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Choosing the Right solution of iRR equation to measure
investment success
We consider the problem of multiple mathematical solutions of the IRR equation, which is a mathematical base
for numerous applications in the financial industry, such as investment performance measurement, all yields related
valuations for bonds, spot interest rates, forward rates, and lots of other applications. Previously, this problem
has been studied mostly from the mathematical perspective, and no satisfactory resolution has been found. Our
research takes into account both mathematical and business aspects of the problem. We discovered and convincingly
proved that the largest root of the IRR equation, which accordingly produces the largest rate of return, is the most
adequate solution of the IRR equation, both from mathematical and business perspectives, which should be used
in practical computations of rate of return based on the IRR equation. Based on our study, we introduced the “Rule
of the largest root” for choosing the right solution of the IRR equation, which effectively solves the problem of
multiple roots of the IRR equation. Solving this long-standing problem, which is of very high practical and theo-
retical importance in finance, opens lots of new opportunities for developing new robust financial instruments and
advanced analytical methods. 
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AmbiguiTy of iRR equATion’s soluTions

Let us consider the following example. An investor in-
vested $1 in a penny stock and made withdrawals (W)
and deposits (D) at yearly intervals as shown in the table
below. 

The compounding rate of return for such a portfolio is
defined by the following equation (It is called the IRR

Table 1

equation, where IRR stands for “internal rate of return”):

(1 + R)3 - 3.28(1 + R)2 + 3.591+ R) = 1.31

Often, such equations are rewritten in the following
mathematically equivalent form:
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The problem with this equation is that it has multiple so-
lutions: R1 = 6%, R2 = 1-% , R3 = 12%. Mathematically,
all solutions look possible. However, which one does the
investor have to use to evaluate performance of his port-
folio? In fact, similar situations occur not only in the in-
vestment performance measurement business but in
many others, as well as in more numerous financial ap-
plications in which IRR equation or its derivatives are
used. Specialists often do not realize that formulas they
are using are nothing but the same classic IRR equation
rewritten for a particular task. Many financial analysts
will be surprised to know that the IRR equation is a
mathematical base for a very large range of financial in-
struments and methods. For instance, bond related ana-
lytics are based on the IRR equation, such as yield to
maturity, bond equivalent yield, effective annual yield,
yield curve, bond value, yield to call, bond stripping and
pricing of coupon bonds, etc. Spot rates (the current in-
terest rate appropriate for discounting a cash flow of
some given maturity) and forward interest rates are com-
puted via the IRR equation. All mortgage and annuity
mathematics are based on a particular simplified version
of the IRR equation. Expectation hypothesis of interest
rates (a theory that forward interest rates are unbiased
estimates of expected future interest rates) relies on the
IRR equation as well. Calculations for currency swap
agreements involve a particular form of IRR, too (Bodie
et al. (2005)). NPV, MIRR are derivatives of IRR equa-
tion, which is discussed in detail in Shestopaloff and
Shestopaloff. (2011a). However, the importance of the
IRR equation does not stop here, since many practical
financial methods are based on calculation of rates of re-
turn, such as portfolio analysis and composition, risk
measurement, and performance attribution. Examples of
interesting and thought provoking approaches and com-
mentaries can be found in the articles of Waring (2006),
Kozhemiakin (2006), Hood (2005), Kritzman et al.
(2006), and Busse et al.(2010), which emphasize the im-
portance of objective valuation of rates of return as a
foundation of risk measurement, attribution analysis,
and investment performance measurement. Calculation
of much accounting data requires usage of rates of return
or interest rates, such as the cost of debt and its optimal
structure considered in Binsbergen et al. (2010). 

The rate of return is indirectly linked to many financial
instruments; for instance, risk measurement values
which relates to a company’s debt capacity (Rampini
and Viswanathan (2010)). A good review of historical

developments and presently used methods for comput-
ing rates of return of investment portfolios and quanti-
tative parameters based on them is given in Spaulding
(2005) and Spaulding et al. (2009). There is interesting
research in Osborne (2010) that studies the relationship
of multiple roots of IRR equation with the NPV method.

Compared to the IRR equation and associated methods
such as NPV and MIRR, both the Modified Dietz equa-
tion and TWRR have one traditional advantage: they al-
ways produce the same solution. The IRR equation and
its siblings generally have multiple solutions. In prac-
tice, for large portfolios with relatively small transac-
tions, the problem of ambiguity of solution of the IRR
equation does not arise often, but such possibility al-
ways exists and it should be under control. When
volatility of the involved financial instruments increases
and the relative amount of transactions increases, the
probability of meaningful multiple roots substantially
rises too. In either case, from a practical perspective, the
problem of multiple roots of the IRR equation should
be addressed. From a theoretical perspective, solving
this problem would provide many interesting and useful
insights into the nature of compounded rates of return. 

