships: 

𝑟𝑜 =
𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

2
 

 

𝑟𝑖 =
𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

2
− 𝑤𝑎𝑙𝑙 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 

  

θ 
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B.1.3 Derivation: 
The area of the chord cross-section is a fraction of the area of a hoop. The hoop’s area is given as 
the difference between the areas of two circles, and the fraction is the angle of the arc behind the 
chord over the angle covered by the entire hoop: 

𝐴𝑐 = (𝜋𝑟02 − 𝜋𝑟𝑖2)
2𝜃
2𝜋

 
Simplify: 

𝐴𝑐 = 𝜋(𝑟02 − 𝑟𝑖2)
𝜃
𝜋

 
 

𝐴𝑐 = (𝑟02 − 𝑟𝑖2) × 𝜃 
 
Substitute in the expressions for ro and ri: 
 

𝐴𝑐 = ��
𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

2
�
2

− �
𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

2
− 𝑤𝑎𝑙𝑙 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠�

2

� × 𝜃 

 
Simplify: 

𝐴𝑐 = �
𝑜.𝑑.2

4
− �

𝑜.𝑑.2

4
− 2

𝑜.𝑑.
2

𝑤𝑎𝑙𝑙 + 𝑤𝑎𝑙𝑙2�� × 𝜃 

 

𝐴𝑐 = �
𝑜.𝑑.2

4
−
𝑜.𝑑.2

4
+ (𝑜.𝑑. )(𝑤𝑎𝑙𝑙)− 𝑤𝑎𝑙𝑙2� × 𝜃 

 
𝐴𝑐 = 𝑤𝑎𝑙𝑙(𝑜.𝑑.−𝑤𝑎𝑙𝑙) × 𝜃 

 
Substitute in the expression for θ: 

𝑨𝒄𝒓𝒐𝒔𝒔 𝒔𝒆𝒄𝒕𝒊𝒐𝒏𝒂𝒍 = 𝒘𝒂𝒍𝒍(𝒐.𝒅.−𝒘𝒂𝒍𝒍) × 𝐬𝐢𝐧−𝟏 �
𝒄𝒉𝒐𝒓𝒅
𝒐.𝒅.

�  
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B.2 Deriving the formula for clamp adjustment based on offset, etc. 
 

 
Figure 2—1: Tube in bending 

 
B.1.4 Definitions: 

Ri  = inside bend radius  
U = offset (From centroidal axis to pivot point) 
α = current bend angle 
(U+Ri) = radius of centroidal axis at any angle α 
Lc  = length of centroidal axis 
Rf  = bend radius of the centroidal axis at αf  
αf  = final bend angle (before springback) 
a  = linear distance from clamp leading edge to the actual pivot point 
b  = linear distance from clamp edge to the ideal pivot point (projected) 
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B.1.5 Derivation: 
Some basic trigonometry tells us that: 

𝑎 = 𝑅𝑖 tan �
𝛼
2
� 

 
𝑏 = (𝑅𝑖 + 𝑈) tan �

𝛼
2
� 

 
𝑎
𝑏

=
𝑅𝑖

𝑅𝑖 + 𝑈
 

 
Before the bend cycle starts, α = 0 and Ri = ∞, but a0 = b0 = half the length of tube required to 
make the final bend: 

𝑎0 = 𝑏0 =
𝑅𝑓𝛼𝑓

2
 

 
At an arbitrary intermediate angle α during the bend cycle, the length of the centroidal axis (Lc) 
is: 

𝐿𝑐 = (𝑅𝑖 + 𝑈)𝛼 
 
At the beginning and end of the cycle, the length of Lc is fixed at Rfαf. Ideally, the neutral axis 
would be kept at a constant length throughout the bend cycle. However, to simplify the 
calculations, we will instead keep the centroidal axis (Lc) at a constant length throughout the 
cycle. In order to keep Lc constant, let: 

𝐿𝑐 = 𝑅𝑓𝛼𝑓 
This means that: 

(𝑅𝑖 + 𝑈)𝛼 = 𝑅𝑓𝛼𝑓 
 
Solving for Ri gives: 

𝑅𝑖 = �
𝑅𝑓𝛼𝑓
𝛼

− 𝑈� 
 
Substituting this value into the expressions for a and b gives: 
 

𝑎 = �
𝑅𝑓𝛼𝑓
𝛼

− 𝑈� tan �
𝛼
2
� 

 

𝑏 = �
𝑅𝑓𝛼𝑓
𝛼

− 𝑈 + 𝑈� tan �
𝛼
2
� 

 

𝑏 =
𝑅𝑓𝛼𝑓
𝛼

tan �
𝛼
2
� 

 
B.1.6 Clamp Adjustment:  

The clamps start out at a distance a0 from the pivot point. Their position throughout the bend 
cycle must be adjusted so that: 
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𝑎 = �
𝑅𝑓𝛼𝑓
𝛼

− 𝑈� tan �
𝛼
2
� 

 
The command given to the actuators that move the clamps will be a value for the change in a 
from a0. This value, Δa, is determined by the following equation: 
 

∆𝒂 = 𝑎 − 𝑎0 = �
𝑹𝒇𝜶𝒇
𝜶

− 𝑼� 𝐭𝐚𝐧 �
𝜶
𝟐
� −

𝑹𝒇𝜶𝒇
𝟐

 

B.3 Deriving the formula for neutral axis shift as the tube bends. 
 

