
ENGINEERING JOURNAL / FOURTH QUARTER / 2003 / 213

When certain structural members are used in axial com-
pression, framing considerations dictate the orienta-

tion of the cross section about the member’s longitudinal
axis. When a second member is framed to the first, a con-
straint is imposed which forces the member to buckle about
a non-principal axis. The author investigates axial buckling
for this case, and formulates equations for the compound
buckling of axial compression members. Formulas are
derived using the differential equations of classical struc-
tural stability mechanics.

DISCUSSION

For certain structural members, such as Z-shapes and single
angles, practical framing considerations dictate member
orientation when used as columns or bracing. Consider the
case shown in Figure 1a where a member is in axial com-
pression, is supported continuously about one of its non-
principal axes, and is simply supported at its ends about its
other non-principal axis as shown in Figure 1b.

In Figure 1c, X' and Y' are principal axes and X and Y are
non-principal axes. Normally engineers calculate the Euler
buckling load about the major and minor principal axes of a
cross section. In this present case, the cross section is forced
to buckle about the Y-Y axis, since it is constrained by the
continuous bracing. The question arises as to whether it is
correct to calculate the radius of gyration ry and to use this
value in the normal AISC design equations for compression
members since the Y axis is a non-principal axis. 

To address the behavior, one must start with the funda-
mental equilibrium equations of stability. The pertinent
equations for moments are taken from Theory of Elastic
Stability (Timoshenko and Gere, 1961, p. 242).

where the sign convention for the moments are shown in
Figure 2. When one considers equilibrium for an arbitrary
length of the member shown in Figure 3, the following
equations can be written in each respective orthogonal
plane:

Substituting the expressions from Equations 1 and 2,
yields the following second order differential equations:

The equations of equilibrium for second order analysis
are coupled due to the product of inertia. Since the member
is continuously braced in the y direction, for every value of z:

Equation 5 reduces to the classical, uncoupled differen-
tial equation:

Assuming a sinusoidal solution for u(z):

and applying the following boundary conditions:

yields the classical Euler solution:
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Note however that ry is about the non-principal Y-Y axis.
Note also that, in the buckled configuration, a moment is
induced about the x axis given by the expression:

The conclusion is that the Euler buckling solution holds
for buckling about a non-principal axis when a member is
constrained to buckle in this fashion as shown in Figure 1a
and Figure 1b.

COMPOUND BUCKLING

Consider a second case where a member is braced dis-
cretely at its midpoint, and admit the possibility of the sim-
plest compound buckled configuration shown in Figure 4a
and Figure 4b.

The equations of equilibrium are the same ones shown in
the first case, but a fourth order approach is used in order to
be consistent with Timoshenko and Gere’s formulation
(Timoshenko and Gere, 1960, p. 51). The equilibrium Equa-
tions 5 and 6 become:

Assume the solutions are sinusoidal of the following
form:

where the Ki terms are constants. Differentiating u(z) and
v(z) for the second and fourth derivatives:

Fig. 1a. Member in axial compression with continuous 
bracing about one non-principal axis.

Fig. 1b. View a-a.

Fig. 1c. Section b-b: general cross section.

Fig. 2. Sign convention for moments, Mx and My.
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Fig. 3. Free body diagrams.
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When these terms are substituted into Equations 10 and
11, the following two equations result:

Through algebraic manipulation of Equations 10a and
11a, the following equation, quadratic in P, can be derived:

This characteristic equation must be satisfied for a non-
trivial solution to the problem. Applying the quadratic for-
mula to the term in brackets, the critical buckling load Pcr is
found by calculating the smaller, non-negative root of Equa-
tion 19:

For the example shown in Figure 4a and Figure 4b, the
ends are pinned in each orthogonal plane, which yield the
following boundary conditions:

One should note at this point that the boundary condi-
tions are applied to Equations 12 and 13 in each orthogonal
plane independently. The respective values of a and b which
satisfy the boundary conditions can be found in Timo-
shenko and Gere (1960, pp. 46-56) where the deflected
shape shown in Figure 4a corresponds to the second buck-
ling mode of a simply supported column, and the deflected
shape shown in Figure 4b is the first buckling mode of a
simply supported column. This implies:

By substituting the values of a and b into Equation 19,
and simplifying, the critical buckling load is found by tak-
ing the smaller, non-negative root.

The moment of inertia and the product of inertia terms
within the brackets can be considered as an effective or
quasi moment of inertia for compound buckling:

where Ieff is defined as:

The effective radius of gyration for compound buckling
is simply:
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Fig. 4a. Second buckling mode of a simply supported column.

Fig. 4b. First buckling mode of a simply supported column.
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In the X-Z plane:

For compound buckling:

The compound buckling case gives the lowest theoretical
buckling load, and therefore controls the design of the
member. Note that in the first two calculations, buckling is
checked in each orthogonal plane independently, and the
respective moment of inertias are about non-principal axes.
Although a member is braced about one axis discretely at its
midpoint rather than continuously, it is admissible that the
member may buckle solely within each respective orthogo-
nal plane before buckling in a compound configuration.