Ambiguity of IRR equation solutions is one of the major
factors that impede the wider acceptance of IRR and as-
sociated methods. The community agrees that IRR rep-
resents a fairly objective measure of rate of return, while
in many of the financial applications listed above, for
instance, in mortgage and annuities related mathematics,
there are no alternatives. IRR equation is the only avail-
able mathematical vehicle. So the area of application of
the results of this study is very wide and can be benefi-
cially used by financial analysts in all of the considered
financial applications. Besides, introducing robust cri-
teria, which uniquely defines the solution of the IRR
equation when it has multiple roots, will be of great ben-
efit to software developers of financial systems.

In this article, we propose methodological approaches
and practical methods for determining how to unam-
biguously choose the correct solution of the IRR equa-
tion when it has more than one mathematical root. These
approaches can be easily extended to methods associ-
ated with IRR, such as NPV, MIRR, mortgage and an-
nuity equations, bonds related mathematics, etc. Some
researchers also study the complex roots of the IRR
equation and their practical meaning, as well as other
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representations of returns; for instance, matrices, includ-
ing matrices with complex elements, (Pierru (2010)).
Our considerations are applicable to complex roots as
well, although below we only consider real solutions of
the IRR equation. Presently, the business meaning of
complex roots has several interpretations, sometimes
contradictory, and there is no consensus on how to use
complex roots of the IRR equation in financial applica-
tions. On the other hand, in this study, the use of the
complex solution with the largest modulus is consistent
with our considerations and even may complement some
of them; for instance, the notion of continuity of solu-
tions when the parameters of the IRR equation change
continuously. So complex roots should not be discarded,
but lots of further studies have to be done in order to
prove their usefulness and efficiency. In this regard, the
model we consider using the real roots of the IRR equa-
tion to measure return on investment is also imperfect.
However, as research showed, it can be considered to be
an objective description of investment phenomena in a
wide domain of applications. 
       
iRR equATion AnD iTs PRoPeRTies 

Mathematically, the IRR equation is a generalized poly-
nomial equation, which is sometimes called a power
equation (Rahman (2002)), (Shestopaloff (2010),
Shestopaloff and Shestopaloff (2011a) Shestopaloff
(2011b), (Chestopalov and Beliaev (2004)). Shestopaloff
(2010, 2011b) shows that the maximum possible number
of positive solutions of such an equation is equal to the
number of sign changes of the equation’s coefficients or
less by a multiple of two when this equation is written
in the descending order of powers (we assume that the
free term has degree zero). For instance, for the IRR
equation, it means that when we do not have with-
drawals, then all cash flows are positive, and the only
sign change occurs on the free term (summand in the
equation which is a known number; for instance, in the
equation (x + 2) = 0, number 2 is a free term). In such
cases, the IRR equation always has a unique positive so-
lution for the value of (1 + R), where R is the rate of re-
turn. Given the fact that R > -1, it means that this value
covers the whole domain of possible  rates of return and
we should not consider negative solutions of the IRR
equation with respect to the value of (1 + R).

Mathematically, the IRR equation can be written in dif-
ferent forms. Derivation and complete analysis of dif-

ferent forms of the IRR equation can be found in
Shestopaloff (2009) and Shestopaloff and Shestopaloff
(2011a). The main difference is due to which reference
time we choose. For instance, if we discount the cash
flows to the beginning of the investment period, then we
compute the present value P. This is done as follows.
       
       

Here, Cj is a cash flow; tj is the time period between the
beginning of the investment period and the moment
when the cash flow occurred; T is the total period, B is
the beginning market value; N is the number of cash
flows. 

Note that the ending market value E and the present
value are related as follows.  
       
       
       

If we substitute (2) into (1) and (1 + R)T, multiply both
parts of (1) by , then after transformations we obtain the
following convenient formula.
       
       
       

Here,  Tj = T - tj is the real-valued time period. The cash
flow remains in the portfolio; that is, from the moment
when it appears in the portfolio until the end of the total
period T; C0 = B (the beginning market value of the
portfolio). Note that all periods have to be measured in
the same units of time. Cash inflow (adding cash to a
portfolio) is positive; cash outflow (withdrawal from a
portfolio) is negative. The convenience of formula (3)
is that it treats the beginning market value B in the same
way as a regular cash flow, done at the beginning of the
investment period. In many instances, this form is more
suitable for mathematical transformations and business
interpretations.

The rate of return R computed on the basis of (3) relates
to one unit of time. So the total rate of return RT for the
whole investment period T should be calculated as RT =
(1 + R)T - 1. Often, however, it is assumed that the total
period T = 1. 