 
 

Figure 3—1: Reference figure for neutral axis shift equations 

 
B.1.7 Definitions: 

D1 = outside diameter of tube 
D2 = inside diameter of tube 
Rx = ½Dx 
r̅ = bend radius of the centroidal axis 
rn = bend radius of the neutral axis  
ri = inside bend radius 
ro = outside bend radius 
e = neutral axis shift 
 

B.1.8 Derivation: 
For any shape with area A at a distance ρ from the bending axis, the general equation for the 
location of the neutral axis during bending is: 
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𝑟𝑛 =
𝐴

∫𝜕𝐴𝜌

 

 
For a solid circular cross-section with diameter D, the radius to the centroidal axis (𝑟̅) is related 
to the inner bend radius (ri) by the following equation1:  
 

𝑟̅ = 𝑟𝑖 +
𝐷
2

 
 
The neutral axis is located according to the following equation2, where R = ½D: 
 

𝑟𝑛 =
𝑅2

2�𝑟̅ − √𝑟̅2 − 𝑅2�
 

 
For a hollow circular cross-section the equation for the centroidal axis 𝑟̅ is similarly: 
 

𝑟̅ = 𝑟𝑖 +
𝐷
2

 
This can also be written as: 

𝑟̅ = 𝑟𝑖 + 𝑅 
 
The proposed equation governing the location of the neutral axis is: 
 

𝑟𝑛 =
𝐴2 − 𝐴1
𝐴2
𝑟𝑛2

− 𝐴1
𝑟𝑛1

 

 
Substitute in the expressions for areas and neutral axes: 
 

𝑟𝑛 =
𝜋 �𝐷22 �

2
− 𝜋 �𝐷12 �

2

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝜋 �𝐷22 �
2

� 𝑅22

2 �𝑟2� − �𝑟2�2 − 𝑅22�
�

−
𝜋 �𝐷12 �

2

� 𝑅12

2 �𝑟1� − �𝑟1�2 − 𝑅12�
�
⎦
⎥
⎥
⎥
⎥
⎥
⎤
 

 

                                                 
1 Budynas, Richard G. and J. Keith Nisbett. Shigley’s Mechanical Engineering Design, Eighth Edition. (Table 3-4, 
“Formulas for Sections of Curved Beams”) McGraw Hill Higher Education. 
2 Budynas, Richard G. and J. Keith Nisbett. Shigley’s Mechanical Engineering Design, Eighth Edition. (Table 3-4, 
“Formulas for Sections of Curved Beams”) McGraw Hill Higher Education. 
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Invert the bottom-most fractions: 

𝑟𝑛 =
𝜋 �𝐷22 �

2
− 𝜋 �𝐷12 �

2

�
2𝜋 �𝐷22 �

2
�𝑟2� − �𝑟2�2 − 𝑅22�
𝑅22

−
2𝜋 �𝐷12 �

2
�𝑟1� − �𝑟1�2 − 𝑅12�
𝑅12

�

 

 
Substitute R in for 𝐷

2
: 

𝑟𝑛 =
𝜋𝑅22 − 𝜋𝑅12

�
2𝜋𝑅22 �𝑟2� − �𝑟2�2 − 𝑅22�

𝑅22
−

2𝜋𝑅12 �𝑟1� − �𝑟1�2 − 𝑅12�
𝑅12

�

 

 
Cancel π, R1

2, and R2
2: 

𝑟𝑛 =
𝑅22 − 𝑅12

2 �𝑟2� − �𝑟2�2 − 𝑅22� − 2 �𝑟1� − �𝑟1�2 − 𝑅12�
 

 
Because the circles are concentric, 𝑟1� = 𝑟2� = 𝑟̅. With this substitution, the equation becomes: 
 

𝑟𝑛 =
𝑅22 − 𝑅12

2 �𝑟̅ − �𝑟̅2 − 𝑅22� − 2 �𝑟̅ − �𝑟̅2 − 𝑅12�
 

 
Finally, this simplifies to: 
 

