APPROXIMATE DISPLACEMENT INFLUENCE FACTORS FOR ELASTIC
SHALLOW FOUNDATIONS
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ABSTRACT: Displacement influence factors for calculating the magnitudes of drained and undrained settlements
of shallow foundations are approximated by simple numerical integration of elastic stress distributions within a
spreadsheet. Influence factors for circular foundations resting on soils having homogeneous (constant modulus
with depth) to Gibson-type (linearly increasing modulus) profiles with finite layer thicknesses are obtained by
summing the unit strains from incremental vertical and radial stress changes. The effects of foundation rigidity
and embedment are addressed by approximate modifier terms obtained from prior finite-element studies. Results
are compared with closed-form analytical and rigorous numerical solutions, where available. A new solution for

Gibson soil of finite thickness is presented.

BACKGROUND

The magnitudes of shallow foundation settlements can be
assessed practically and expeditiously using displacement in-
fluence factors derived from elastic continuum theory. Usually,
applications involve either the undrained loading of founda-
tions on clay or the drained settlements of foundation on sands,
although the methodology is more general than just these two
cases. Poulos and Davis (1974) provide a compilation of rig-
orous elastic solutions that are specific to the following cases:
foundation shape (circular, square, rectangular), soil homoge-
neity (modulus either constant or varying with depth), finite
layer depth, multilayering, foundation roughness, interface
roughness, Poisson effect (radial strains), foundation stiffness
(footing versus mat), and drainage conditions (undrained ver-
sus drained).

For foundations situated on clay subsoils, it is standard prac-
tice to calculate vertical deflections during undrained loading
using a three-dimensional elastic solution (e.g., Skempton and
Bjerrum 1957; D’Appolonia et al. 1971; Foott and Ladd
1981), yet inconsistently use one-dimensional consolidation
theory for evaluating drained primary settlements (e.g., Perloff
and Baron 1976; Holtz and Kovacs 1981). When undisturbed
clay samples are recovered, the normal procedure is to conduct
oedometer tests to evaluate the e-log o), response and define
the effective preconsolidation stress (0} ., the recompression
index (C,), the virgin compression index (C,), and the swelling
index (C,). The drained stiffness of these soils is characterized
by these dimensionless compression indices. In contrast, the
undrained stiffness is expressed by an undrained modulus (E,)
that is derived from triaxial tests. In truth, both the drained
and undrained stiffness can be represented in terms of moduli.

Vertical deflections that occur under undrained loading are
best termed as “undrained distortion’’ and only result when
the rate of loading is relatively fast with respect to the per-
meability characteristics of the soil. This phase is sometimes
termed ‘‘immediate or initial settlement’’ because of the rel-
atively rapid time for occurrence; however, it is not actually
settlement, since no change in volume (or voids) occurs. The
undrained distortion is also mislabelled “elastic settlement,’”’
because elastic theory is often invoked for calculation pur-

!Assoc. Prof., School of Civ. and Envir. Engrg., Georgia Inst. of Tech-
nol., Atlanta, GA 30332-0355. E-mail: pmayne @ce.gatech.edu

*Sr. Prin., Coffey Partners Int. Pty. Ltd., 12 Waterloo Rd., North Ryde
NSW, Australia 2113, E-mail: harry_poulos@syd.coffey.com.au

Note. Discussion open until November 1, 1999. To extend the closing
date one month, a written request must be filed with the ASCE Manager
of Journals. The manuscript for this paper was submitted for review and
possible publication on June 8, 1998. This paper is part of the Journal
of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 6,
June, 1999. © ASCE, ISSN 1090-0241/99/0006-0453—-0460/$8.00 + $.50
per page. Paper No. 18524,

poses, yet the response, in no way, can be considered as “‘elas-
tic’’ or reversible. For isotropic elastic materials, the undrained
condition is represented by the case of constant volume, or
AV/V;, = 0, where the undrained Poisson’s ratio v, = 0.5.

Foundation settlements for sands are not commonly evalu-
ated via one-dimensional consolidation theory because of the
difficulties in sampling of undisturbed specimens for labora-
tory testing. Instead, drained settlements on sands are usually
calculated using displacement influence factors (e.g., Harr
1966, 1977; Beradi et al. 1991; Lancellotta 1995). Again, the
term “‘immediate settlements’’ is sometimes applied to sands
because of the short time involved for their occurrence; how-
ever, the resulting change in void ratio and associated com-
pression of the sand matrix indicates that the process is one
of drained primary consolidation,

In actuality, the method of displacement influence factors is
justifiably applicable to calculating both undrained distor-
tional-type and drained consolidation-type settlements for all
soil types. It can be shown that the one-dimensional £-log
o, approach is merely a subset of the more general three-
dimensional elasticity solution (Fellenius 1996), whereby the
radial strains are neglected and correspond to the simple elastic
case with Poisson’s ratio v = 0. In lieu of the compression
indices, a constrained modulus (D' = Ao/Ae = 1/m,) is used
to describe the stiffness of the soil matrix compressibility,
where m, = coefficient of volumetric compressibility (Janbu
1969; Schmertmann 1986). For the recompression portion of
the e-log o, curve, for example, it is a simple matter to show
that (Stamatopoulos and Kotzias 1978):

1 +e)

>

D' =1/m,= (o, )In(10) ¢))
Furthermore, it is important that the final stress states remain
within the recompression region and less than the preconsoli-

dation stress (o }...0) SO that a semielastic behavior is reason-
able.

FOUNDATION DISPLACEMENTS

The general form for settlement calculation by displacement
influence factors is

gBI

P="F @
where p = foundation settlement; g = applied stress; B = foun-
dation width; E, = equivalent elastic soil modulus; and I =
displacement influence factor. Rigorous solutions to obtain the
displacement influence factors are fairly involved and require
the establishment of equations of equilibrium, continuity equa-
tions, constitutive relationships, and kinematics, as well as
complex integrals (e.g., Gibson 1967; Ueshita and Meyerhof
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1967; Stark and Booker 1997). The solutions depend upon
several parameters, including foundation shape, Poisson’s ratio
(v), modulus variation with depth, soil layering, finite layer
thickness (k), foundation roughness, and interface adhesion.
For the simple case of a uniformly loaded (flexible) circular
area of diameter d and smooth base reading over a semiinfinite
(h = o) elastic half-space with homogeneous modulus (con-
stant E, with depth), the magnitude of settlement at the cen-
terpoint is given by (e.g., Brown 1969a and b):

_ gdI(1 — v%)

E. 3

p
where I = 1. For a rigid circular footing situated on an elastic
half-space, the expression is similar in form to the above, ex-
cept that I = w/4 (e.g., Poulos 1968).

A great variety and number of solutions exist in the litera-
ture for different theories, initial governing assumptions, foun-
dation geometries, and specific situations (e.g., Poulos and Da-
vis 1974; Teferra and Schultz 1988). To the practicing
engineer, it is perhaps somewhat confusing as to which solu-
tion is most relevant to the particular problem of study and
which parameters are of greatest importance. Most of the so-
lutions are given in normalized forms, but the graphical or
chart presentations may make it appear that there are signifi-
cant differences among the various solutions, whereas, in fact,
the solutions are quite similar. Two intentions of this paper
are: (1) to provide an approximate solution for obtaining dis-
placement influence factors; and (2) to illustrate compatibility
with a number of well-known rigorous solutions that have
been presented in differing formats.

APPROXIMATE DISPLACEMENT INFLUENCE
FACTORS :

In the context of this work, the displacement influence fac-
tor will be defined as the summation of all vertical deflections
occurring directly beneath the foundation and within the elas-
tic medium. The maximum value is sought, as referenced to
the center of the foundation base. Herein, a uniformly loaded
and flexible circular foundation will be used throughout, al-
though other geometries can be accommodated by setting the
foundation plan area equal to the area of an equivalent circle.
The effects of foundation rigidity and embedment will be ad-
dressed by approximate expressions derived from published
finite-element results in later sections of this paper.