.        (1)

.        (2)

.        (3)
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We can see that the rate of return R in (3) is not multi-
plied by the period length. Also, the power in (3) denotes
the period length, but not the number of periods, al-
though we know that the IRR equation does a com-
pounding. Why is this? In (3), we assume that the rate
of return corresponds to one unit of time, and the number
of periods Tj is the same as the number of units of time
in  Tj(note that the number of periods can be fractional).
It means that the realized gains are implicitly com-
pounded over a number of periods equal to the number
of units of time in the considered time interval Tj. This
issue is often overlooked in applications. If we want to
have more flexibility with regard to the length of the
time period, and choosing the unit of time, then this de-
fault implicit setting may be overridden, and we can do
compounding over an arbitrary period of length tj for
each cash flow. This way, we obtain the following gen-
eral form of IRR equation.

This generalized IRR equation (GIRR) first introduced
and comprehensively studied in Shestopaloff and
Shestopaloff (2011a) presents an interesting develop-
ment. On one hand, it adds a great deal of flexibility to

how we can compute the rate of return based on addi-
tional information. For instance, if the actual compound-
ing is done infrequently, we can increase the length of
the compounding period tj in order to make our valua-
tions more objective. On the other hand, the general
form of IRR equation (4) continuously covers the whole
spectrum of investment contexts, including noncom-
pounding and continuous compounding. These impor-
tant notions of investment contexts were introduced in
Shestopaloff (2008) and further developed in
Shestopaloff (2009). When tj goes to zero, (4) trans-
forms into the following IRR equation with continuous
compounding.

The comprehensive study of properties of generalized
IRR equation can be found in Shestopaloff and Shesto-
paloff (2011a). On the other hand, if we assume in (4)
that the values of tj go to tj = Tj, then (4) continuously
transforms to the noncompounding scenario. Formula
(4) transforms into
       
       

figure 1

.        (4)

.        (5)

.        (5)
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However, (4) has even more to offer. If we continue our
exploration to the opposite side, that is when tj          µ,
then we also continuously arrive at the following limit
that is proved in Shestopaloff and Shestopaloff (2011a).
       
       
       
Condition (6) means zero rate of return (or zero interest
rate), which we can call the “noninterest context” when
we always obtain the same amount that we invested. So
(4) describes the continuous range of investment con-
texts from the noninterest context to continuous com-
pounding with noncompounding context as an
intermediate investment scenario. Figure 1 presents dif-
ferent scenarios of investment growth based on (4) for
different values of t. We show a case of continuous com-
pounding that practically coincides with the appropriate
graph of discrete compounding when  t = 0.01.

PRoPeRTies of soluTions of iRR 
equATion

Let us consider a particular IRR equation. The following
IRR equation may have a maximum of three positive so-

figure 2

graph of iRR function (8) and the Three solutions (1, 2, 3)
of the iRR equation (7).

lutions, because it has three sign changes in its coeffi-
cients:  

The graph of the appropriate IRR function F(R) is
shown in Figure 2. 

The interpretation of the IRR equation (7) is as follows.
The beginning market value is $1.0 (which is the coef-
ficient of the term (1+ R)2.64). Then, we made a with-
drawal of $2.5 and added (deposited) $1.05 and $0.97.
The ending market value of the portfolio is $0.2. The
whole period has a length of 2.64 units of time, and the
intermediate cash flows occur accordingly at times 2.24,
1.73, and 1.26, measured from the end of investment pe-
riod. Once we obtain the rate of return R for one unit of
time, we can recalculate it for the whole period T=2.64

.        (7)

.        (8)

.                 (6)
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using the following formula. 

Our portfolio grew rapidly between the start and first
cash transaction because we were able to withdraw $2.5,
while we invested only $1.0 at the beginning. Actually,
relatively large (compared to the market value of port-
folio) cash flows with opposite signs are the reason why
multiple solutions of the IRR equation appear.

Note that the units in which we measure period lengths
do not influence the value of the rate of return for the
whole period. This can be proved as follows. Let us de-
note z = (1 + R); A is some positive real number, such
that y = zA. Then we can rewrite (3).
       

Let us assume that  z0 and y0 are solutions of IRR equa-
tions 

and 

Then the appropriate total rates of return, according to
(9), can be found as follows. 

We can see that the rates of return produced by (11) and
(12) for the total period are identical. For example, let
us take (1 + R)2.64 = (1 + Ra). This means that the new
unit of time becomes equal to 2.64 previous units of
time, so that the new variable Ra denotes the rate of re-
turn per 2.64 previous units of time. In the case of (7),
this is the whole period. Then we can rewrite the IRR
function (8) as follows.

Once we know Ra, we can find the rate of return for an
arbitrary period length using (9). 