𝒓𝒏 =
𝑹𝟐𝟐 − 𝑹𝟏𝟐

𝟐�𝒓�𝟐 − 𝑹𝟏𝟐 − 𝟐�𝒓�𝟐 − 𝑹𝟐𝟐
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B.4 Proving the equation used to derive the neutral axis shift for a hollow, 
circular cross-section: 
B.1.9 Diagrams and basic equations: 

In order to prove that the proposed equation �𝑟𝑛 = 𝐴2−𝐴1
𝐴2
𝑟𝑛2

− 𝐴1
𝑟𝑛1

� is correctly applied, we will use this 

same equation to derive a known formula for the neutral axis shift. For a hollow rectangular 
cross-section, the following diagram and accompanying equation have been published3: 
 

 
 

Figure 4—1: Reference figure for neutral axis equations for a square cross section 

 
 

𝑟𝑛 =
(𝑏 − 𝑡)(𝑡𝑖 + 𝑡𝑜) + ℎ𝑡

𝑏 �ln 𝑟𝑖 + 𝑡𝑖
𝑟𝑖

+ ln 𝑟𝑜
𝑟𝑜 − 𝑡𝑜

� + 𝑡 ln 𝑟𝑜 − 𝑡𝑜
𝑟𝑖 + 𝑡𝑖

 

 
In order to make this reflect the set-up of the hollow circular cross-section, we adapt this diagram 
and equation to represent a small rectangular area subtracted from a larger. We also simplify the 
scenario by giving the section a constant wall thickness. 

                                                 
3 Budynas, Richard G. and J. Keith Nisbett. Shigley’s Mechanical Engineering Design, Eighth Edition. (Table 3-4, 
“Formulas for Sections of Curved Beams”) McGraw Hill Higher Education. 
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The adapted diagram and basic equation are as follows: 
 

 
 

Figure 4—2: dimensions of a square tube cross section 

 

𝑟𝑛 =
𝐴2 − 𝐴1
𝐴2
𝑟𝑛2

− 𝐴1
𝑟𝑛1

 

 
B.1.10 Derivation by subtraction: 

For a rectangular cross-section x: 

𝑟𝑛𝑥 =
ℎ𝑥

ln 𝑟𝑜𝑥𝑟𝑖𝑥
 

And: 
𝐴𝑥 = 𝑏𝑥ℎ𝑥 

 
When these expressions are substituted into the equation for a hollow cross-section with areas 1 
and 2, it becomes: 
 

𝑟𝑛 =
𝑏2ℎ2 − 𝑏1ℎ1

𝑏2ℎ2

� ℎ2
ln 𝑟𝑜2𝑟𝑖2

�

− 𝑏1ℎ1

� ℎ1
ln 𝑟𝑜1𝑟𝑖1

�
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Invert the bottom-most fractions: 

𝑟𝑛 =
𝑏2ℎ2 − 𝑏1ℎ1

𝑏2ℎ2 ln 𝑟𝑜2𝑟𝑖2
ℎ2

−
𝑏1ℎ1 ln 𝑟𝑜1𝑟𝑖1

ℎ1

 

Cancel hx: 

𝑟𝑛 =
𝑏2ℎ2 − 𝑏1ℎ1

𝑏2 ln 𝑟𝑜2𝑟𝑖2
− 𝑏1 ln 𝑟𝑜1𝑟𝑖1

 

 
By comparing the published (and more generalized) diagram of a hollow rectangular cross 
section to our more specific diagram with uniform wall thickness w, we see that: 
 

𝑟𝑖2 = 𝑟𝑖 + 𝑤 
𝑟𝑖1 = 𝑟𝑖 

 
𝑟𝑜2 = 𝑟𝑜 − 𝑤 
𝑟𝑜1 = 𝑟𝑜 

 
 
Making these substitutions gives: 

𝑟𝑛 =
𝑏2ℎ2 − 𝑏1ℎ1

𝑏2 ln 𝑟𝑜 − 𝑤
𝑟𝑖 + 𝑤 − 𝑏1 ln 𝑟𝑜𝑟𝑖

 

 
This can be simplified with the following logarithm operations: 
 

𝑟𝑛 =
𝑏2ℎ2 − 𝑏1ℎ1

ln �𝑟𝑜 − 𝑤
𝑟𝑖 + 𝑤�

𝑏2
− ln �𝑟𝑜𝑟𝑖

�
𝑏1

 

 

𝑟𝑛 =
𝑏1ℎ1 − 𝑏2ℎ2

ln �𝑟𝑜𝑟𝑖
�
𝑏1
− ln �𝑟𝑜 − 𝑤

𝑟𝑖 + 𝑤�
𝑏2

 

 

𝑟𝑛 =
𝑏1ℎ1 − 𝑏2ℎ2

ln �𝑟𝑜𝑟𝑖
�
𝑏1

+ ln �𝑟𝑖 + 𝑤
𝑟𝑜 − 𝑤�

𝑏2
 

 