Fig. 1 depicts the basic geometry and nomenclature for an
axially loaded circular foundation resting on an elastic me-
dium. The general derivation for the displacement influence
factor is given by (Davis and Poulos 1968):

I= J' g, dz* )

where z* = z/d = normalized depth; and the vertical strains
(e,) are summed from the base of the footing to some particular
depth of interest, for instance, from z* = 0 to z* = h/d, where
h = depth to an incompressible layer such as bedrock. In the
case of the flexible circular foundation, the unit strains may
be calculated from the constitutive relationship of Hooke’s
Law in cylindrical coordinates:

g, = — [Ao,— 2vo,] 6)

el e

where Ac, = change in vertical stress at depth z; and Ao, =
change in radial stress (symmetry) at depth z. The incremental
change of vertical stress with depth (Ao is well known and
derived by integrating the Boussinesq point load over a dis-
tributed surface area (e.g., Perloff and Baron 1976):
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FIG. 1. Nomenclature Used in Development of Displacement
Influence Factors
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It is common geotechnical practice, in fact, to consider only
vertical stress increases when calculating settlements of shal-
low foundations, and to use the results of one-dimensional
consolidation tests to evaluate the compressibility character-
istics of the various soil layers. As noted earlier, the oedometer
results can be expressed in stress-strain form to give the con-
strained modulus D'. For isotropic elastic theory, the con-
strained modulus D’ (one-dimensional) is related to the equiv-
alent elastic E' or “Young’s”’ modulus for three-dimensional
drained conditions (Lambe and Whitman 1979):

1 — nE

D =0 - )

@)

In the one-dimensional uniaxial case, the lateral strains are
neglected (g, = 0), and the resulting vertical strains for the
influence factor can be calculated from

_ Ao,
=7

=3

(8

For the special case with v = 0, the interrelationship is D' =
E’. Using the calculated vertical stress changes with depth for
a circular area of unit diameter (d = 2a = 1) under unit stress
(g = 1) over a homogeneous elastic material of unit modulus
(D' = 1), it is an easy matter to calculate the incremental
strains via a spreadsheet and numerically integrate the results
over a specified depth of interest. The distributions of unit
vertical strains (AL) with depth are shown in Fig. 2(a). The
strains are summed over a large dimensionless depth (z* =
z/d > 25) on a spreadsheet to give a practical solution to the
semiinfinite elastic half-space (z* = ). For the case where
v = 0, the integration of Al, with depth gives a cumulative
influence factor I = 1, corresponding to the general Boussinesq
case.

For the more general case of triaxial stresses, the incremen-
tal increase in horizontal stress for axisymmetrical loading un-
der a uniform circle is given by (Poulos and Davis 1974):
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For these situations (v > 0), the vertical strains €, are calculated
using both Ao, and Ao, with Hooke’s Law, giving the other
curves shown in Fig. 2(a). These approximate the rigorous
solutions for a rough or adhesive interface between the elastic
compressible medium and the underlying incompressible layer.
Using a spreadsheet, the integral sign for calculating displace-
ment influence factors is replaced by the summation over small
layers. Thus, for a homogeneous soil, the influence factor is

I,= > AL-(Agd) (10)

Poisson Effect

Recent research has shown that the drained value of Pois-
son’s ratio (v") corresponding to foundation settlements is con-
siderably less than once believed. The conventional external
measurements of specimen strains in routine laboratory triaxial
tests reflect difficulties due to end effects, stress nonuniformity,
capping problems, and seating errors, resulting in the reporting
of inappropriate values of v’ on the order of 0.25-0.45 and
measured soil stiffnesses (moduli) that are too low (e.g., Ja-
miolkowski et al. 1994; LoPresti 1995). Accurate measure-
ments are now possible using local strain devices mounted
midlevel on soil specimens and measured internally to the tri-
axial cell (Tatsuoka and Shibuya 1992). It has been noted that
the range of strain levels relevant to foundation deformation
problems is between 0.01% and 0.2% (Jardine et al. 1985;
Burland 1989); therefore, the appropriate value of Poisson’s
ratio to use in elastic continuum solutions for drained loading
is 0.1 <v' < 0.2 for all soil types, including sands (Tatsuoka
et al. 1994) and clays (Jamiolkowski et al. 1995; LoPresti et
al. 1995). For undrained conditions involving short-term load-
ing of clays, it remains appropriate to use the value from iso-
tropic elastic theory of v, = 0.5.

Because of the aforementioned, it is of particular interest to
revisit the well-known settlement calculation method of
Schmertmann (1970), which uses a triangular distribution to
approximate incremental strain influence factors. Fig. 2(b)
shows the elastic theory distributions for the homogeneous
cases involving v’ = 0.1 and 0.2 in comparison to the well-
known 0.6-2B triangular approximation (Note: here, B = d =
circle diameter). The peak strains from the elastic solutions

occur at much shallower depths than the triangle. It is also
evident that the triangle approximation arbitrarily clips strains
that occur below z = 2B deep. According to the rigorous so-
lution for a circular footing (Ueshita and Meyerhof 1968), this
is paramount to an 18% unconservative error.

A revised 0.6—2B polygonal distribution was offered by
Schmertmann et al. (1978), before the advent of recent un-
derstandings on Poisson’s ratio. This too suggests a peak
straining at z = 0.5B, whereas elastic solutions for the true
appropriate values of v’ ~ 0.15 = 0,05 indicate a much shal-
lower peak value at z ~ 0.2B. Notably, with the proliferation
of personal computers, spreadsheets, and mathematical soft-
ware today, it is but a simple exercise to employ the actual
elastic distributions, rather than the simple linealized methods
necessary some thirty years ago.

Finite Layer Thickness

For situations where the compressible geomaterial layer is
of finite thickness 4 and underlain by an incompressible stra-
tum (e.g., bedrock), the spreadsheet integration is performed
over a limited depth from z = 0 to z = & (Széchy and Varga
1978). Table 1 illustrates an example calculation using the
spreadsheet approach (homogeneous case with #/a = 5 and v
= 0.2). Results for the displacement influence factor (I,) are
shown in Fig. 3 for a uniformly loaded (flexible) circular foun-
dation. The I, factors are shown as functions of the normalized
layer thickness, #/a, and two cases of v. Factors for the smooth
layer interface are derived by integration solely of the incre-
mental vertical stress component with the Poisson effect ac-
commodated by the multiplicative term (1 — v?), whereas the
rough or adhesive interface includes the v term implicitly with
each incremental depth.

Compared with the rigorous solution of Ueshita and Mey-
erhof (1968) for a smooth layer interface, Fig. 3 shows that
the approximate integral technique gives influence values that
are about 8% too low for thickness ratios in the range 0.8 <
hla < 2, although it gives a better match for other A/a ratios.
The approximate undrained case (v = 0.5) is shown to be in
general agreement with the rigorous smooth interface solution.
The rigorous solutions for a rough (or “adhesive’’) layer in-
terface compare well with the approximate method. For v =
0, the approximate adhesive solution is identical for the
smooth case, whereas the rigorous solutions show it to be
slightly lower. For v = 0.5, the approximate method is in ex-
cellent agreement with the rigorous adhesive case for all val-
ues of A/a.

Foundation Geometry

The aforementioned section has outlined the procedure for
developing approximate displacement influence factors by
simple numerical integration via spreadsheet. All necessary
terms and equations are summarized in Fig. 1. The derived
solution has been specific to calculating the settlements at the
center (maximum) in Fig. 1. The derived solution has been
specific to calculating the settlements at the center (maximum)
of a uniformly loaded (flexible) circular foundation resting on
the surface of a compressible elastic material. An equivalent
circular foundation is used to approximate other geometric
areas. For example, for a rectangular footing having width
B and breadth A, the equivalent diameter is taken as d =
(4AB/m)"*. The nomenclature B will be used as the generic
foundation width dimension for comparing foundations of dif-
fering geometries. Fig. 4 shows the derived influence factors
for flexible surface foundations including circular (d = B),
square (A/B = 1), and three sizes of rectangles (4/B = 1.5, 2,
and 3). In all cases, the equivalent diameter d has been set
equal to B for comparison. These compare well with rigorous
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TABLE 1. Example Spreadsheet Calculation for Determining Displacement Influence Factor for Centerpoint of Flexible Circular
Loading Over Finite Elastic Layer

