
*Alternative methods for T_{a} are given in 12.8.2.1 for concrete and steel moment resisting frames and masonry or concrete shear wall structures.

*For regular structures five stories or less above the base (see section 11.2) and having a period $\mathrm{T} \leq 0.5$ $\mathrm{sec}, \mathrm{C}_{s}$ is permitted to be calculated using a value of 1.5 for $\mathrm{S}_{\mathrm{s}}(12.8 .1 .3)$.

*For regular structures five stories or less above the base (see section 11.2) and having a period $\mathrm{T} \leq 0.5$ $\mathrm{sec}, \mathrm{C}_{s}$ is permitted to be calculated using a value of 1.5 for $\mathrm{S}_{\mathrm{s}}(12.8 .1 .3)$.

[^0]

[^1]

[^2]

[^3]
*It is permitted to determine $\delta_{x e}$ using seismic design forces based on the computed fundamental period of the structure without the upper limit $\mathrm{C}_{\mathrm{u}} \mathrm{T}_{\mathrm{a}}$ specified in 12.8 .2 (12.8.6.2).

* β can conservatively be taken as 1.0. Where P -delta effects are included in an automated analysis, the value of θ computed by Eq. 12.8-16 is permitted to be divided by (1- θ) before checking Eq. 12.8-17
(12.8.7)

[^0]: *See SEAOC 2012 IBC Structural/Seismic Design Manual, Vol. 1 (or other similar reference).

[^1]: *See SEAOC 2012 IBC Structural/Seismic Design Manual, Vol. 1 (or other similar reference).

[^2]: *See SEAOC 2012 IBC Structural/Seismic Design Manual, Vol. 1 (or other similar reference).

[^3]: *See SEAOC 2012 IBC Structural/Seismic Design Manual, Vol. 1 (or other similar reference).