𝑟𝑛 =
𝑏1ℎ1 − 𝑏2ℎ2

ln ��𝑟𝑜𝑟𝑖
�
𝑏1
�𝑟𝑖 + 𝑤
𝑟𝑜 − 𝑤�

𝑏2
�

 

 
This is the equation for the neutral axis shift in a hollow rectangular cross-section as derived by 
subtracting one area from another. 
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B.1.11 Derivation by simplification: 

Again, the published, generalized equation for the neutral axis of a rectangular cross section in 
bending is: 

𝑟𝑛 =
(𝑏 − 𝑡)(𝑡𝑖 + 𝑡𝑜) + ℎ𝑡

𝑏 �ln 𝑟𝑖 + 𝑡𝑖
𝑟𝑖

+ ln 𝑟𝑜
𝑟𝑜 − 𝑡𝑜

� + 𝑡 ln 𝑟𝑜 − 𝑡𝑜
𝑟𝑖 + 𝑡𝑖

 

 
We need to verify that this is equal to the equation derived by subtracting the two rectangular 
areas. Giving this equation a uniform wall thickness w allows us to make the following 
substitutions: 
 

𝑡
2

= 𝑡𝑜 = 𝑡𝑖 = 𝑤 
 
This changes the generalized equation to: 
 

𝑟𝑛 =
(𝑏 − 2𝑤)(𝑤 + 𝑤) + 2ℎ𝑤

𝑏 �ln 𝑟𝑖 + 𝑤
𝑟𝑖

+ ln 𝑟𝑜
𝑟𝑜 − 𝑤� + 2𝑤 ln 𝑟𝑜 − 𝑤

𝑟𝑖 + 𝑤
 

 
At this point, both the numerator and the denominator of the equation require some significant 
manipulation in order to complete the proof: 
 

𝑟𝑛 =
(𝑏 − 2𝑤)(2𝑤) + 2𝑤ℎ

𝑏 �ln 𝑟𝑖 + 𝑤
𝑟𝑖

+ ln 𝑟𝑜
𝑟𝑜 − 𝑤� + 2𝑤 ln 𝑟𝑜 − 𝑤

𝑟𝑖 + 𝑤
 

 

𝑟𝑛 =
2𝑤ℎ + (𝑏 − 2𝑤)(2𝑤)

𝑏(ln(𝑟𝑖 + 𝑤) − ln 𝑟𝑖 + ln 𝑟𝑜 − ln(𝑟𝑜 − 𝑤)) + 2𝑤(ln(𝑟𝑜 − 𝑤) − ln(𝑟𝑖 + 𝑤)) 

 

𝑟𝑛 =
(𝑏ℎ − 𝑏ℎ) + 2𝑤ℎ + (𝑏 − 2𝑤)(2𝑤)

ln (𝑟𝑖 + 𝑤)𝑏
(𝑟𝑖 + 𝑤)2𝑤 − 𝑏ln 𝑟𝑖 + 𝑏ln 𝑟𝑜 + ln (𝑟𝑜 − 𝑤)2𝑤

(𝑟𝑜 − 𝑤)𝑏
 

 

𝑟𝑛 =
𝑏ℎ − 𝑏ℎ + 2𝑤ℎ + (𝑏 − 2𝑤)(2𝑤)

ln(𝑟𝑖 + 𝑤)𝑏−2𝑤 − ln 𝑟𝑖𝑏 + ln 𝑟𝑜𝑏 + ln(𝑟𝑜 − 𝑤)2𝑤−𝑏 

 

𝑟𝑛 =
𝑏ℎ − (𝑏 − 2𝑤)(ℎ) + (𝑏 − 2𝑤)(2𝑤)

ln(𝑟𝑖 + 𝑤)𝑏−2𝑤 − ln 𝑟𝑖𝑏 + ln 𝑟𝑜𝑏 − ln(𝑟𝑜 − 𝑤)𝑏−2𝑤 

 

𝑟𝑛 =
𝑏ℎ − (𝑏 − 2𝑤)(ℎ) − (𝑏 − 2𝑤)(−2𝑤)

ln (𝑟𝑖 + 𝑤)𝑏−2𝑤
(𝑟𝑜 − 𝑤)𝑏−2𝑤 + ln 𝑟𝑜

𝑏

𝑟𝑖𝑏
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𝑟𝑛 =
𝑏ℎ − (𝑏 − 2𝑤)(ℎ − 2𝑤)

ln �𝑟𝑖 + 𝑤
𝑟𝑜 − 𝑤�

𝑏−2𝑤
+ ln �𝑟𝑜𝑟𝑖

�
𝑏 

 

