Example – effect of suction pressure

• Flooded Screw compressor in CBM service:

	fps	Both	SI
VI		4.6	
Speed		1200	
q ₀	1 MMSCF/d		28.3 kSCM/d
Vol _{revolution}	0.0.053 ft ³		0.001503 m ³
P _{atm}	12 psia		82.7 kPaa
P _{suct0}	14.5 psig		100 kPag
P _{disch}	84 psig		579 kPag
T _{suct}	80°F		26.7 C
T _{disch}	205°F		96.1 C

- If suction pressure is changed with all other things held constant, how does input work required change?
 - Case 1 \rightarrow suction pressure = 29.0 psig [200 kPag]
 - Case 2 \rightarrow suction pressure = 0 psig [0 kPag]

Suction pressure example (fps)

$$W = \frac{cons}{\eta_{total}} \cdot P_{suction} \cdot q_{std} \cdot \left(\frac{\rho_{std}}{\rho_{suction}}\right) \left(\frac{k}{k-1}\right) \left(\left(R_{c}\right)^{\frac{k-1}{k}} - 1\right) \frac{Z_{avg}}{Z_{suct}} = \left(\frac{cons \cdot P_{std}}{T_{std} \cdot Z_{std}}\right) \left(\frac{T_{suct} \cdot Z_{avg} \cdot q_{mmscf/d}}{\eta_{total}}\right) \left(\frac{k}{k-1}\right) \left(\left(R_{c}\right)^{\frac{k-1}{k}} - 1\right) \frac{Z_{avg}}{Z_{suct}} = \left(\frac{cons \cdot P_{std}}{T_{std} \cdot Z_{std}}\right) \left(\frac{T_{suct} \cdot Z_{avg} \cdot q_{mmscf/d}}{\eta_{total}}\right) \left(\frac{k}{k-1}\right) \left(\frac{R_{c}}{r}\right)^{\frac{k-1}{k}} - 1$$

		Case 0	Case 1	Case 2
	Suction pressure (psig)	14.5	29.0 (+55%)	0 (-55%)
t _	Flow rate (MMSCF/day)	1.00	1.55 (+55%)	0.45 (-54%)
<u>d</u>	Compression ratios	3.62	2.34 (-35%)	8.00 (+120%)
	Efficiency	73%	61% (-16%)	69% (-5%)
	Work/MMSCF (hp)	95.2	71.3 (-25%)	179.8 (+88%)
	Total work (hp)	95.2	110.6 (+16%)	81.3 (-14%)

- Work is a function of both
 - The amount of stuff you lift (mass flow rate)
 - How far you lift it(compression ratios)
- It is very easy to fool yourself about the relative magnitude of each of these

Suction pressure example (SI)

$$W = \frac{CONS}{\eta_{total}} \cdot P_{suction} \cdot q_{std} \cdot \left(\frac{\rho_{std}}{\rho_{suction}}\right) \left(\frac{k}{k-1}\right) \left(\left(R_{c}\right)^{\frac{k-1}{k}} - 1\right) \frac{Z_{avg}}{Z_{suct}} = \left(\frac{CONS \cdot P_{std}}{I_{std} \cdot Z_{std}}\right) \left(\frac{I_{suct} \cdot Z_{avg} \cdot q_{SCM/s}}{\eta_{total}}\right) \left(\frac{k}{k-1}\right) \left(\left(R_{c}\right)^{\frac{k-1}{k}} - 1\right) \frac{Z_{avg}}{Z_{suct}} = \left(\frac{CONS \cdot P_{std}}{I_{std} \cdot Z_{std}}\right) \left(\frac{I_{suct} \cdot Z_{avg} \cdot q_{SCM/s}}{\eta_{total}}\right) \left(\frac{k}{k-1}\right) \left(\frac{R_{c}}{k-1}\right) \frac{Z_{avg}}{Z_{suct}} = \left(\frac{CONS \cdot P_{std}}{I_{std} \cdot Z_{std}}\right) \left(\frac{I_{suct} \cdot Z_{avg} \cdot q_{SCM/s}}{\eta_{total}}\right) \left(\frac{k}{k-1}\right) \left(\frac{R_{c}}{k-1}\right) \frac{Z_{avg}}{Z_{suct}} = \left(\frac{CONS \cdot P_{std}}{I_{std} \cdot Z_{std}}\right) \left(\frac{I_{suct} \cdot Z_{avg} \cdot q_{SCM/s}}{\eta_{total}}\right) \left(\frac{K}{k-1}\right) \left(\frac{R_{c}}{k-1}\right) \frac{Z_{avg}}{Z_{suct}} = \left(\frac{CONS \cdot P_{std}}{I_{std} \cdot Z_{std}}\right) \left(\frac{I_{suct} \cdot Z_{avg} \cdot q_{SCM/s}}{\eta_{total}}\right) \left(\frac{K}{k-1}\right) \left(\frac{R_{c}}{k-1}\right) \frac{Z_{avg}}{Z_{suct}} = \left(\frac{CONS \cdot P_{std}}{I_{std} \cdot Z_{std}}\right) \left(\frac{R_{c}}{R_{c}}\right) \frac{Z_{suct}}{R_{std}} = \left(\frac{R_{c}}{R_{std}}\right) \left(\frac{R_{c}}{R_{std}}\right) \left(\frac{R_{c}}{R_{std}}\right) \frac{Z_{std}}{R_{std}} + \left(\frac{R_{c}}{R_{std}}\right) \left(\frac{R_{c}}{R_{std}}\right) \frac{Z_{std}}{R_{std}} + \left(\frac{R_{c}}{R_{std}}\right) \frac{Z_{std}}{R_{std}}$$