The graph of IRR function in Figure 2 presents the typ-
ical features of IRR functions. Their value at the be-
ginning point R = -1 is negative (equal to ending
market value with opposite sign); they have zero, one
or more oscillations and always go to plus infinity
when the rate of return goes to plus infinity. All of its
roots always lie in an interval with finite length. In Fig-
ure 2, as examples for illustrating our considerations,
we use the IRR functions (8) and (13). We note that
any other possible IRR function differs from these ex-
amples only in its number of oscillations. 

finDing soluTion of iRR equATion

Which of the three solutions presented in Figure 2 is
the correct one from a business perspective? One pos-
sible way of solving this problem is to use approximate
solutions of the IRR equation that produce less am-
biguous results, and then choose the root of the IRR
equation which is closest to such solutions. Let us ex-
plore this possibility. We have the following candidate
methods for this task:

• Simple rate of return

• Generalized Modified Dietz (GMD) method

• Zero quadratic approximation 

• Quadratic approximation (needs approximate value
of rate of return)

Let us apply these methods to our case. Simple rate of
return takes into account only the beginning and ending
market values of a portfolio, so that 

RS = (E - B) / B = (0.2 - 1.0) / 1.0 = -0.8       
Quadratic approximation methods are presented in
Shestopaloff (2009). These methods generally produce
two solutions, but it is still easier to choose between
two values than between three or more. Later we will
introduce the so-called “Rule of Ascending Curve,”
which excludes one of the approximate roots found by
quadratic approximation methods. This allows us to
unambiguously select the solution that has a valid busi-

.        (9)

.        (10)

.        (11)

.        (12)

.        (13)
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ness meaning in the case of quadratic approximation
methods.

Generalized Modified Dietz (GMD) formula from
Shestopaloff (2009) produces RGMD = -4.066. The graph
of the GMD function, which is a straight line, is shown
in Figure 2. 

Note that this line is tangent to the IRR function F(R)
at the point R = 0, as shown in Figure 2. This graphically
illustrates the result earlier obtained in Shestopaloff
(2009) that GMD and Modified Dietz (MD) methods
represent linear approximations of the IRR equation by
a Taylor series at the point R = 0. The solution RGMD =
-4.066 is the point of intersection of this line with the
abscissa. This is an invalid result because by definition,
the rate of return cannot be less than (-1.0). Shestopaloff
(2009) gives a detailed account of this property of the
GMD and Modified Dietz (MD) methods, namely their
ability to produce invalid values of rates of return; i.e.,
less than (-1.0). We can see that in certain situations the
tangent can be parallel to the abscissa, which would cor-
respond to solutions infinitely larger in absolute value. 

The idea of quadratic approximation is demonstrated in
Figure 2. We approximate part of the IRR function F(R),
defined by formula (13) by a quadratic parabola (in Fig-
ure 2, this parabola is shown in bold, and the parabola
is oriented upside down). In the case of the Zero Quad-
ratic Approximation (ZQA) method, the graph of this
parabola is a tangent to IRR function F(R) at the point
R=0 (this is where the word “zero” in the name of this
method comes from). In Figure 2, this is the left branch
of the aforementioned upside down parabola that is tan-
gential to IRR function  at point . In the case of a general
quadratic approximation, we draw a similar parabola,
with the only difference that such a parabola is tangential
to IRR function F(R) at an arbitrary point R =R0.

The approximating parabola may intersect the abscissa
at two points, touch the abscissa at one point, or not in-
tersect the abscissa at all. Accordingly, the quadratic ap-
proximation may produce two, one, or no solutions. The
ZQA quadratic equation for an arbitrary period length,
which is derived similarly to formula (5.21) from
Shestopaloff (2009), is presented below. 

Here, we assume B = C0. Solving (14) for the example
above, we find RZQA1 = -0.7356, RZQA2 = 0.8978. Note
that the closest solution of the IRR equation (14) is the
first solution RIRR1 = 0.7219. The second solution of this
IRR equation is RIRR2 = 1.055. Analyzing the rates of re-
turn we have thus obtained, we may be inclined to say
that the true rate of return is negative. 

However, what we said above is still a qualified guess
rather than a solid algorithm. The simple rate of return
is not reliable when cash flows are comparable to the
market value of our portfolio. ZQA uses an arbitrary tan-
gency point of R = 0. In order to further reduce the am-
biguity and enable us to make a better founded final
decision, we should introduce additional approxima-
tions. One is a rate of return that resembles the simple
rate of return but accounts for the cash flows. We call it
“cash based rate of return,” and it is defined as follows
(Shestopaloff and Shestopaloff (2011a)).

Here, the letter W denotes cash withdrawals, D – cash
deposits, so that if the total number of cash transactions
is N, then N = I + J. Vertical lines in the numerator of
(15) denote absolute values. The idea behind (15) is this.
We compare how much money we deposited into our
portfolio to how much we withdrew. We have to use ab-
solute values because cash withdrawals are represented
by negative cash flows. 

Substituting into (15) the values of our portfolio, we find
RCB = -0.106. We can further use a quadratic approxi-
mation (QA) at this point, in which case we obtain the
value of RQA = -07236. We can then use this value as
an initial value for iterative algorithms, such as New-
ton-Raphson, linear iterative, or quadratic iterative al-
gorithms from Shestopaloff (2009). All of these
algorithms produce the value of rate of return R =

.        (14)

.        (15)
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Method First Solution Second solution
Cash based
(CB) RR

-0.106 N/A

GMD -0.106 N/A
QA (CB) -0.7236 0.841
ZQA -0.7356 0.8978
Simple IRR -0.8 N/A
IRR -0.7219 1.055

increment of the ending market value shifts the roots. incre-
menting the portfolio’s ending market value increases the

value of the first solution, decreases the value of the second
solution and increases the value of the third solution.