𝑟𝑛 =
𝑏ℎ − (𝑏 − 2𝑤)(ℎ − 2𝑤)

ln ��𝑟𝑜𝑟𝑖
�
𝑏
�𝑟𝑖 + 𝑤
𝑟𝑜 − 𝑤�

𝑏−2𝑤
�
 

 
Again comparing the two diagrams,  

𝑏 = 𝑏1 
𝑏 − 2𝑤 = 𝑏2 
ℎ = ℎ1 

ℎ − 2𝑤 = ℎ2 
 
Substituting these values in gives: 

𝑟𝑛 =
𝑏1ℎ1 − (𝑏2)(ℎ2)

ln ��𝑟𝑜𝑟𝑖
�
𝑏1
�𝑟𝑖 + 𝑤
𝑟𝑜 − 𝑤�

𝑏2
�
 

 
This is now identical to the equation for the neutral axis shift of a hollow rectangular cross-
section based on subtracting one area from another. 
 

𝑟𝑛 =
𝑏1ℎ1 − 𝑏2ℎ2

ln ��𝑟𝑜𝑟𝑖
�
𝑏1
�𝑟𝑖 + 𝑤
𝑟𝑜 − 𝑤�

𝑏2
�

 

 
This supports our use of the same method to derive an equation for the neutral axis shift of a 
hollow circular cross-section. 
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B.5 Determining Stress and Strain Due to Large Deflection Bending. 

 
Figure 5—1: Reference figure for large deflection bending 

B.1.12 Definitions: 
ro = radius of curvature of the outer surface 
𝑟̅  = radius of curvature of the centroid 
rn = radius of curvature of the neutral axis 
ri = radius of curvature of the inner surface 
M = applied bending moment 
e  = neutral axis shift with respect to the centroid 
ρ  = distance from the center of bending to any given point on the curved beam 
y  = distance above the neutral axis to any given point on the curved beam 
φ = angle used to define the wedge-shaped element abcd for analysis 
L0  = initial length of a differential area on element abcd 
ci = distance from the inner surface of the beam to the centroidal axis 
co = distance from the outer surface of the beam to the centroidal axis 
dφ = differential bending angle due to bending moment M 
ΔL = change in length of the differential area as it changes from abcd to ab'c'd  
t = wall thickness (not shown) 
ϵ = strain (not shown) 
σ = stress (not shown) 
 

B.1.13 Derivation: 
In order to determine the strain, it is necessary to find both L0 and ΔL, because: 
 

𝜖 =
∆𝐿
𝐿0
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This linear equation only works for small values of ΔL. In order to use it in the context of a 
large-angle bend, it is necessary to perform the calculation over several smaller increments 
during the bend, re-defining L0 each time. The result of each calculation will be the change in 
strain over that increment; the summation of all of them will be the total strain. For these 
reasons, the strain equation is perhaps better given as: 
 

∆𝜖 =
∆𝐿
𝐿

 
 
Because the angles are defined in radians, L is simply the product of the angle φ and the distance 
ρ from the center of bending: 
 

𝐿 = 𝜌𝜑 
 
Assuming that the neutral axis does not change length and that plane sections remain plane 
during bending, it can be seen that the line bc simply rotates about a point on the neutral axis as 
it moves into position b'c'. In this case, the length ΔL is simply the product of the angle dφ and 
the distance y from the neutral axis: 
 

∆𝐿 = 𝑦𝑑𝜑 
 
Substituting these expressions into the original strain equation gives: 
 

∆𝜖 =
𝑦𝑑𝜑
𝜌𝜑1

 

 
Interestingly enough, because this equation will be used repeatedly at constant intervals, the 
numerator y×dφ will show only small changes as the neutral axis shifts, while largest changes 
will occur as the denominator goes through each increment.  
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There are six points at which we need to calculate the stress. They are located on the inside bend 
radius, outside bend radius, and centroidal axis of the tube with respect to the bend radius; three 
are at these points on the outside wall of the tube, and the other three are located at these points 
on the inside of the tube. This will allow us to examine the tube in tension, in compression, and 
have an idea of what is going on in between the two. These points are labeled in Figure 5—2. 
 

 
Figure 5—2: Critical points in a tube cross section 

 
Normal stress is related to strain by Young's Modulus (E) as 𝜎 =  𝜖𝐸. At a distance y from the 
neutral axis, 
 

𝜎 = 𝐸 �
𝑦𝑑𝜑
𝜌𝜑1

� 

 
Along the outside edge of the beam, 𝑦 = (𝑒 + 𝑐𝑜) and 𝜌 = (𝑟𝑛 + 𝑦) = 𝑟𝑜. Substituting these into 
the stress equation gives: 

𝜎𝑜,𝑂𝐷 = 𝐸 �
(𝑒 + 𝑐𝑜)𝑑𝜑

𝑟𝑜𝜑1
�  

 
To get the stress at the inside diameter of the tube at this outer bend radius, subtract the wall 
thickness t from the relevant parts of the equation; 𝑦 = (𝑒 + 𝑐𝑜 − 𝑡) and 𝜌 = 𝑟𝑜 − 𝑡. Substituting 
these into the stress equation gives: 
 