If the member were used as a simple compression mem-
ber without any secondary brace at its midpoint, the normal
Euler buckling equation applies about the weaker principal
Y'-Y' axis. In this case, Iy' = 2.39 in.4 and Pcr is found:

Note the small difference between Pcr for the compound
configuration versus Pcr for the simple brace ~ 1 kip. This
makes perfect sense since the Y-Y axis and the Y'-Y' are
closely aligned in orientation for this specific example. One
sees little increase in axial capacity by adding a secondary
brace in this case.

If the member is rotated 90 degrees in the X and Y plane,
one can check compound buckling in this orientation by
simply interchanging values of Ix and Iy in Equation 21 to
find the respective Ieff. In this case Ieff = 7.00 in.4 and Pcr is
found to be:

From this example, one can see the effect on the buckling
load of a compression member when a secondary brace is
provided which braces the primary member about a non-
principal axis, and serves to illustrate the importance of
checking the buckling load for compound buckling.

One point the reader should note is that, for the case of a
simple compression member with no secondary brace at its
midpoint, the boundary conditions are applied in the same
orientation as that of the non-principal axes. For example,
consider how the Z-shape would connect to a column using
a gusset plate. Lutz (1992) formulated a method to account

Equation 21 isolates the effect of the product of inertia on
the critical buckling load when a member is constrained to
buckle as shown in Figure 4a and Figure 4b. One interest-
ing point to note is that the classical buckling solution about
each respective, orthogonal axis is contained in Equation
19a. This is evident for instance, if one considers only the Ix

terms and ignores the other terms. (One must use the larger
root in this case since the smaller root is zero.)

EXAMPLE

Consider a Z section, shown in Figure 5 in place of the gen-
eralized cross section shown in Figure 1c, and consider the
member is supported as shown in Figure 4a and Figure 4b.

For member properties:

Ix =  27.96 in.4 Iy =  5.27 in.4 Ixy =  -8.59 in.4

Ix' =  30.85 in.4 Iy' =  2.39 in.4 Ieff =  2.57 in.4

For additional parameters, assume:

L = 20 ft = 240 in. and   E = 29,000 ksi

The member can buckle in one of three configurations: 1)
Solely in the Y-Z plane shown in Figure 4a, 2) Solely in the
X-Z plane shown in Figure 4b or 3) Compoundly, meaning
in a configuration which is a combination of Figure 4a and
Figure 4b simultaneously. The engineer cannot know a pri-
ori which will control the design. The buckling load for
each case must be calculated in order to find which is the
most critical.

In the Y-Z plane:

Fig. 5.  Z section.
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for this fact. It is possible to calculate an “reff”, the effective
minimum radius of gyration, for the case when effective
length factors are estimated for non-principal axes. The
“reff” in Lutz’s case is unrelated to the reff in this paper
shown in Equation 22. Depending on the choice of equiva-
lent length factors (K factors) for each respective axis, one
may gain additional axial capacity due to end connection
conditions as outlined by Lutz.

ADDITIONAL SOLUTIONS

When different permutations of boundary conditions are
considered, one can derive the corresponding expression for
Ieff in each case. Consider a third case shown in Figure 6a
and Figure 6b: The boundary conditions in this case are as
follows:

which give the values for a and b as derived in Timoshenko
and Gere’s Theory of Elastic Stability.

By substituting values of a and b into Equation 19, and
taking the smaller, non-negative root, the critical buckling
load Pcr is found:

Define Ieff as:
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As a fourth case, consider Figure 7a and Figure 7b.  The
boundary conditions in this case are as follows:

which give the values for a and b:

By substituting values of a and b into Equation 19, and
taking the smaller, non-negative root, the critical buckling
load Pcr is found:

Again, define Ieff as:

For a fifth case, consider Figure 8a and Figure 8b. The
boundary conditions for this case are as follows:

which give the values for a and b:

By substituting values of a and b into Equation 19, and
taking the smaller non-negative root, the critical buckling
load Pcr is found:
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Fig. 6a.  Member in axial compression with 
varying boundary conditions in each plane. Fig. 7a.  Member in axial compression with bracing at mid-point.

Fig. 6b.  View e-e. Fig. 7b.  View f-f.
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where Ieff is defined as:

Consider the sixth and final case to be investigated shown
in Figure 9a and Figure 9b.

This final case is meant as a model for an X-braced sys-
tem. Ks represents the out of the plane stiffness provided by
a cross tension member. Picard and Beaulieu (1987) inves-
tigated this condition for X bracing, and derived an expres-
sion for Ks based on both members being continuous
through their common intersection point. In practice, in
order to design the member correctly, the engineer must
assess carefully the nature of the intersection and end con-
ditions. This is contingent on the sort of bracing members
used and the connection detail at the intersection and ends.
One may vary Ks to find any one of a number of solutions,
but this is beyond the scope and intent of this paper. In this
final case, the author assumed the stiffness Ks is infinite so
that there is effectively a pinned support at this location. For
additional discussion of effective length factors of X-braced
systems, see the paper by El-Tayem and Goel (1986).