Normalized Normalized Vertical stress Horizontal Incremental Elastic Incremental
depth to depth to change, stress change, strain, modulus, displacements
diameter, z/d radius, z/a Ao, Ao, Al, Ey Al (Az/d)
(1) (2) (3) (4) (5) (6) (7)
0.0000 0.00 1.0000 0.7000 0.7200 1.00 0.0144
0.0200 0.04 0.9999 0.6521 0.7391 1.00 0.0148
0.0400 0.08 ' 0.9995 0.6046 0.7577 1.00 0.0152
0.0600 0.12 0.9983 0.5679 0.7752 1.00 0.0155
0.0800 0.16 0.9961 0.5124 0.7911 1.00 0.0158
0.100 0.20 0.9925 0.4684 0.8051 1.00 0.0161
0.120 0.24 0.9873 0.4263 0.8168 1.00 0.0163
0.140 0.28 0.9804 0.3862 0.8259 1.00 0.0165
0.160 0.32 0.9717 0.3484 0.8323 1.00 0.0166
0.180 0.36 0.9611 0.3130 0.8360 1.00 0.0167
0.200 0.40 0.9488 0.2799 0.8368 1.00 0.0167
0.220 0.44 0.9347 0.2494 0.8349 1.00 0.0167
0.240 0.48 0.9190 0.2212 0.8305 1.00 0.0166
0.260 0.52 0.9018 0.1955 0.8236 1.00 0.0165
0.280 0.56 0.8834 0.1720 0.8146 1.00 0.0163
0.300 0.60 0.8638 0.1507 0.8035 1.00 0.0161
0.320 0.64 0.8434 0.1315 0.7908 1.00 0.0158
0.340 0.68 0.8222 0.1141 0.7766 1.00 0.0155
0.360 0.72 0.8005 0.0986 0.7611 1.00 0.0152
0.380 0.76 0.7785 0.0847 0.7446 1.00 0.0149
0.400 0.80 0.7562 0.0723 0.7273 1.00 0.0145
0.420 0.84 0.7339 0.0612 0.7094 1.00 0.0142

Influence factor I, = = Al,* Az/d = 0.813

Note: Input parameters: foundation diameter d = 1.00; applied axial load Q = 0.785; applied unit stress ¢ = 1.000; foundation radius a = 0.500;
Poisson’s ratio v = 0.2; limiting depth A/d = 2.50; Gibson = Eo/(kd) = NA; modulus value E; = 1; rate parameter kg = 0.

Only 22 rows of data shown out of total 1,000 rows of data. Vertical stress changes: Aojg=1—-1[1 +(alz)*]""’. Horizontal stress changes: Ao, /q
=121 + 2v) — (1 + (a2’ + 117°° + 1/2[(a/z)* + 117*°. Incremental vertical strains: €; = (1/E,)+ (Ag, — 2v-Ac,). Cumulative displacement
influence factor: I, = Z{AL-(Az/d)}.
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Footing on Finite Elastic Layer

elastic solutions given by Harr (1966) for the cases of finite
to infinite layers and smooth interface (v = 0). Although not
presented here, the equivalent circle approach can also be ap-
plied with success to polygonal shaped foundations, as well
as irregularly shaped footings (e.g., Stark and Booker 1997).

FOUNDATION RIGIDITY

The foundation stiffness affects the overall distribution of
stresses and corresponding displacements. As noted previ-

ously, analytical solutions for a infinitely thick layer indicate
that the magnitude of deflection of a rigid circular footing is
0.785 times that of the centerpoint of a flexible foundation.
Thus, it is convenient to define a foundation flexibility factor
(after Brown 1969b):

K= (Efarn/EsAV)(t/a)3 (1

where a = foundation radius; E, = elastic modulus of foun-
dation material (i.e., reinforced concrete); Eqyy = representative
elastic soil modulus located beneath the foundation base (i.e.,
value of E, at depth z = a); and ¢ = foundation thickness. The
above definition of foundation flexibility, given by (11), is rea-
sonable for footings and rafts, even though the nominal effects
of v have been omitted (Horikoshi and Randolph 1997).
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The variation of the displacement influence factor for a cir-
cular foundation resting on an infinite elastic half-space has
previously been evaluated in terms of the foundation flexibility
factor, Ky, using finite-element analysis (Brown 1969b), as
presented in Fig. 5. The limiting values from analytical solu-
tions for perfectly flexible and perfectly rigid are shown at I
= 1 and w/4, respectively. According to Fig. 5, the following
categories can be made: (1) perfectly rigid with K > 10; (2)
intermediate flexibility with 0.01 < K, =< 10; and (3) perfectly
flexible with K < 0.01. As an approximation, the aforemen-
tioned influence factor can be expressed as a correction factor
for foundation flexibility (or rigidity):

ky 1

=gt (4.6 + 10-K,)
Rigorous solutions for circular foundations over finite layers
actually give influence factors that rely somewhat on the depth
to the underlying incompressible stratum (Brown 1969a).
However, the approximation above is reasonable provided that
the normalized layer thickness #/a > 0.5. The general expres-
sion for settlement at the foundation center (p,) becomes

(12)
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where I, = influence factor for a flexible foundation on ho-
mogeneous ground (from Fig. 3); and I = rigidity correction
factor (from Fig. 5). For example, the approximate integral
approach shows good results when compared with the rigorous
solution for a rigid circular footing (I, = w/4) resting on a
finite layer with an adhesive-type interface (Poulos 1968), as
presented in Fig. 6.

Note that, for a rigid footing, the magnitudes of settlements
are equal at the center, corner, and edges, whereas, for per-
fectly flexible circular mats, the edge settlements are two-
thirds the magnitude of the centerpoint settlement. Thus, the
settlements at the edge of a circular foundation (Peqge) can be
approximately given by

pedge 1.533
—_—a ] - 14
Preenter (46 + IO'KF) ( )

If analyzing a square or rectangular mat or footing by the
equivalent circle method, a similar approach can be found,
because the corner settlements of a flexible foundation are
about one-half those at the centerpoint, whereas for a rigid
foundation all points are the same (Poulos and Davis 1974).
So, for square and rectangular foundations, the magnitude of
corner settlements can be calculated from

pcomer 2'3
Teme ]~ 15
pcenter (4-6 + ]-OKF) ( )

Again, a rigorous solution shows some slight dependency on
the finite layer thickness (e.g., Fraser and Wardle 1976). For
consistent comparisons in results, the evaluation of foundation
flexibility for slender rectangular rafts should be made using
the procedure of Horikoshi and Randolph (1997).

GENERALIZED “GIBSON” PROFILES

A footing resting on a nonhomogeneous elastic medium
with modulus increasing with depth is a more generalized
problem (Boswell and Scott 1975; Stark and Booker 1997).
For the “Gibson’’ case, the elastic soil modulus increases lin-

early with depth in the form
E =E; + kg2 (16)

where E, = value of soil modulus directly beneath the foun-
dation base (z = 0); kz = rate of increase of modulus with
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depth (units of E per unit depth); and z = depth. Available
solutions from numerical finite-element analyses have been re-
ported for a rigid circular plate (Cartrier and Christian 1973)
where the results are presented in terms of a normalized Gib-
son modulus ratio, B = Ey/(ks-d).

The spreadsheet integral technique enables the evaluation of
influence factors (I;) for Gibson-type soil profiles, as shown
in Fig. 7, for both flexible and rigid footings (v = 0). The
solutions shown are for the range of cases where 0.01 = 3 =
100. Notably, as 3 = o, the solutions approach the pure ho-
mogeneous cases where I = 1 for flexible and I = w/4 for rigid
footings. Hyperbolic curve fits for I; as functions of B are also
given in the diagram.

Fig. 8 shows the corresponding solutions for the conditions
where 0.0001 = B = 1. Using the alternate form given by
Gibson (1967), the foundation centerpoint displacement is ex-
pressed by

pe=q-I'lks amn

where the influence factors I' are shown as functions of Pois-
son’s ratio separately for 0 =< v =< 0.5. Here, as B = 0, the
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spreadsheet solution tends to the corresponding pure linear
case with no intercept (E, = 0), where the well-known ana-
lytical solution for v = 0.5 gives I' = 1.5 (Gibson 1967).

Beradi et al. (1991) investigated the relative depth of influ-
ence (Hy/d) for residual strains beneath footings situated on
Gibson-type soil profiles using finite-element analyses. Two
cases were studied corresponding to depths of interest leaving
residual strains of 15 and 25%. The corresponding range of
normalized Gibson modulus was 0.1 = 3 = 100. Fig. 9 shows
that the simple integral approach gives comparable results in
these cases.