Table 2: Rates of Return Defined 
by Different methods

-0.7219. Results are summarized in Table 2. 

The Rule of AsCenDing CuRve 

The next criterion, which alone decreases the number of
candidate solutions by about half, is based on the fol-
lowing mathematically elegant consideration. Let the
ending market value increase while keeping the begin-
ning market value and all cash flows and transaction
times the same. It is common sense that in this case the

rate of return should increase as well because the final
gains are higher. In geometrical terms, referring to Fig-
ure 3, the increase of the ending market value means
“sinking” of the graph of IRR function F(R), while all
coordinate axes remain fixed. For instance, when E
changes from 0.2 to 0.4 in Figure 3, the values of solu-
tions change in the directions indicated by bold arrows.

We can see that only solutions 1 and 3 satisfy this con-
dition, that is, they are the ones that increase their values

figure 3
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is also based on the business meaning of the IRR equa-
tion. 

In order to understand it, let us rewrite (8) and consider
varying the ending market value.

Let us assume that the correct value of rate of return is
solution 1. If the ending market value increases, then
this would mean that the function F(R) in Figure 3 sinks
deeper below the abscissa, and solution 1 increases ac-
cordingly. At some point (when EM   $0.52324), the
function F(R) will be tangent to the abscissa. The value
of the rate of return at this tangency point is R1M 
0.0828, and solutions 1 and 2 coincide. Now if we in-
crease the ending market value by even a very small
amount, the IRR equation will have a single solution of
about R3  3.245. So an infinitesimally small change in
the ending market value creates a large jump in the value
of the rate of return; that is from R1M  0.0828 to R3 
3.245. Such jumps in the value of the rate of return are
poorly compatible with business logic, which requires
that small changes in the portfolio’s ending market value
have to cause small changes in the value of the rate of
return. In other words, continuous changes in the ending
market value should be accompanied by a continuous
change of the rate of return. The only solution that sat-
isfies this requirement is solution 3. In this case, the end-
ing market value can change from zero to infinity, and
the rate of return will accordingly change continuously
and mono tonically. All other solutions of the IRR equa-
tion, at some value of the ending market value, produce
a finite jump in the value of the rate of return at some
point when the ending market value changes by an in-
finitesimally small amount. This property follows from
the fact that the IRR function is a generalized polyno-
mial, so that it cannot have vertical asymptotes and con-
sequently its extrema (maximums and minimums) are
finite.

We need to be sure that the IRR function always has an
ascending part that intersects (or begins from) the ab-
scissa and then goes to plus infinity. This is guaranteed
by the dominance of the first term when the rate of re-
turn increases, in (17) in particular and in general in (3)
and (4), when the rate of return goes to infinity. This
term is always positive because it is associated with the
beginning market value. The rigorous mathematical

because they are located on the ascending parts of the
IRR function. Solution 1 corresponds to R1 = -0.7219.
Solution 3 corresponds to the value of R3  3.166. So-
lution 2 should be excluded because it does not satisfy
the rule of ascending curve. Obviously, the same con-
sideration holds true for IRR functions that have a
greater number of oscillations, which means that solu-
tions located on the descending parts of the oscillations
have to be excluded. We call the discovered criterion
“The Rule of Ascending Curve.”

How do we know when a solution resides on the ascend-
ing part of the IRR function? The first derivative of the
IRR function F(R) should be positive for such a solution.
In mathematical terms, this means  
       
       

Although the remaining candidate rates of return are
very different, we still lack some solid criterion that
would allow us to uniquely select the correct solution.
From the business perspective, we lost some money, but
not as much as the first negative solution R1 = -0.7219
implies. On the other hand, the $1 that we invested from
the very beginning grew so rapidly that in 0.4 units of
time (2.64 - 2.24) = 0.4 we were able to withdraw $2.5,
which means that our investment during this period had
a rate of return of at least 625% in the noncompounding
context. Afterward, we were losing money, but not as
fast, so that the final rate of return became about 317%,
which looks acceptable. So the third solution is not a bad
candidate for the correct solution. However, this is still
an assumption, and we need additional criteria to make
a final choice. 
       
The Rule of ConTinuiTy

Let us introduce a criterion based on the continuity of
rate of return as a function of the ending market value.
We will consider only real, not complex, solutions of the
IRR equation. Note that the Rule of Ascending Curve,
probably for the first time in the literature, takes into ac-
count the business meaning of the solutions of the IRR
equation. Previously, all studies considered the IRR
equation from a mathematical perspective, except for the
restrictions that required a positive beginning market
value and nonnegative ending market value. In this sub-
section, we introduce another root selection criterion that

.        (16)

.        (17)
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proof of this property of the IRR function can be found
in Shestopaloff (2009) and Shestopaloff (2010, 2011b). 