𝜎𝑜,𝐼𝐷 = 𝐸 �
(𝑒 + 𝑐𝑜 − 𝑡)𝑑𝜑

(𝑟𝑜 − 𝑡)𝜑1
�  
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Following the same process in the other four locations gives the following equations: 
 

𝜎𝑐,𝑂𝐷 = 𝜎𝑐,𝐼𝐷 = 𝐸 �
𝑒𝑑𝜑
𝑟̅𝜑1

�  

 

𝜎𝑖,𝑂𝐷 = 𝐸 �
(𝑒 − 𝑐𝑖)𝑑𝜑

𝑟𝑖𝜑1
�  

 

𝜎𝑖,𝐼𝐷 = 𝐸 �
(𝑒 − 𝑐𝑖 + 𝑡)𝑑𝜑

(𝑟𝑖 + 𝑡)𝜑1
�  
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B.6 Analyzing Cross-Sectional Bending Due To Ovalization. 
B.1.14 Diagrams: 

As the tubing is bent, its cross-section in the bending region changes from circular to elliptical, 
as seen in the figure below. To avoid confusion, areas of the tube wall that will be analyzed have 
been labeled as North, South, East, and West. 
 

 
Figure 6—1: Orientation of critical points N, S, E, and W 

 
This change in shape gets more pronounced as the bend angle increases up until the tube buckles. 
The major axis is stretched out and the minor axis is shortened.  

 
Figure 6—2: Orientation of a and b dimensions along major and minor axes 

If the portion of the cross-section along either axis is examined, the bending process of the cross-
section is very similar to that of a curved beam subject to a simple bending moment. At the 
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North and South locations of the cross section, the moment tends to straighten the beam (as 
illustrated in Figure 6—3), whereas the moment tends to make the beam curve more at the East 
and West locations (as in Figure 6—4). 

 
Figure 6—3: Reference figure for cross sectional strain calculations at the North point 

 
Figure 6—4: Reference figure for cross sectional strain calculations at the South point 
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B.1.15 Definitions: 
a = semi-major axis of the cross-section (half of the outside major diameter) 
b = semi-minor axis of the cross-section (half of the outside minor diameter) 
t = wall thickness of the cross-section 
rN, rS = radii of curvature at the North and South locations, on the major axis 
rW, rE = radii of curvature at the West and East locations, on the minor axis 
ro = radius of curvature of the outer surface 
𝑟̅ = radius of curvature of the centroid 
rn = radius of curvature of the neutral axis 
ri = radius of curvature of the inner surface 
e = neutral axis shift with respect to the centroid 
γ = angle used to define a wedge-shaped element for analysis 
y = distance above or past the neutral axis 
ϵ = strain 
σ = stress 
 

B.1.16 Derivation: 
There are four general locations for which we need expressions for stress, σ. We start with the 
basic equation for stress: 
 

𝜎 = 𝐸𝜖 
 
Again, this is a linear equation that will have to be applied to small increments of the overall 
bending motion, so each calculation of σ is actually a calculation of Δσ, and they will all have to 
be added together in order to get a value for the overall stress: 
 

∆𝜎 = 𝐸∆𝜖 
∆𝜖, strain, is simply ∆𝐿 𝐿� : 

∆𝜎 = 𝐸
∆𝐿
𝐿

 
 
Similar to the equation for ΔL due to macro-scale stress and strain, ΔL in this case is the distance 
y from the neutral axis times the angle of rotation dγ. L (in the denominator) is the distance from 
the center of bending multiplied by the initially picked angle γ. The distance from the center of 
bending to any point being examined is ρ: 
 

∆𝜎 = 𝐸
𝑦𝑑𝛾
𝜌𝛾

 

For each of these steps, Δσ is going from an initial position 1 to a final position 2. At this point it 
will be important to delineate at which position each of these values is taken.  The expression 𝜌𝛾 
is for the initial length L, so these variables will be given the subscript 1. y will also receive the 1 
subscript, because the distance of the differential element is measured before the plane rotation 
due to bending has begun, as in the previous derivations: 
 

∆𝜎(1→2) = 𝐸
𝑦1𝑑𝛾1→2
𝜌1𝛾1
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The variable y1 is simply the distance from the neutral axis to the point being examined, which 
means that 𝑟𝑛 + 𝑦 = 𝜌. We can therefore substitute in the expression (𝜌 − 𝑟𝑛) for y in the stress 
equation. 