The numerical integration technique has also been used to
generate a new previously unpublished set of solutions, here
corresponding to the Gibson case with finite layer thickness,
as shown in Fig. 10. The solutions shown are for a flexible
circular foundation and smooth interface layer. As B ap-
proaches infinity, the solution tends to the homogeneous case
(Ueshita and Meyerhof 1968).

LAYERED PROFILES

The current spreadsheet (INFLLUENCE) uses simple Bous-
sinesq elastic distributions for the calculation of incremental
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Ao, and Ag,. Fig. 11 shows the attempt to use these distri-
butions for the case of a two-layered system with varying
moduli ratios for the upper and lower strata and for a variable
layer thickness (v = 0.2). These are compared with more rig-
orous evaluations based on the finite layer program FLEAS
(Small 1995). Here, the approximate spreadsheet approach ap-
pears conservative for the case where the lower layer is stiffer
than the upper layer (E, > E,), yet becomes unconservative for
the cases where a stiff stratum overlies a weaker one (E, >
E,). Thus, care must be exercised in using the approximate
approach when extremes in thin layers and layer properties are
evident. In these cases, published solutions for layered elastic
media are available (e.g., Poulos and Davis 1974), or detailed
numerical studies may be warranted (e.g., Small 1995).

FOUNDATION EMBEDMENT

In many textbooks, the effect of foundation embedment on
the settlement response has apparently been overestimated be-
cause of the erroneous mixing of various elastic solutions. A
detailed discussion of this topic is given by Christian and Car-
rier (1978). A numerical assessment by finite elements has
been reported (Burland 1970), however, which appears to pro-
vide more realistic evaluations to the problem. The correction
factor (y, or, as originally designated, p,) has been presented
in terms of the ratio of the embedment depth (z,) to the foun-
dation diameter (d) and Poisson’s ratio (v) of the supporting
soil medium, as shown in Fig. 12. The numerical results can
be roughly expressed by the empirical formula

1
3.5 exp(1.22v — 0.4)[(dlzg) + 1.6]

I~ 1 (18)
Fig. 12 shows the curve fitting compared with the numerical
FEM solution by Burland (1970).

FINAL FORM OF SETTLEMENT EQUATION

The final form of the settlement equation for shallow spread
footings and mat foundations that account for homogeneous
to Gibson soil modulus profiles, finite layer thickness, foun-
dation flexibility, undrained and drained loading conditions,
and embedment is given by

_ g dlsIp-Is-(1 — v
pcenter_ Eo

(19)

where I, Ir, and I are obtained from Figs. 10, 5, and 12,
respectively.

B R R R —————

The spreadsheet integration approach also allows for the
approximate assessment of nonhomogeneous modulus with
depth by power functions (e.g., Stark and Booker 1997), ani-
sotropic stiffness, or alternative stress distributions. For in-
stance, the method is easily adapted to developing influence
factors using elastic solutions other than Boussinesq theory
(e.g., Teferra and Schultz 1988) or, alternatively, using stress
distributions obtained from probability theory (Harr 1977).

CONCLUSIONS

An approximate spreadsheet integration technique is pre-
sented for deriving displacement influence factors for calcu-
lating foundation deflections and settlements on homogeneous
to nonhomogeneous ground with finite to infinite soil layer
thicknesses. Effects of foundation stiffness and embedment are
addressed by approximate modifier terms. The specific solu-
tion addresses circular footings and rafts ranging from flexible
to rigid for undrained to drained cases. Other foundation ge-
ometries are handled by use of equivalent circles. Results com-
pare favorably with available published analytical and numer-
ical solutions.

APPENDIX. REFERENCES

Beradi, R., Jamiolkowski, M., and Lancellotta, R. (1991). “Settlement of
shallow foundations in sands: selection of stiffness on the basis of
penetration resistance.”” Geotech. Engrg. Congress 1991, ASCE, Res-
ton, Va., 1, 185-200.

Boswell, L. F, and Scott, C. R. (1975). “A flexible circular plate on a
heterogeneous elastic half-space: influence coefficients for contact
stress and settlement.”” Geotechnigue, London, 25(3), 604—610.

Brown, P. T. (1969a). “Numerical analyses of uniformly loaded circular
rafts on elastic layers of finite depth.”” Geotechnique, London, 19(2),
301-306.

Brown, P. T. (1969b). “Numerical analyses of uniformly loaded circular
rafts on deep elastic foundations.”’ Geotechnique, London, 19(3), 399—
404.

Burland, J. B. (1970). “Discussion of Session A.”” Proc., Conf. on In-
Situ Investigations in Soils and Rocks, British Geotechnical Society,
London, 61-62.

Burland, J. B. (1989). “Ninth Bjerrum Memorial Lecture: Small is beau-
tiful: the stiffness of soils at small strains.”’ Can. Geotech. J., Ottawa,
Canada, 26(4), 499-516.

Carrier, III, W. D,, and Christian, J. T. (1973). “Rigid circular plate rest-
ing on a non-homogeneous elastic half-space.”’ Geotechnique, London,
23(1), 67-84.

Christian, J. T., and Carrier, III, W. D. (1978). “Janbu, Bjerrum, and
Kaernsli’s chart reinterpreted.”” Can. Geotech. J., Ottawa, Canada,
15(1), 123-128.

D’ Appolonia, D. J., Poulos, H. G., and Ladd, C. C. (1971). “Initial set-
tlement of structures on clay.”” J. Soil Mech. and Found. Div., ASCE,
97(10), 1359-1377.

Davis, E. H., and Poulos, H. G. (1968). “The use of elastic theory for
settlement prediction under three-dimensional conditions.”” Geotech-
nigue, London, 18(1), 67-91.

Fellenius, B. H. (1996). Basics of foundation design: a geotechnical text-
book and a background to the UniSoft programs. BiTech Publishers,
Richmond, Canada.

Foott, R., and Ladd, C. C. (1981). “Undrained settlement of plastic and
organic clays.”” J. Geotech. Engrg. Div., 107(8), 1079—~1094.

Fraser, R. A., and Wardle, L. J. (1976). “Numerical analysis of rectan-
gular rafts on layered foundations.” Geotechnique, London, 26(4),
613-630.

Gibson, R. E. (1967). “Some results concerning displacements and
stresses in a nonhomogeneous elastic half-space.’” Geotechnique, Lon-
don, 17(1), 58—67.

Harr, M. E. (1966). Foundations of theoretical soil mechanics. McGraw-
Hill, New York.

Harr, M. E. (1977). Mechanics of particulate media. McGraw-Hill, New
York.

Holtz, R. D., and Kovacs, W. D. (1981). An introduction to geotechnical
engineering. Prentice-Hall, Inc., Englewood Cliffs, N.J.

Horikoshi, K., and Randolph, M. F. (1997). “On the definition of raft-
soil stiffness ratio for rectangular rafts.”” Geotechnique, London, 47(5),
1055-1061.

JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / JUNE 1999 / 459




Jamiolkowski, M., Lancellotta, R., and LoPresti, D. C. F. (1995). “Re-
marks on the stiffness at small strains of six Italian clays.”” Pre-failure
deformation of geomaterials, Vol. 2, Balkema, Rotterdam, The Neth-
erlands, 817-836.

Jamiolkowski, M., Lancellotta, R., LoPresti, D. C. F., and Pallara, O.
(1994). “Stiffness of Toyoura sand at small and intermediate strain.”’
Proc., 13th Int. Conf. on Soil. Mech. and Found. Engrg., Vol. 3, New
Delhi, India, 169-173.

Janbu, N. (1969). “The resistance concept applied to deformations of
soils.”” Proc., 7th Int. Conf. on Soil Mech. and Found. Engrg., Vol. 1,
Mexico City, 191-196.

TJardine, R. J., Fourie, A., Maswoswe, J., and Burland, J. B. (1985). “Field
and lab measurements of soil stiffness.”” Proc., 11th Int. Conf. on Soil
Mech. and Found. Engrg., Vol. 2, San Francisco, 511-514.

Lambe, T. W., and Whitman, R. V. (1979). Soil mechanics, SI version.
Wiley, New York.