		Case 0	Case 1	Case 2
	Suction pressure (kPag)	100	200 (+55%)	0 (-55%)
ţ	Flow rate (kSCM/day)	28.3	43.9 (+55%)	12.8 (-54%)
	Compression ratios	3.62	2.34 (-35%)	8.00 (+120%)
	Efficiency	73%	61% (-16%)	69% (-5%)
	Work/MMSCF (kW)	71.0	53.2 (-25%)	134.1 (+88%)
	Total work (kW)	71.0	82.4 (+16%)	60.6 (-14%)

- Work is a function of both
 - The amount of stuff you lift (mass flow rate)
 - How far you lift it(compression ratios)

It is very easy to fool yourself about the relative magnitude of each of these 13

Adiabatic Heat of Compression

- It is often useful to try to predict a theoretical discharge temperature for a given:
 - Suction temperature (in absolute units)
 - Compression ratios
 - Gas composition

$$T_{disch} = T_{suct} \left(R_c \right)^{\frac{k-1}{k}}$$

Flooded Screw Compressor

- First flooded screw made by Howden in 1957
- Male rotor is driven by engine or motor
- Female rotor driven by male rotor
- Oil flood
 - Prevents metal-to-metal contact between rotors
 - Seals area around rotors
 - Lubricates
 - Cools

Screw Compressor Operation

- The two rotors are different sizes and the female rotor has more lobes
- The compression chamber on the suction end is much bigger than on the discharge end
- The relationship is called the VI (Volume Index)
- Try to match VI to design disch pressure, if you miss it the compressor efficiency drops

Flooded Screw Compressor

- Initially used exclusively within plants
 - Process Derivative: Air conditioning service, compressing propane or ammonia
 - Air Derivative: Air compressors
- Plant packages do not have to be very flexible
 - Oil only has to be compatible with one fluid
 - Process fluid generally has very low water vapor content
 - dP across skid reliable enough to drive oil
 - Solids accumulation is rare
 - Generally set on rigid foundation so skids can be lighter

19

Flooded Screw Compressor

- In the early 90's we started moving screws to wellsites
 - Very large water vapor content
 - Not much control over either suction/discharge pressure/temperature or fluids
- Plant packages generally perform poorly in field use
 - Oil selection often not compatible with condensable hydrocarbon vapors
 - Oil temperature too cool to cook water off
 - Oil temp control too inflexible for highly varying service
 - dP across skid not reliable enough to drive oil consistently
 - Accumulated solids quite common and packages can't deal with them
 - Plant skids too light to be tail rolled or to be dropped in the dirt
- Packager vs. Screw manufacturer
 - Any manufacturer's screw will perform well if properly packaged
 - Packager is key and many of them don't understand field use

Flooded Screw Compressor Oil

- Oil Selection
 - Mineral Oil: Least expensive, not compatible with liquid hydrocarbons
 - Synthetic Oil: Most expensive, generally has the best compatibility with liquid hydrocarbons and will perform slightly better with absorbed water
 - Semi-synthetic: Mixture of the other two and has intermediate properties
- Screw oil is hydrophilic and will absorb water vapor
- When the oil absorbs water it:
 - Becomes more viscous
 - Loses lubricity
 - Increases surface tension (allowing bigger droplets to fail to coalesce)
- You have to cook the water out of the oil like a reboiler
 - Adjust oil flow, cooling, and/or discharge pressure to achieve 205-215°F out of the screw
 - Higher temps can damage oil, lower temps don't cook water out

Temperature Control that everyone uses

Flooded Screw Temp Example

	Gas	Both	Oil
Atmospheric Pressure		12 psia 101.6 kPaa	
Gas Suction		0 psig 0 kPag	
Gas Discharge		50 psig 345 kPag	
Fluid	Methane		Semi-Synthetic
Flow Rate	500 MSCF/day		40 gpm
SG	0.6		0.81
Temp In	80°F		180°F
C _p	0.52669 BTU/lbm-R		0.45 BTU/lbm-R
k	1.28		-

What is the discharge temperature of the compressor?