∆𝜎(1→2) = 𝐸
(𝜌1 − 𝑟𝑛1)𝑑𝛾1→2

𝜌1𝛾1
 

 
Next we need an expression for dγ. For small changes in curvature, we assume that the neutral 
axis does not change length. Based on this assumption the following equation holds true as it 
changes from position 1 to position 2: 
 

𝑟𝑛1𝛾1 = 𝑟𝑛2𝛾2 
Solving for γ2 gives: 

𝛾2 =
𝑟𝑛1
𝑟𝑛2

𝛾1 

By definition: 
𝑑𝛾1→2 = 𝛾2 − 𝛾1 

 
Substituting the expression for γ2 into the dγ equation gives: 
 

𝑑𝛾1→2 =
𝑟𝑛1
𝑟𝑛2

𝛾1 − 𝛾1 = 𝛾1 �
𝑟𝑛1
𝑟𝑛2

− 1� = −𝛾1 �1 −
𝑟𝑛1
𝑟𝑛2

� 

 
This can then be substituted back into the stress equation, which becomes: 
 

∆𝜎(1→2) = 𝐸
(𝜌1 − 𝑟𝑛1)�−𝛾1 �1 − 𝑟𝑛1

𝑟𝑛2
��

𝜌1𝛾1
= −𝐸

(𝜌1 − 𝑟𝑛1) �1 − 𝑟𝑛1
𝑟𝑛2

�

𝜌1
 

 

∆𝜎(1→2) = −𝐸 �1 −
𝑟𝑛1
𝜌1
� �1 −

𝑟𝑛1
𝑟𝑛2

�  

 
This is the most generalized form of the equation for stress due to ovalization. In this equation, ρ₁ 
can represent ri or ro at any one of the compass points, and rn1 and rn2 can then be calculated 
from the values of ri and ro at that same compass point. To illustrate the point, we will examine 
first the North location at the outside of the tubing. 
 
The radius, ρ, of the location in question is based on the measured values for a and b and on the 
assumption that the deforming cross-section takes the shape of an ellipse: 
 

𝜌 = 𝑟𝑁,𝑜𝑢𝑡𝑒𝑟 =
𝑎2

𝑏
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The inner radius at that point is different from the outer radius only by the wall thickness: 
 

𝑟𝑁,𝑖𝑛𝑛𝑒𝑟 = 𝑟𝑁,𝑜𝑢𝑡𝑒𝑟 − 𝑡 =
𝑎2

𝑏
− 𝑡 

 
The neutral axis is based on both the inner and outer radii of curvature and on the wall thickness: 
 

𝑟𝑁,𝑛𝑒𝑢𝑡𝑟𝑎𝑙 =
𝑡

ln
𝑟𝑁,𝑜𝑢𝑡𝑒𝑟
𝑟𝑁,𝑖𝑛𝑛𝑒𝑟

 

 
Plugging these expressions into the equation for ovalization stress, keeping careful track of the 
subscripts, and simplifying eventually gives the following equation: 
 

∆𝜎𝑜,1→2 = −𝐸�1 +
𝑡

�𝑎1
2

𝑏1
� ln �1 − 𝑡 𝑏1𝑎12

�
��1 −

ln �1 − 𝑡 𝑏2𝑎22
�

ln �1 − 𝑡 𝑏1𝑎12
�
� 

 
However, this is unnecessarily complicated. With the aid of a spreadsheet program, it is much 
easier to simply use the following equations, each one depending on the previous equations: 
 

𝑟𝑁1,𝑜𝑢𝑡𝑒𝑟 =
𝑎12

𝑏1
, 𝑟𝑁2,𝑜𝑢𝑡𝑒𝑟 =

𝑎22

𝑏2
 

 
𝑟𝑁1,𝑖𝑛𝑛𝑒𝑟 = 𝑟𝑁1,𝑜𝑢𝑡𝑒𝑟 − 𝑡𝑁1, 𝑟𝑁2,𝑖𝑛𝑛𝑒𝑟 = 𝑟𝑁2,𝑜𝑢𝑡𝑒𝑟 − 𝑡𝑁2 

 

𝑟𝑁1,𝑛𝑒𝑢𝑡𝑟𝑎𝑙 =
𝑡𝑁1

ln
𝑟𝑁1,𝑜𝑢𝑡𝑒𝑟
𝑟𝑁1,𝑖𝑛𝑛𝑒𝑟

, 𝑟𝑁2,𝑛𝑒𝑢𝑡𝑟𝑎𝑙 =
𝑡𝑁2

ln
𝑟𝑁2,𝑜𝑢𝑡𝑒𝑟
𝑟𝑁2,𝑖𝑛𝑛𝑒𝑟

 

 
𝜌𝑁1,𝑜𝑢𝑡𝑒𝑟 = 𝑟𝑁1,𝑜𝑢𝑡𝑒𝑟 

 

∆𝜎𝑁(1→2),𝑜𝑢𝑡𝑒𝑟 = −𝐸 �1 −
𝑟𝑁1,𝑛𝑒𝑢𝑡𝑟𝑎𝑙

𝜌𝑁1,𝑜𝑢𝑡𝑒𝑟
� �1 −

𝑟𝑁1,𝑛𝑒𝑢𝑡𝑟𝑎𝑙

𝑟𝑁2.𝑛𝑒𝑢𝑡𝑟𝑎𝑙
� 

 
These steps can be repeated at each point of the compass at both the inner and outer radii. For the 
East and West locations, 𝑟𝑜 = 𝑏2

𝑎
 rather than 𝑎

2

𝑏
. 