Lancellotta, R. (1995). Geotechnical engineering. Balkema, Rotterdam,
The Netherlands.

LoPresti, D. C. F. (1995). “General report: measurements of shear de-
formation of geomaterials.”” Pre-failure deformation of geomaterials,
Vol. 2, Balkema, Rotterdam, The Netherlands, 1067-1088.

LoPresti, D. C. F, Pallara, O., and Puci, 1. (1995). “A modified com-
mercial triaxial testing system for small strain measurements.”” Geo-
tech. Testing J., 18(1), 15-31.

Perloff, W. H., and Baron, W. (1976). Soil mechanics: principles and
applications. Wiley, New York.

Poulos, H. G. (1968). “The behaviour of a rigid circular plate resting on
a finite elastic layer.”” Civ. Engrg. Trans., Sydney, Australia, 10, 213~
219.

Poulos, H. G., and Davis, E. (1974). Elastic solutions for soil and rock
mechanics. Wiley, New York.

Schmertmann, J. H. (1970). “‘Static cone to compute static settlement
over sand.”’ J. Soil Mech. and Found. Div., ASCE, 96(3), 1011-1043.

Schmertmann, J. H. (1986). “Dilatometer to compute foundation settle-

ment.”’ Use of in-situ tests in geotechnical engineering, ASCE, Reston,
Va., 303-321.

Schmertmann, J. H., Hartman, J. P.,, and Brown, P. R. (1978). “Improved
strain influence factor diagrams.”” J. Geotech. Engrg., Div., ASCE,
104(8), 1131-1135.

Skempton, A. W., and Bjerrum, L. (1957). “A contribution to the settle-
ment analysis of foundations on clay.”” Geotechnigue, London, 7(4),
168-178.

Small, J. C. (1995). “FLEA5—finite layer elastic analysis: users manual
for PC version for Windows.”” Rep. FLEAS, Ctr. for Geotech. Res.,
University, of Sydney, Sydney, Australia.

Stamatopoulos, A. C., and Kotzias, P. C. (1978). “Soil compressibility as
measured in the oedometer.”’ Geotechnique, London, 28(4), 363-375.

Stark, R. E,, and Booker, J. R. (1997). “Surface displacements of a non-
homogeneous elastic half-space subjected to uniform surface trac-
tions.”” Int. J. Numer. and Analytical Methods in Geomech., 21(6),
361-395.

Széchy, K., and Varga, L. (1978). Foundation engineering: soil explo-
ration and spread foundations. Technical University of Budapest, Aka-
démiai Kiadd, Budapest, Hungary.

Tatsuoka, F., and Shibuya, S. (1992). “Deformation characteristics of
soils and rocks from field and laboratory tests.”” Rep., Inst. of Industrial
Sci., The University of Tokyo, Tokyo, 37(1).

Tatsuoka, F., Teachavorasinsku, S., Dong, J., Kohata, Y., and Sato, T.
(1994). “Importance of measuring local strains in cyclic triaxial tests
on granular materials.”” Dynamic geotechnical testing II, ASTM, West
Conshohocken, Pa., 288—-302.

Teferra, A., and Schultz, E. (1988). Formulae, charts, and tables in the
area of soil mechanics and foundation engineering. Balkema, Rotter-
dam, The Netherlands.

Ueshita, K., and Meyerhof, G. G. (1967). “Deflection of multilayer soil
systems.”’ J. Soil Mech. and Found. Div., ASCE, 93(5), 257-282.

Ueshita, K., and Meyerhof, G. G. (1968). *“Surface displacement of an
elastic layer under uniformly-distributed loads.”” Highway Res. Rec.
228, National Research Council, Washington, D.C., 1-10.

460 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / JUNE 1999




APPROXIMATE DISPLACEMENT INFLUENCE FACTORS FOR ELASTIC
SHALLOW FOUNDATIONS

By Paul W. Mayne," Member, ASCE, and Harry G. Poulos,” Fellow, ASCE

ABSTRACT: Displacement influence factors for calculating the magnitudes of drained and undrained settlements
of shallow foundations are approximated by simple numerical integration of elastic stress distributions within a
spreadsheet. Influence factors for circular foundations resting on soils having homogeneous (constant modulus
with depth) to Gibson-type (linearly increasing modulus) profiles with finite layer thicknesses are obtained by
summing the unit strains from incremental vertical and radial stress changes. The effects of foundation rigidity
and embedment are addressed by approximate modifier terms obtained from prior finite-element studies. Results
ate compared with closed-form analytical and rigorous numerical solutions, where available. A new solution for

Gibson soil of finite thickness is presented.

BACKGROUND

The magnitudes of shallow foundation settlements can be
assessed practically and expeditiously using displacement in-
fluence factors derived from elastic continuum theory. Usually,
applications involve either the undrained loading of founda-
tions on clay or the drained settlements of foundation on sands,
although the methodology is more general than just these two
cases. Poulos and Davis (1974) provide a compilation of rig-
orous elastic solutions that are specific to the following cases:
foundation shape (circular, square, rectangular), soil homoge-
neity (modulus either constant or varying with depth), finite
layer depth, multilayering, foundation roughness, interface
roughness, Poisson effect (radial strains), foundation stiffness
(footing versus mat), and drainage conditions (undrained ver-
sus drained).

For foundations situated on clay subsoils, it is standard prac-
tice to calculate vertical deflections during undrained loading
using a three-dimensional elastic solution (e.g., Skempton and
Bjerrum 1957; D’Appolonia et al. 1971; Foott and Ladd
1981), yet inconsistently use one-dimensional consolidation
theory for evaluating drained primary settlements (e.g., Perloff
and Baron 1976; Holtz and Kovacs 1981). When undisturbed
clay samples are recovered, the normal procedure is to conduct
oedometer tests to evaluate the e-log o), response and define
the effective preconsolidation stress (0, ), the recompression
index (C,), the virgin compression index (C,), and the swelling
index (C;). The drained stiffness of these soils is characterized
by these dimensionless compression indices. In contrast, the
undrained stiffness is expressed by an undrained modulus (E,)
that is derived from triaxial tests. In truth, both the drained
and undrained stiffness can be represented in terms of moduli.

Vertical deflections that occur under undrained loading are
best termed as ‘“‘undrained distortion’’ and only result when
the rate of loading is relatively fast with respect to the per-
meability characteristics of the soil. This phase is sometimes
termed “immediate or initial settlement’” because of the rel-
atively rapid time for occurrence; however, it is not actually
settlement, since no change in volume (or voids) occurs. The
undrained distortion is also mislabelled ‘‘elastic settlement,’’
because elastic theory is often invoked for calculation pur-
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poses, yet the response, in no way, can be considered as “elas-
tic’” or reversible. For isotropic elastic materials, the undrained
condition is represented by the case of constant volume, or
AV/IV, = 0, where the undrained Poisson’s ratio v, = 0.5.

Foundation settlements for sands are not commonly evalu-
ated via one-dimensional consolidation theory because of the
difficulties in sampling of undisturbed specimens for labora-
tory testing. Instead, drained settlements on sands are usually
calculated using displacement influence factors (e.g., Harr
1966, 1977; Beradi et al. 1991; Lancellotta 1995). Again, the
term “immediate settlements’’ is sometimes applied to sands
because of the short time involved for their occurrence; how-
ever, the resulting change in void ratio and associated com-
pression of the sand matrix indicates that the process is one
of drained primary consolidation.

In actuality, the method of displacement influence factors is
justifiably applicable to calculating both undrained distor-
tional-type and drained consolidation-type settlements for all
soil types. It can be shown that the one-dimensional e-log
o, approach is merely a subset of the more general three-
dimensional elasticity solution (Fellenius 1996), whereby the
radial strains are neglected and correspond to the simple elastic
case with Poisson’s ratio v = 0. In lieu of the compression
indices, a constrained modulus (D' = Ag/Ae = 1/m,) is used
to describe the stiffness of the soil matrix compressibility,
where m, = coefficient of volumetric compressibility (Janbu
1969; Schmertmann 1986). For the recompression portion of
the e-log o, curve, for example, it is a simple matter to show
that (Stamatopoulos and Kotzias 1978):

1+ e,
D' = lm, = (-C—3) (o, )In(10) o))
Furthermore, it is important that the final stress states remain
within the recompression region and less than the preconsoli-
dation stress (o)) SO that a semielastic behavior is reason-
able.