In order to understand the continuity properly and prove
that the solution of the IRR equation continuously
changes when its coefficients continuously change, we
consider continuous change of the ending market value.
Note that the same continuous change of the IRR solu-
tion will be observed when we change other parameters
of the IRR equation, such as the values of all cash flows
and periods. Minor changes of these parameters should
be accompanied by appropriately small changes of the
value of the rate of return. 

In strict mathematical terms, such a continuity of solu-
tions is formulated as follows: if we increase the value
of the cash deposit Cj by some small value of Cj , then
the rate of return Rc has to decrease by an appropriate
small value of RCj, so that the following limit should
hold true for any cash deposit. 
       
       
       
Similarly, if we increase the value of some cash with-
drawal by a small amount, then the rate of return should
increase by an appropriately small amount and a limit
similar to (18) should hold true. If we change the time
of some cash transaction by a small value - for instance,
make it earlier - then the rate of return should decrease
by an appropriately small amount and no jumps or
breaks in the value of the rate of return should occur. If
we consider solutions of the IRR equation from this per-
spective, then all solutions, except the largest one, have
finite domains which these solutions change continu-
ously when the IRR equation’s parameters vary. This is
caused by the presence of oscillations in the IRR func-
tion.  Unlike all other solutions, the interval in which the
largest solution changes continuously is unbounded. So
the largest root of the IRR equation is the best choice
from the point of view of continuity. 

However, although it is the best among other solutions,
this root also does not satisfy the continuity requirement
completely. For instance, if we begin to increase the be-
ginning market value of $1 in (8), then the minimum on
the right eventually intersects the abscissa and the value
of the largest real root jumps from solution 3 to solution
1, in which case solution 1 becomes the largest. So we
made some progress, but the verdict is not final yet, and

we will continue our discussion. Let us take a closer
look at our candidate solutions using some properties of
the generalized IRR equation (4). 
       
ConTinuiTy of soluTion of The giRR
equATion

As we learned, GIRR equation (4) allows for continuous
change of the investment context when the equation’s
parameter t changes from zero to infinity. So the equa-
tion’s solutions change continuously as well. Figure 4
shows how changing t effects the values of solutions of
the equation corresponding to the IRR function (13)
when it is presented in the form (4). We can observe in-
teresting behavior of the first root when t is increased
to be greater than one; the root remains negative and
asymptotically approaches zero, and this is not an opti-
cal illusion. This root has the following property. Its ab-
solute value is less than one, so that the term (1 + Rt) is
also less than one, or it may even be negative. However,
this term is meaningful only when (1 + Rt) > 0, so we
consider the case when (1 + Rt) is nonnegative but less
than one. As it is known, if such values are raised to a
positive power greater than one, the result is less than
the base, while for the bases that are greater than one,
the result is greater than the base. The opposite effect is
present when the power is positive and less than one. In
this case, a base that is less than one produces a greater
number, while a base that is greater than one produces
a smaller number.

In our case, the value of the rate of return corresponding
to the first solution is approximately R = -1/t, so that
the value of (1 + Rt) is small, nonnegative, and less
than one. Since Tj / t is less than one but positive, 

though usually not by too much; for instance, the square
root of 0.01 is equal to 0.1 (which is a larger number),
while the square root of 100 is equal to 10 (which is a
smaller number). So the first root essentially represents
the case when, in our IRR equation, we sum up small
numbers. Growth of t should “push” the root closer to
the value of R = -1t. When t grows, the power de-
creases, which increases the value of 

.        (18)
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The base also decreases, which leads to a smaller value
of (1 + Rt), and this is what we can see in Figure 4. As
a consequence,                            when              . Smaller
values of t “liberate” the solution and allow for more di-
vergence from the value of (-1/t). However, in this case,
we can begin to obtain values of rate of return less than
(-1.0), which is prohibited by the definition of the rate
of return. The fact that such a negative solution may
originate in scenarios with obviously positive rates of
return jeopardizes the business sense of the smallest so-
lution, and makes it less preferable than the largest so-
lution. Of course, the largest solution can be negative,
although in such situations it often becomes the only so-
lution of the IRR equation. So from the business per-
spective, the largest solution is more preferable than the
smallest one. 