B.7 Analyzing the change in thickness due to both macro bending and 
ovalization: 

As the tube bends, it changes thickness due to the Poisson effect. This is affected by both the 
strains of macro bending and ovalization. These strains combine differently at each of the 
compass points on the tube. It will be the least confusing if we examine one compass point at a 
time. We will start with the North point. 
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Figure 6—1 (repeated) 

The strain due to bending within the North wall of the tubing has the following general 
distribution: 
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The Poisson effect of this strain on wall thickness can be easily approximated by using an 
average strain through the cross section. However, the strain due to cross-sectional ovalization is 
not nearly as simple.  Its shape is closer to the following: 
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A simple average across the entire wall will not accurately reflect the actual strains 

 

 



138 
 

 



139 
 

 

APPENDIX C: Statistical Analysis of Buckling Angles by Material 

 The following plots relate to Section 5.4, the linearity tests. This statistical analysis was 

completed for each of the different materials and dimension configurations as shown below. For 

each material the failure angle is plotted versus the intended bend angle first. Then these values 

are fitted with a best fit line. This line acts as our predicted value based on our empirical data. 

 The residual value for each point is then calculated based on this line using the equation  

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑓(𝑥) − 𝑓(𝑥̅) 

where 𝒙� is the expected value based on the line and x is the failure angle. These values are then 

plotted versus the intended bend angle. These values can show us if our curve fit line is a good fit 

for the data. If there is a visible curve to the residual data points, then the curve is not accounting 

for all the sources of variation. The range of the data should stay about the same throughout the 

plot. This means that there is equal variance throughout the failure angles. Finally, they should 

look random, ensuring the reader that there are no points that are biasing the results.  

 The residual plots for aluminum and EMT show some trends that would hopefully 

disappear with more tests. The failure angles were harder to see on the video, causing a larger 

error in the way they were recorded. The residual plots for copper show very good randomness, 

no trends, and equal variance, ensuring a good fit to the data. 

 The normal distribution probability plots are calculated using the residuals data. To find 

these points, the data is first put in order, smallest to largest, based on the residual value. These 
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points are then plotted versus what we would expect to see if the curve had a normal distribution. 

The function in Excel to see this is “normsinv(z)” where the z-value is calculated for each point I 

from 1 to n using the equation 

𝑧𝑖 =
𝑖 − .5
𝑛

 

 Normal probability plots show how normal the distribution of the data is around the curve 

fit line. If the data is normally distributed, the normal probability distribution curve will follow a 

straight line. The slope of this line is not important, but it will be positive. Also, it will go 

through the origin. The closer it follows this curve fit line, the more normal the distribution. If 

there is a curve to the data, then the data is either right or left-skewed.  

 The aluminum data looks normal based on the normal probability plot, but the EMT data 

looks skewed. The copper data looks like it fits the normal distribution well, and so it can be said 

that the data for the copper tubes is normally distributed about the expected failure angle based 

on the curve fit line.   

Material Residual Plot Curve Fit 
Quality 

Normal Probability Plot 

Aluminum Curve is visible 
Range changes 

Poor Has some skew, R^2=0.9095 
Nearly normal probability 

EMT Curve clearly visible 
Range changes 

Poor Has fat tails, but otherwise 
nearly normal probability, 
R^2=0.9148 

Copper ¾ M No visible curve 
Fairly constant range 
Looks random 

Good Very near a normal distribution, 
R^2=0.9719 

Copper ½ M No visible curve 
Constant range 
Looks random 

Great, one 
outlier 

Normal with a few outlier 
R^2=0.9488 

Copper ¾ L No visible curve 
Fairly constant range 
Looks random 

Good Normal distribution 
R^2=0.9473 

Copper ½ L  No visible curve 
Range is acceptable 
Looks random 

Good Normal distribution 
R^2=0.9706 
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A.1 Aluminum 
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A.2 EMT 
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A.3 Copper alloy 122 

A.3.1 Copper alloy 122, ¾ Type M 
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A.3.2 Copper alloy 122, ½ Type M 
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A.3.3 Copper alloy 122, ¾ Type L 
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A.3.4 Copper alloy 122, ½ Type L 
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