The boundary conditions for this final case are as fol-
lows:
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which give the values for a and b:

By coincidence, this yields the same solution as the
fourth case above. The corresponding solution is found by
substituting values of a and b into Equation (19), and by
taking the smaller, non-negative root, the critical buckling
load Pcr is found:

with Ieff defined as:

Note however that Equation (19e) can be rewritten in the
following form by using the Mohr’s circle transformation
equations:

With further reflection and considering Figure 9a and
Figure 9b, it is obvious that this ought to be the case: Pcr is
simply the Euler buckling load with ends pinned about the
weak principal axis of the member, and using the half
length L /2.

One question which may arise for all the cases analyzed:
How does the theory address the behavior of a member
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Fig. 8a.  Member in axial compression with bracing at mid-point.

Fig. 9a. Member in axial compression with cross tension member.

Fig. 8b. View g-g. Fig. 9b.  View h-h.
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when the cross section shown in Figure 1c is oriented such
that the principal axes are oriented vertically and horizon-
tally respectively? This would be the case for a wide flange
brace for example. In such an instance, one would consider
buckling in each orthogonal plane separately as is normally
done. The effective radius of gyration reff may still be cal-
culated, but one will find that reff is not the smallest radius
of gyration, and theoretically, no compound buckling will
take place. Therefore, there is no inherent contradiction
with normal buckling theory as commonly implemented
and the theory derived in this paper. The equations derived
provide the engineer with the capability to check for com-
pound buckling for any compression member regardless of
the orientation of the cross section about its longitudinal
axis. The example provided illustrates the importance of
checking this mode of buckling.

Another significant question for members braced about a
non-principal axis is whether compound buckling is always
more critical than in-plane buckling. The critical buckling
load Pcr for compound buckling is a function of end support
conditions and specific section properties, and therefore, an
energy formulation of each case can be done to ascertain
whether this is true generally, by comparing strain energies
among different cases. Note that in the current approach,
once all pertinent radii of gyration are calculated for a spe-
cific example, one can see readily which mode of buckling
controls the design based on each respective L /r ratio. Fur-
ther research is required.

TORSIONAL BUCKLING

For the case of thin-walled, open cross sections, the poten-
tial for torsional buckling or torsional-flexural buckling
must be considered. This mode of failure must be checked,
since it often is the controlling mode of failure for thin-
walled members. The engineer must give careful consider-
ation to the torsional boundary conditions, which are highly
dependent on the actual detailing of connections. For a
comprehensive theoretical treatment of torsional buckling
and flexural-torsional buckling, see Timoshenko and Gere
(1961), Section 5.4. Studies relating to this subject were
done by Earls and Galambos (1995 and 1996) on single
angles. Additionally, for guidance in designing members for
torsional stability, see Load and Resistance Factor Design
Manual of Steel Construction, Appendix E (AISC, 1998)
and Guide to Stability Design Criteria for Metal Structures,
4th Edition, Section 13.3.5 (Galambos, 1988).

CONCLUSION

For the initial case analyzed, where a member is continu-
ously supported about a non-principal axis, the author dis-
covered that the classical Euler buckling equation holds, but
the radius of gyration is calculated about the respective non-

principal axis. Due to coupling from the product of inertia,
a moment is induced about the orthogonal non-principal
axis. See Equation 9.

For the additional cases of various boundary conditions
investigated, where a member is constrained at its midpoint
by a support or secondary member, and which is therefore
constrained to buckle about a non-principal axis, the author
has shown through stability analysis, that the axial buckling
solution can be formulated analogously to the classical
Euler buckling solution by defining an effective or quasi
moment of inertia, Ieff, which depends on both end support
conditions, non-principal moments of inertia and the corre-
sponding product of inertia. In turn, an effective or quasi
radius of gyration can be calculated. The buckled shape is
compound, meaning simultaneous displacement in two
orthogonal planes. The expressions derived are unique for
compound buckling of axial members and may be applied
for any orientation of the cross section of a member about
its longitudinal axis. Actual physical tests will be required
to corroborate the validity of the derived equations.

NOMENCLATURE

A = cross-sectional area
a, b = buckling parameters
E = modulus of elasticity
Ieff = effective moment of inertia for compound

buckling
Ix, Iy = moments of inertia about non-principal axes
Ixy = product of inertia
Ix', Iy' = moments of inertia about the principal axes
Ki = constant coefficients
Ks = spring support term
L = length of a member
Mx = bending moment about x axis
My = bending moment about y axis
P = axial compressive load
Pcr = critical buckling load P
reff = effective radius of gyration for compound

buckling
ry = radius of gyration about the Y axis
T = axial tensile load
u, v = displacements
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