FOUNDATION DISPLACEMENTS

The general form for settlement calculation by displacement
influence factors is
gBI
Es

p= @
where p = foundation settlement; g = applied stress; B = foun-
dation width; E, = equivalent elastic soil modulus; and I =
displacement influence factor. Rigorous solutions to obtain the
displacement influence factors are fairly involved and require
the establishment of equations of equilibrium, continuity equa-
tions, constitutive relationships, and kinematics, as well as
complex integrals (e.g., Gibson 1967; Ueshita and Meyerhof
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1967; Stark and Booker 1997). The solutions depend upon
several parameters, including foundation shape, Poisson’s ratio
(), modulus variation with depth, soil layering, finite layer
thickness (k), foundation roughness, and interface adhesion.
For the simple case of a uniformly loaded (flexible) circular
area of diameter d and smooth base reading over a semiinfinite
(h = ) elastic half-space with homogeneous modulus (con-
stant E, with depth), the magnitude of settlement at the cen-
terpoint is given by (e.g., Brown 1969a and b):

qdI(1 — v?)
p="rt

E ©)

where I = 1. For a rigid circular footing situated on an elastic
half-space, the expression is similar in form to the above, ex-
cept that I = /4 (e.g., Poulos 1968).

A great variety and number of solutions exist in the litera-
ture for different theories, initial governing assumptions, foun-
dation geometries, and specific situations (e.g., Poulos and Da-
vis 1974; Teferra and Schultz 1988). To the practicing
engineer, it is perhaps somewhat confusing as to which solu-
tion is most relevant to the particular problem of study and
which parameters are of greatest importance. Most of the so-
lutions are given in normalized forms, but the graphical or
chart presentations may make it appear that there are signifi-
cant differences among the various solutions, whereas, in fact,
the solutions are quite similar. Two intentions of this paper
are: (1) to provide an approximate solution for obtaining dis-
placement influence factors; and (2) to illustrate compatibility
with a number of well-known rigorous solutions that have
been presented in differing formats.

APPROXIMATE DISPLACEMENT INFLUENCE
FACTORS '

In the context of this work, the displacement influence fac-
tor will be defined as the summation of all vertical deflections
occurring directly beneath the foundation and within the elas-
tic medium. The maximum value is sought, as referenced to
the center of the foundation base. Herein, a uniformly loaded
and flexible circular foundation will be used throughout, al-
though other geometries can be accommodated by setting the
foundation plan area equal to the area of an equivalent circle.
The effects of foundation rigidity and embedment will be ad-
dressed by approximate expressions derived from published
finite-element results in later sections of this paper.

Fig. 1 depicts the basic geometry and nomenclature for an
axially loaded circular foundation resting on an elastic me-
dium. The general derivation for the displacement influence
factor is given by (Davis and Poulos 1968):

I= J g, dz* ()

where z* = z/d = normalized depth; and the vertical strains
(e)) are summed from the base of the footing to some particular
depth of interest, for instance, from z* = 0 to z* = hA/d, where
h = depth to an incompressible layer such as bedrock. In the
case of the flexible circular foundation, the unit strains may
be calculated from the constitutive relationship of Hooke’s
Law in cylindrical coordinates:

€ = % [Ao,— 2vo,] %)

where Ao, = change in vertical stress at depth z; and Ao, =
change in radial stress (symmetry) at depth z. The incremental
change of vertical stress with depth (Ac,) is well known and
derived by integrating the Boussinesq point load over a dis-
tributed surface area (e.g., Perloff and Baron 1976):
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FIG. 1. Nomenclature Used in Development of Displacement
Influence Factors
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1t is common geotechnical practice, in fact, to consider only
vertical stress increases when calculating settlements of shal-
low foundations, and to use the results of one-dimensional
consolidation tests to evaluate the compressibility character-
istics of the various soil layers. As noted earlier, the oedometer
results can be expressed in stress-strain form to give the con-
strained modulus D’. For isotropic elastic theory, the con-
strained modulus D’ (one-dimensional) is related to the equiv-
alent elastic E' or “Young’s”> modulus for three-dimensional
drained conditions (Lambe and Whitman 1979):

(1 —vE

D,=(1+v)(1——2v)

Q)

In the one-dimensional uniaxial case, the lateral strains are
neglected (g, = 0), and the resulting vertical strains for the
influence factor can be calculated from

Ao,
= DI

®

g

For the special case with v = 0, the interrelationship is D' =
E'. Using the calculated vertical stress changes with depth for
a circular area of unit diameter (d = 2a = 1) under unit stress
(g = 1) over a homogeneous elastic material of unit modulus
(D' = 1), it is an easy matter to calculate the incremental
strains via a spreadsheet and numerically integrate the results
over a specified depth of interest. The distributions of unit
vertical strains (AL) with depth are shown in Fig. 2(a). The
strains are summed over a large dimensionless depth (z* =
z/d > 25) on a spreadsheet to give a practical solution to the
semiinfinite elastic half-space (z* = ). For the case where
p = 0, the integration of AI, with depth gives a cumulative
influence factor I = 1, corresponding to the general Boussinesq
case.

For the more general case of triaxial stresses, the incremen-
tal increase in horizontal stress for axisymmetrical loading un-
der a uniform circle is given by (Poulos and Davis 1974):

454 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / JUNE 1999




-u: ity 5".':.\:,~~\,\ -.:: _\,\.\ \,“ ,:E ]
: """'4= \‘ : ) I' B : ~\'\ “‘... :

05 s o g

I § ..‘e"/ . ,,\ .

= L L ZF i
N L N ,./ 'h i
o 1.0 [ / —
=R -/ :
g | Y ]
o 15L Elastic Theory | [ f,{ Simple Triangle 1
ONJ - 0 - I NApproximation 4
= - V= :,f' (Schmertmann, 1970)
£ 20[ V=01 ey .
& [ - v=02 [ | ]
=z ! - v=0.3 H Elastic Theory |
25 == v=04 H mn Y = 0,1 -

L. -! 4

X wan Y = (0,5 i Y = (0,2 i

3.0 [ulentdotonbuduluubiotue] - Tbabigbdeollonfilon b

"0 02 04 0.6 08
Incremental Strain Influence Factor, Al,

10 02 04 06 08 1

FIG. 2. Strain Influence Factors from: (a) Elastic Theory: (b)
Simple Triangular Case

_|_
Ao,/qg = 1 + v a+v) 1

2 T Lal® + 1 2[(alr) + 11 €)

For these situations (v > 0), the vertical strains g, are calculated
using both Acg, and Ao, with Hooke’s Law, giving the other
curves shown in Fig. 2(a). These approximate the rigorous
solutions for a rough or adhesive interface between the elastic
compressible medium and the underlying incompressible layer.
Using a spreadsheet, the integral sign for calculating displace-
ment influence factors is replaced by the summation over small
layers. Thus, for a homogeneous soil, the influence factor is

I,= 2, AL-(Agd) (10)

Poisson Effect

Recent research has shown that the drained value of Pois-
son’s ratio (v') corresponding to foundation settlements is con-
siderably less than once believed. The conventional external
measurements of specimen strains in routine laboratory triaxial
tests reflect difficulties due to end effects, stress nonuniformity,
capping problems, and seating errors, resulting in the reporting
of inappropriate values of v’ on the order of 0.25-0.45 and
measured soil stiffnesses (moduli) that are too low (e.g., Ja-
miolkowski et al. 1994; LoPresti 1995). Accurate measure-
ments are now possible using local strain devices mounted
midlevel on soil specimens and measured internally to the tri-
axial cell (Tatsuoka and Shibuya 1992). It has been noted that
the range of strain levels relevant to foundation deformation
problems is between 0.01% and 0.2% (Jardine et al. 1985;
Burland 1989); therefore, the appropriate value of Poisson’s
ratio to use in elastic continuum solutions for drained loading
is 0.1 < v' < 0.2 for all soil types, including sands (Tatsuoka
et al. 1994) and clays (Jamiolkowski et al. 1995; LoPresti et
al, 1995). For undrained conditions involving short-term load-
ing of clays, it remains appropriate to use the value from iso-
tropic elastic theory of v, = 0.5.