The next question is, how do we know when the smallest
solution corresponds to a sum of small numbers and con-
sequently has the convergence features we have just dis-
covered? A good indicator is when we have multiple
solutions and the value of the smallest one is negative.
We may refer to this as “Smallest Root Convergence
Criterion.”

figure 4

Dependence of solutions of the generalized 
iRR equation on the value of 

In fact, we do not have many scenarios of how the roots
of the IRR function can originate. The IRR function can
have a spike at the beginning which can or cannot reach
the abscissa, illustrated by scenarios 1 and 2 in Figure 5
(values of C and T relate to the second term in (13)).
The IRR function can also begin to increase monotoni-
cally (scenario 3 in Figure 5) and thus intersect the ab-
scissa only once. It can also first decrease without any
spikes and then return and intersect the abscissa at one
point. Certainly, several spikes are possible, and so more
intermediate solutions can be present. However, we
have previously discarded these solutions in favor of the
largest or the smallest solution.

PRoPeRTies of The iRR equATion AT The
sPeCiAl PoinT 

We know that the rate of return R = -1 corresponds to
the case when the investment is completely lost; that is
the ending market value becomes zero and the IRR
function begins at zero at the point R = -1. Note that as
the ending market value becomes sufficiently small, the
smallest solution will go to this point continuously. In
other words, the smallest solution of the IRR equation
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will become R = -1. However, if we take as an example
the IRR equation (7), we can see that we actually in-
vested $3.02, did a withdrawal of $2.5, and so lost only
$0.52, but not the entire investment, as the value of  R =
-1 would imply. The same considerations hold true for
any IRR equation that has more than one root and whose
ending market value is equal to zero.

There is more to say here. Multiple solutions occur only
if we do some withdrawals; otherwise, we cannot obtain
negative coefficients in the IRR equation, whose pres-
ence is required to have multiple roots. Moreover, these
withdrawals have to be quite significant, comparable in
value to the beginning market value, in order for the IRR
function to “sink” below the abscissa and produce more
than one solution. However, it does not make sense to
say that we have lost all of our invested money once we
made a withdrawal. This fact undermines the possibility
that the first solution is a correct one because selecting
it leads to a contradiction from the business perspective. 

Thus, if the IRR equation has multiple solutions, then
relatively large cash withdrawals from the portfolio must
have been made, and consequently we cannot lose the
whole investment in principle. However, when the end-

ing market value goes to zero, the smallest rate of return
goes to R = -1, which means that we lost all of our in-
vested money. As we have just said, this cannot be true
because of the presence of withdrawals. 

On the other hand, if we accept the hypothesis that the
largest root is correct, then we do not have such a con-
tradiction. So we have found one more reason why we
should give preference to the largest solution. 
       
inTeRmeDiATe mARkeT vAlue of A 
PoRTfolio

The investment context can vary during the same invest-
ment period, (Shestopaloff  and Shestopaloff (2011a)).
However, because we use one rate of return for the
whole period, it is reasonable to expect that at any given
moment the current value of the investment portfolio
makes sense from a business perspective. In particular,
if we have several solutions for the rate of return, such
that the intermediate market value of the portfolio be-
comes negative for some solutions, while there is a so-
lution for which it remains positive, then the solution
that produces positive intermediate market values
should be preferred over solutions producing negative

figure 5

Several scenarios of IRR function’s behavior near the point  R = 1. Curve
1 – the spike does not reach the abscissa, C2 = -2.65, T2 = 0.83 ;  2 – the
spike intersects the abscissa,  C2 = -2.65, T2 = 0.748; 3 – function has no
spike and increases monotonically, C2 = -2.5T2 = 0.85. 
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intermediate market values. 

In order for the intermediate market values to remain
positive for some solution, we may impose the following
restriction, which implies a nonnegative market value of
the portfolio at the moment of each cash transaction.
This restriction is that for all J = 0,1,..., N and for some
solution of IRR equation, Rk > -1, k=0,1,…,K, the fol-
lowing condition should be fulfilled.

      
It is possible to create such an artificial portfolio that
(19) will not be fulfilled even for the largest root. Such
is the case of the IRR equation (7). Graphs of interme-
diate market values for all three roots of this equation
are presented in Figure 6. However, such situations are
extreme, and we never encountered them in practical ap-
plications. On the other hand, we often encounter situa-
tions when the intermediate market values for all roots,

except for the largest one, become negative at some
point.

It is more likely that (19) is fulfilled for larger solutions.
One reason is that the larger the rate of return is, the
more dominant the first term becomes, and this term is
always positive, as we discussed earlier. 

Another advantage of selecting the largest solution is
that the intermediate values fluctuate substantially less
than when we use the smallest solution. This is an em-
pirical observation, although there is some mathematical
rationale for this effect related to the specifics of expo-
nentiation of small (less than one in absolute value)
numbers. So, we have one more factor that favors the
selection of the largest solution.

This completes our research with regard to which solu-
tion of the IRR equation should be accepted from busi-
ness and mathematical perspectives. This involved the

figure 6

Change of intermediate market values for the
Three Roots of equation (7)

.        (19)
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introduction of several criteria, such as the Rule of As-
cending Curve, the Rule of Continuity, and others. All
of them favored the largest solution. 