Flooded Screw Temp Example (fps)

 $I_{disch}^{\Phi} = q_{gasMSCFd} \cdot \rho_{gasStd} = 500000 \frac{ft^{3}}{day} \cdot 0.046 \frac{lbm}{ft^{3}} = 23000 \frac{lbm}{day}$ $I_{disch-gas}^{\Phi} = (80 + 460) \left(\frac{50 + 14.73}{0 + 14.73}\right)^{(1.28-1)} = 773R$ $Q_{gas} = 23000 \frac{lbm}{day} \cdot \left(0.52669 \frac{BTU}{lbmgR}\right) \cdot (773R - 540R) = 2.822 \times 10^{6} \frac{BTU}{day}$ $I_{disch} = \frac{Q_{gas} + I_{gasIn} \cdot I_{digas} \cdot C_{pGas} + I_{oilln} \cdot I_{digi} \cdot C_{pOil}}{I_{digas}^{\Phi} \cdot C_{pGas} + I_{oilln}^{\Phi} \cdot I_{digi}^{\Phi} \cdot C_{pOil}}$ $I_{disch} = \frac{2.822 \times 10^{6} \frac{BTU}{day} + 540R \cdot 23000 \frac{lbm}{day} \cdot 0.52669 \frac{BTU}{lbmgR} + 640R \cdot 389111 \frac{lbm}{day} \cdot 0.45 \frac{BTU}{lbm^{*}R}}{23000 \frac{lbm}{day} \cdot 0.52669 \frac{BTU}{lbmgR} + 389111 \frac{lbm}{day} \cdot 0.45 \frac{BTU}{lbm^{*}R}}$ Too Cool, can raise discharge to 220 psig or lower q_{adi} to 12 gpm or raise oil inlet to 197F

25

Flooded Screw Temp Example (SI)

$$I_{disch}^{A} = q_{gasMSCFd} \cdot \rho_{gasStd} = 589 \frac{m^{3}}{hr} \cdot 0.735 \frac{kg}{m^{3}} = 434 \frac{kg}{hr}$$

$$I_{oil}^{A} = q_{oil} \cdot \rho_{water} \cdot SG_{oil} = 151.4 \frac{L}{\min} \cdot 1 \frac{kg}{L} \cdot 0.81 \cdot \frac{0\min}{hr} = 7536 \frac{kg}{hr}$$

$$I_{disch-gas} = (26.7 + 273.15) \left(\frac{345 + 101.6}{0 + 101.6} \right)^{(1.28-1)/1.28} = 414.7K$$

$$Q_{gas} = 434 \frac{kg}{hr} \cdot \left(2205 \frac{J}{kggk} \right) \cdot (414.7K - 300K) = 109.7 \times 10^{6} \frac{J}{hr} = 30.5kW$$

$$I_{disch} = \frac{Q_{gas} + I_{gasln} \cdot I_{gasln} \cdot I_{gass} \cdot C_{pGas} + I_{oilln} \cdot I_{oill}^{A} \cdot C_{pOill}}{I_{gas}^{A} \cdot C_{pGas} + I_{oilln}^{A} \cdot I_{goll}^{A} + 355.6K \cdot 7356 \frac{kg}{hr} \cdot 1884 \frac{J}{kg^{*}K}} = 359.375K = 86.20$$

Too Cool, can raise discharge to 1758 kPa or lower q_{oil} to 34 Lpm or raise oil inlet to 93C or some combination

26

Copyright © 2016 MuleShoe Engineering

Or some combination

Temperature Control that Works

PLC looks at compressor discharge temp and:

- Adjusts glycol pump between zero and max speed, then
- Adjusts oil pump between min and max speed

Coalescing		Frame HX	Glycol
Element	Oil		
	R		
	Screw	Engine	
rubb			
ct Sc			
Suc			
\bigcirc			

Γ

Best Temperature Control (so far)

- Glycol Loop
 - Glycol goes through all coolers in series
 - Screw Oil is last
 - During start-up, the screw oil "cooler" acts as a "heater" dumping engine and process gas heat into screw oil
- Screw oil
 - Temperature controlled by PLC
 - T1 instrument activates (in sequence)
 - Cooler glycol bypass

Copyright © 2016 MuleShoe Engineering

• Oil control valve