Because of the aforementioned, it is of particular interest to
revisit the well-known settlement calculation method of
Schmertmann (1970), which uses a triangular distribution to
approximate incremental strain influence factors. Fig. 2(b)
shows the elastic theory distributions for the homogeneous
cases involving v’/ = 0.1 and 0.2 in comparison to the well-
known 0.6—2B triangular approximation (Note: here, B = d =
circle diameter). The peak strains from the elastic solutions

occur at much shallower depths than the triangle. It is also
evident that the triangle approximation arbitrarily clips strains
that occur below z = 2B deep. According to the rigorous so-
lution for a circular footing (Ueshita and Meyerhof 1968), this
is paramount to an 18% unconservative error.

A revised 0.6—2B polygonal distribution was offered by
Schmertmann et al. (1978), before the advent of recent un-
derstandings on Poisson’s ratio. This too suggests a peak
straining at z = 0.5B, whereas elastic solutions for the true
appropriate values of v/ =~ 0.15 * 0.05 indicate a much shal-
lower peak value at z =~ 0.2B. Notably, with the proliferation
of personal computers, spreadsheets, and mathematical soft-
ware today, it is but a simple exercise to employ the actual
elastic distributions, rather than the simple linealized methods
necessary some thirty years ago.

Finite Layer Thickness

For situations where the compressible geomaterial layer is
of finite thickness 4 and underlain by an incompressible stra-
tum (e.g., bedrock), the spreadsheet integration is performed
over a limited depth from z = 0 to z = h (Széchy and Varga
1978). Table 1 illustrates an example calculation using the
spreadsheet approach (homogeneous case with #/a = 5 and v
= 0.2). Results for the displacement influence factor (I,) are
shown in Fig,. 3 for a uniformly loaded (flexible) circular foun-
dation. The I, factors are shown as functions of the normalized
layer thickness, A/a, and two cases of v. Factors for the smooth
layer interface are derived by integration solely of the incre-
mental vertical stress component with the Poisson effect ac-
commodated by the multiplicative term (1 — v?), whereas the
rough or adhesive interface includes the v term implicitly with
each incremental depth.

Compared with the rigorous solution of Ueshita and Mey-
erhof (1968) for a smooth layer interface, Fig. 3 shows that
the approximate integral technique gives influence values that
are about 8% too low for thickness ratios in the range 0.8 <
hia < 2, although it gives a better match for other 4/a ratios.
The approximate undrained case (v = 0.5) is shown to be in
general agreement with the rigorous smooth interface solution.
The rigorous solutions for a rough (or “adhesive’’) layer in-
terface compare well with the approximate method. For v =
0, the approximate adhesive solution is identical for the
smooth case, whereas the rigorous solutions show it to be
slightly lower. For v = 0.5, the approximate method is in ex-
cellent agreement with the rigorous adhesive case for all val-
ues of A/a.

Foundation Geometry

The aforementioned section has outlined the procedure for
developing approximate displacement influence factors by
simple numerical integration via spreadsheet. All necessary
terms and equations are summarized in Fig. 1. The derived
solution has been specific to calculating the settlements at the
center (maximuom) in Fig. 1. The derived solution has been
specific to calculating the settlements at the center (maximum)
of a uniformly loaded (flexible) circular foundation resting on
the surface of a compressible elastic material. An equivalent
circular foundation is used to approximate other geometric
areas. For example, for a rectangular footing having width
B and breadth A, the equivalent diameter is taken as d =
(4AB/m)"®. The nomenclature B will be used as the generic
foundation width dimension for comparing foundations of dif-
fering geometries. Fig. 4 shows the derived influence factors
for flexible surface foundations including circular (d = B),
square (A/B = 1), and three sizes of rectangles (A/B = 1.5, 2,
and 3). In all cases, the equivalent diameter 4 has been set
equal to B for comparison. These compare well with rigorous
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TABLE 1. Example Spreadsheet Calculation for Determining Displacement Influence Factor for Centerpoint of Fiexible Circular
Loading Over Finite Elastic Layer

Normalized Normalized Vertical stress Horizontal Incremental Elastic Incremental
depth to depth to change, stress change, strain, modulus, displacements
diameter, z/d radius, z/a Aa, Ao, Al, E, Al (Az/d)
(M (2) (3) 4) (5) (6 (7)
0.0000 0.00 1.0000 0.7000 0.7200 1.00 0.0144
0.0200 0.04 0.9999 0.6521 0.7391 1.00 0.0148
0.0400 0.08 0.9995. 0.6046 0.7577 1.00 0.0152
0.0600 0.12 0.9983 0.5679 0.7752 1.00 0.0155
0.0800 0.16 0.9961 0.5124 0.7911 1.00 0.0158
0.100 0.20 0.9925 0.4684 0.8051 1.00 0.0161
0.120 0.24 0.9873 0.4263 0.8168 1.00 0.0163
0.140 0.28 0.9804 0.3862 0.8259 1.00 0.0165
0.160 0.32 0.9717 0.3484 0.8323 1.00 0.0166
0.180 0.36 0.9611 0.3130 0.8360 1.00 0.0167
0.200 0.40 0.9488 0.2799 0.8368 1.00 0.0167
0.220 0.44 0.9347 0.2494 0.8349 1.00 0.0167
0.240 0.48 0.9190 0.2212 0.8305 1.00 0.0166
0.260 0.52 0.9018 0.1955 0.8236 1.00 0.0165
0.280 0.56 0.8834 0.1720 0.8146 1.00 0.0163
0.300 0.60 0.8638 0.1507 0.8035 1.00 0.0161
0.320 0.64 0.8434 0.1315 0.7908 1.00 0.0158
0.340 0.68 0.8222 0.1141 0.7766 1.00 0.0155
0.360 0.72 0.8005 0.0986 0.7611 1.00 0.0152
0.380 0.76 0.7785 0.0847 0.7446 1.00 0.0149
0.400 0.80 0.7562 0.0723 0.7273 1.00 0.0145
0.420 0.84 0.7339 0.0612 0.7094 1.00 0.0142

Infiluence factor I, = = AL+ Az/d = 0.813

Note: Input parameters: foundation diameter d = 1.00; applied axial load Q = 0.785; applied unit stress g = 1.000; foundation radius a = 0.500;
Poisson’s ratio v = 0.2; limiting depth h/d = 2.50; Gibson B = Eo/(kd) = NA; modulus value E, = 1; rate parameter &z = 0.

Only 22 rows of data shown out of total 1,000 rows of data. Vertical stress changes: Ao,/g =1 — [1 +(alz)*]""*. Horizontal stress changes: Ac,/g
=12(1 + 2v) — (1 + Wa)® + 117°° + 12[(a/z)> + 117*°. Incremental vertical strains: &, = (1/E;) (Ao, — 2v+Ao,). Cumulative displacement

influence factor: I, = Z{AL,-(Az/d)}.

Displacement Influence Factor, I,
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FiG. 3. Displacement Influence Factors for Flexible Circular
Footing on Finite Elastic Layer

elastic solutions given by Harr (1966) for the cases of finite
to infinite layers and smooth interface (v = 0). Although not
presented here, the equivalent circle approach can also be ap-
plied with success to polygonal shaped foundations, as well
as irregularly shaped footings (e.g., Stark and Booker 1997).