PRACTiCAl ComPuTATion of The iRR
equATion soluTion

Another issue is the practical computation of solutions.
In general, the IRR equation, as well as NPV and MIRR
equations, can only be solved numerically, usually by
using iterative methods. So the choice of initial value for
iterative methods is important. There are several possi-
ble approaches to finding the correct solution of the IRR
equation when the IRR equation has multiple solutions. 

We can use some mathematical advances in this area,
adjusting them to our purpose. In particular, the work
Davenport and Mignotte (1990) present methods for
finding the largest root of a polynomial. The problem is
that the IRR equation in general is a generalized poly-
nomial whose powers can be real positive numbers, not
only integers, which is the case considered in the re-
ferred to work. However, we can approximate the IRR
equation by a polynomial, using a substitution that ap-
proximates the powers by rational numbers. Then,
through a series of transformations described in detail
in Shestopaloff (2010, 2011) we obtain a polynomial
equation that approximates the original IRR equation
with high accuracy. Then, the methods in Davenport and
Mignotte (1990) can be applied directly. Once we obtain
the approximate value of the largest root, we can use this
value for iterative or other computational algorithms in
order to find the precise value of the rate of return.

In certain instances, we can use the GMD method to find
the initial value of the rate of return that can be used in
some computational procedure that converges to the
largest root of the IRR equation. Some conditions have
to be fulfilled in order to guarantee that the procedure
converges to the largest root. Certain useful considera-
tions on this account can be found in Shestopaloff
(2009).

Another approach would be to find a value of the rate of
return on the rightmost ascending part of the IRR curve,
when the first term of the IRR equation exceeds by sev-
eral times, in absolute value, the contribution of other
terms. Then this value can be used in some computa-
tional algorithm, such as an iterative one, to descend to

the largest root. In this regard, the considered quadratic
iterative (QI) algorithm is beneficial because it provides
very speedy convergence to the solution. The number
of required iterations can be several times less than in
the case of linear iterative algorithms such as Newton-
Raphson. This approach is simple and practical. 

Other mathematical and computational methods can
also be employed in order to find the largest root. This
is a matter of taking into account the problem’s
specifics, software implementation requirements, avail-
able computational resources, and choosing the most ad-
equate approach. In this regard, the book Burden (2005)
is a valuable resource for understanding how to choose
an efficient computational algorithm.

We tested the discussed approaches, except the ones
from Davenport and Mignotte (1990), on simulated and
real portfolios, and found that they are very reliable.

noTe AbouT ComPlex soluTions of The
iRR equATion 

Presently, using complex roots of the IRR equation is
considered rather exotic. On the other hand, in our con-
siderations, if we substitute real solutions by moduli of
complex roots of the IRR equation, we will also come
to similar results. Namely, if we need to choose some
complex root, then, by and large, the complex root that
has the largest modulus makes the most sense from a
business perspective because it is consistent with all cri-
teria that we introduced above for selecting the correct
real solution of the IRR equation. Certainly, the time
when complex rates of return will be in use may never
come. However, if this ever happens, then the Rule of
Continuity that we introduced above could be even more
important because in this case the root with the largest
modulus will cover the whole domain of possible rates
of return, and it cannot undergo any jumps. 

Another good thing about using complex roots is the
natural inclusion of real solutions into the realm of com-
plex solutions, as a particular case. The simplest and
probably the most noncontradictory way of doing this
is using the moduli of complex numbers. However, the
issue requires more research and it is difficult to say up
front what will be the best approach.

The notion of context should be an important vehicle in



The Journal of Performance MeasurementFall 2013 -49- 

studies of business meaning and applications of complex
roots. Complex solutions have to reside in a certain spe-
cific context. However, these new contexts have to be
connected to known investment contexts and be able to
undergo continuous transformation into other contexts.

So studying complex solutions of the IRR equation and
its applications should not be forbidden or neglected, but
it should also be understood that the introduction of such
advanced concepts into the industry, which by its nature
has to be reasonably conservative, requires diligent and
comprehensive research and lots of qualified discus-
sions.

ConClusion

There are several related areas which we covered in this
article. The first is the problem of finding an adequate
and accurate value of the rate of return. Using the notion
of conceptual context of an investment, we presented the
structure and interrelationships of IRR methods and their
areas of applicability. We introduced the generalized
IRR equation, which has many interesting and useful
features. The importance of this generalization is that it
unifies all available different methods for calculating
rates of return and defines their investment contexts.
This equation also allows continuous transformations
from one method and its associated context to another
by changing one of its parameters.

We introduced algorithms and criteria for selecting the
correct, from the business and mathematical perspective,
solution of the IRR equation in the case when it has mul-
tiple roots. In this regard, the introduction of the Rule of
Ascending Curve, the Rule of Continuity, and others is
very illustrative since these criteria naturally reflect the
business specifics of the IRR equation and eventually
allow deriving the Rule of the Largest Root, which we
believe solves the problem of selecting the correct root
of the IRR equation.
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