FOUNDATION RIGIDITY

The foundation stiffness affects the overall distribution of
stresses and corresponding displacements. As noted previ-
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FIG. 4. Displacement Influence Factors for Flexible Founda-
tions of Different Geometries

ously, analytical solutions for a infinitely thick layer indicate
that the magnitude of deflection of a rigid circular footing is
0.785 times that of the centerpoint of a flexible foundation.
Thus, it is convenient to define a foundation flexibility factor
(after Brown 1969b):

Ky ~ (Eg/Eouy)(tla)’ an

where a = foundation radius; E,, = elastic modulus of foun-
dation material (i.e., reinforced concrete); E,,, = representative
elastic soil modulus located beneath the foundation base (i.e.,
value of E, at depth z = @); and ¢ = foundation thickness. The
above definition of foundation flexibility, given by (11), is rea-
sonable for footings and rafts, even though the nominal effects
of v have been omitted (Horikoshi and Randolph 1997).
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The variation of the displacement influence factor for a cir-
cular foundation resting on an infinite elastic half-space has
previously been evaluated in terms of the foundation flexibility
factor, K, using finite-clement analysis (Brown 1969b), as
presented in Fig. 5. The limiting values from analytical solu-
tions for perfectly flexible and perfectly rigid are shown at I
= 1 and 7/4, respectively. According to Fig. 5, the following
categories can be made: (1) perfectly rigid with K > 10; (2)
intermediate flexibility with 0.01 = K =< 10; and (3) perfectly
flexible with K < 0.01. As an approximation, the aforemen-
tioned influence factor can be expressed as a correction factor
for foundation flexibility (or rigidity):

kU 1

=yt (4.6 + 10-Ky) 12
Rigorous solutions for circular foundations over finite layers
actually give influence factors that rely somewhat on the depth
to the underlying incompressible stratum (Brown 1969a).
However, the approximation above is reasonable provided that
the normalized layer thickness A/a > 0.5. The general expres-
sion for settlement at the foundation center (p.) becomes
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where I, = influence factor for a flexible foundation on ho-
mogeneous ground (from Fig. 3); and I» = rigidity correction
factor (from Fig. 5). For example, the approximate integral
approach shows good results when compared with the rigorous
solution for a rigid circular footing (I = w/4) resting on a
finite layer with an adhesive-type interface (Poulos 1968), as
presented in Fig. 6.

Note that, for a rigid footing, the magnitudes of settlements
are equal at the center, corner, and edges, whereas, for per-
fectly flexible circular mats, the edge settlements are two-
thirds the magnitude of the centerpoint settlement. Thus, the
settlements at the edge of a circular foundation (p.q,.) can be
approximately given by

P _ 1.533

_—— 1
pcen!er (4-6 + 10'KF) ( 4)

If analyzing a square or rectangular mat or footing by the
equivalent circle method, a similar approach can be found,
because the corner settlements of a flexible foundation are
about one-half those at the centerpoint, whereas for a rigid
foundation all points are the same (Poulos and Davis 1974),
So, for square and rectangular foundations, the magnitude of
corner settlements can be calculated from

Poomer 2.3
~ 1 - 15
pcenter 1 (‘4.6 + 10 ‘ KF) ( )

Again, a rigorous solution shows some slight dependency on
the finite layer thickness (e.g., Fraser and Wardle 1976). For
consistent comparisons in results, the evaluation of foundation
flexibility for slender rectangular rafts should be made using
the procedure of Horikoshi and Randolph (1997).

GENERALIZED “GIBSON”’ PROFILES

A footing resting on a nonhomogeneous elastic medium
with modulus increasing with depth is a more generalized
problem (Boswell and Scott 1975; Stark and Booker 1997).
For the “Gibson’’ case, the elastic soil modulus increases lin-
early with depth in the form

E =E, + kg'z (16)

where E, = value of soil modulus directly beneath the foun-
dation base (z = 0); kz = rate of increase of modulus with
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FIG. 7. Influence Factors for Circular Foundation Resting on
Gibson Soil of Infinite Thickness (g > 0.01)
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depth (units of E per unit depth); and z = depth. Available
solutions from numerical finite-element analyses have been re-
ported for a rigid circular plate (Carrier and Christian 1973)
where the results are presented in terms of a normalized Gib-
son modulus ratio, B = Ey/(kz*d).

The spreadsheet integral technique enables the evaluation of
influence factors (I;) for Gibson-type soil profiles, as shown
in Fig. 7, for both flexible and rigid footings (v = 0). The
solutions shown are for the range of cases where 0.01 = B =
100. Notably, as § => o, the solutions approach the pure ho-
mogeneous cases where I = 1 for flexible and I = 7t/4 for rigid
footings. Hyperbolic curve fits for I; as functions of B are also
given in the diagram.

Fig. 8 shows the corresponding solutions for the conditions
where 0.0001 = B =< 1. Using the alternate form given by
Gibson (1967), the foundation centerpoint displacement is ex-
pressed by

p.=q-I'lkg an

where the influence factors I’ are shown as functions of Pois-
son’s ratio separately for 0 = v = 0.5. Here, as = 0, the
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spreadsheet solution tends to the corresponding pure linear
case with no intercept (E, = 0), where the well-known ana-
lytical solution for v = 0.5 gives I' = 1.5 (Gibson 1967).

Beradi et al. (1991) investigated the relative depth of influ-
ence (H/d) for residual strains beneath footings situated on
Gibson-type soil profiles using finite-element analyses. Two
cases were studied corresponding to depths of interest leaving
residual strains of 15 and 25%. The corresponding range of
normalized Gibson modulus was 0.1 = 8 = 100. Fig. 9 shows
that the simple integral approach gives comparable results in
these cases.

The numerical integration technique has also been used to
generate a new previously unpublished set of solutions, here
corresponding to the Gibson case with finite layer thickness,
as shown in Fig. 10. The solutions shown are for a flexible
circular foundation and smooth interface layer. As (B ap-
proaches infinity, the solution tends to the homogeneous case
(Ueshita and Meyerhof 1968).

LAYERED PROFILES

The current spreadsheet (INFLUENCE) uses simple Bous-
sinesq elastic distributions for the calculation of incremental
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Ao, and Ao, Fig. 11 shows the attempt to use these distri-
butions for the case of a two-layered system with varying
moduli ratios for the upper and lower strata and for a variable
layer thickness (v = 0.2). These are compared with more rig-
orous evaluations based on the finite layer program FLEAS5
(Small 1995). Here, the approximate spreadsheet approach ap-
pears conservative for the case where the lower layer is stiffer
than the upper layer (E, > E;), yet becomes unconservative for
the cases where a stiff stratum overlies a weaker one (E, >
E;). Thus, care must be exercised in using the approximate
approach when extremes in thin layers and layer properties are
evident. In these cases, published solutions for layered elastic
media are available (e.g., Poulos and Davis 1974), or detailed
numerical studies may be warranted (e.g., Small 1995).

FOUNDATION EMBEDMENT

In many textbooks, the effect of foundation embedment on
the settlement response has apparently been overestimated be-
cause of the erroneous mixing of various elastic solutions. A
detailed discussion of this topic is given by Christian and Car-
rier (1978). A numerical assessment by finite elements has
been reported (Burland 1970), however, which appears to pro-
vide more realistic evaluations to the problem. The correction
factor (I, or, as originally designated, p,) has been presented
in terms of the ratio of the embedment depth (z,) to the foun-
dation diameter (d) and Poisson’s ratio (v) of the supporting
soil medium, as shown in Fig. 12, The numerical results can
be roughly expressed by the empirical formula

1
3.5 exp(1.22v — 0.4)[(d/zz) + 1.6]

Ir=~1 (18)
Fig. 12 shows the curve fitting compared with the numerical
FEM solution by Burland (1970).

FINAL FORM OF SETTLEMENT EQUATION

The final form of the settlement equation for shallow spread
footings and mat foundations that account for homogeneous
to Gibson soil modulus profiles, finite layer thickness, foun-
dation flexibility, undrained and drained loading conditions,
and embedment is given by

= q'd'I(;'IF'IE'(]. - vz)
Peenter = Eo

19

where Ig, I, and I, are obtained from Figs. 10, 5, and 12,
respectively.

The spreadsheet integration approach also allows for the
approximate assessment of nonhomogeneous modulus with
depth by power functions (e.g., Stark and Booker 1997), ani-
sotropic stiffness, or alternative stress distributions. For in-
stance, the method is easily adapted to developing influence
factors using elastic solutions other than Boussinesq theory
(e.g., Teferra and Schultz 1988) or, alternatively, using stress
distributions obtained from probability theory (Harr 1977).

CONCLUSIONS

An approximate spreadsheet integration technique is pre-
sented for deriving displacement influence factors for calcu-
lating foundation deflections and settlements on homogeneous
to nonhomogeneous ground with finite to infinite soil layer
thicknesses. Effects of foundation stiffness and embedment are
addressed by approximate modifier terms. The specific solu-
tion addresses circular footings and rafts ranging from fiexible
to rigid for undrained to drained cases. Other foundation ge-
ometries are handled by use of equivalent circles. Results com-
pare favorably with available published analytical and numer-
ical solutions.
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