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SUMMARY

The objective of this study was the development of a procedure in GT STRUDL to

design reinforced concrete flat plate systems based on the results of finite element analysis.

The current state-of-practice of reinforced concrete flat plate design was reviewed, in-

cluding the ACI direct design and equivalent frame techniques, the yield line method, and

the strip design method. The principles of these methods along with a critical evalua-

tion of their applicability and limitations were presented as motivation for a finite element

based design procedure. Additionally, the current state-of-the-art of flat plate design based

on finite element results was presented, along with various flat plate modeling techniques.

Design methodologies studied included the Wood and Armer approach, based on element

stress resultants, and the resultant force approach, based on element forces.

A flat plate design procedure based on the element force approach was embodied in the

DESIGN SLAB command, which was implemented in GT STRUDL. The DESIGN SLAB

command provides the user the ability to design a slab section by specifying a cut definition

and several optional design parameters. The procedure determines all nodes and elements

along the cut, computes the resultant moment design envelope acting on the cross-section,

and designs the slab for flexure in accordance with provisions of ACI 318-02.

Design examples presented include single-panel flat plate systems with various support

conditions as well as multi-panel systems with regular and irregular column spacing. These

examples allowed for critical comparison with results from experimental studies and cur-

rently applied design methods in order to determine the applicability of the implemented

procedure. The DESIGN SLAB command was shown to produce design moments in agree-

ment with experimental data as well as conventional design techniques for regular configu-

rations. The examples additionally showed that when cuts were not oriented orthogonally

to the directions of principle bending, resulting designs based on element forces could sig-

nificantly under-reinforce the cross-section due to significant torsional effects.

x



CHAPTER I

INTRODUCTION

The purpose of this study was the implementation and verification of a procedure in GT

STRUDL to design reinforced concrete flat plate systems based on the results of finite

element analysis.

For many years, researchers have been working toward the successful application of finite

element technology to the design of reinforced concrete flat plate systems due to practical

restrictions inherent in simplified or approximate design techniques. Despite promising

research in this area, only a few practical finite element based design tools have been

implemented in standard structural engineering technology. The goal of this study was to

develop and validate such a tool.

1.1 Flat Plate Systems

The scope of this study was limited to reinforced concrete flat plate systems. Flat plate

systems are a subset of the two-way slab family, meaning that the system deforms in two

directions. Flat plate systems are reinforced concrete slabs of uniform thickness that transfer

loads directly to supporting columns, and are distinguished from other two way systems by

the lack of beams, column capitals, and drop panels. A simple representation of a flat plate

system is shown in Figure 1.1.

Flat plate systems have several advantages over other slab systems. The absence of

beams, capitals, and drop panels allow for economical formwork and simple reinforcement

layouts, leading to fast construction. Architecturally, flat plates are advantageous in that

smaller overall story heights can be achieved due to the reduced floor structure depth

required, and the locations of columns and walls are not restricted by the location of beams.

Flat plates can be constructed as thin as 5 inches [2]. In fact, Gamble [27] estimates that in

areas where height restrictions are critical, the use of flat plates enable an additional floor

1



Figure 1.1: Flat Plate System

for approximately every 10 floors in a structure, as compared to a general two-way system

with the same clear story heights. The savings in height ultimately lead to economic savings

in many areas, including mechanical systems, foundations, and non-structural components

such as cladding. Another benefit of flat plate systems is good performance under fire

conditions, due to the lack of sharp corners susceptible to spalling [51].

Often the limiting factor in the selection of flat plate systems as a design solution is the

difficulty in shear and moment transfer at the column connections. Indeed this difficulty

often necessitates the inclusion of drop panels or column capitals. As such, the choice to use

a flat plate system is often determined based on the span length and loading. According to

the Portland Cement Association [58], for live loads of approxiately 50 pounds per square

foot (psf), a span length of 15 to 30 feet is economical, and for live loads of 100 psf or more,

a span length of 15 to 30 feet is economical.

Based on economy of construction as well as the loading limitations described above,

flat plate systems are well suited for use in multi-story and high-rise reinforced concrete

hotels, apartments, hospitals, and light office spaces, and are perhaps the most commonly

used slab system for these types of structures today [51]. Figure 1.2 shows a multi-story

flat plate reinforced concrete structure during construction.

1.2 Literature Review

Reinforced concrete has long been one of the most widely used materials in construction

applications. It has numerous material advantages, but one of its most significant benefits

2



Figure 1.2: Flat Plate Reinforced Concrete Residential Structure Under Construction

is the ability to be cast into a wide variety of shapes. In fact, reinforced concrete is only

geometrically limited by the complexities or cost of the construction of formwork. As

such, the behavior of concrete structures easily constructed in the field often falls beyond

the scope of common frame analysis programs and conventional design methods. This is

certainly true for the analysis of reinforced concrete systems where slabs, shear walls, shells,

tanks, deep beams, and coupling beams must be modeled. If the structural element contains

holes or is subjected to concentrated or otherwise irregular loadings, the analysis is further

complicated.

The structural engineering community responded to this challenge with numerous ap-

proximate techniques that attempt to simplify the design of these reinforced concrete com-

ponents. For flat plates, these methods include the direct design, equivalent frame, yield

line, and strip design techniques, all of which approximate the results of classical plate

theory. These methods have gained wide acceptance among engineers because of their sim-

plicity. However, these approximate techniques have significant limitations. Direct design

and equivalent frame methods are both limited to structures with very regular geometry.

The application of yield lines or strip design may lead to overly conservative designs as

well as to poor serviceability. A detailed explanation of these methods and subsequent

limitations is presented in Chapter 2.

As such, the finite element method has been an obvious choice for the modeling and

3



analysis of reinforced concrete systems for many years. Finite elements have the unique

capability to conform to virtually any geometry that could be physically implemented. Thus,

the finite element method has gained acceptance as an appropriate tool for the analysis of

flat plates, especially those with highly irregular or unusual geometries where the direct

design and equivalent frame techniques are not valid. In irregular slabs such as these, the

finite element method can be shown to accurately solve for the distribution of stress where

numerous approximations and assumptions would be invoked if the yield line or strip design

technique were applied.

An additional benefit of a finite element approach to slab design is that engineers no

longer need to develop multiple models to design a structure for various types of behavior.

By integrating the slab model with the three-dimensional frame, the combined effects of

gravity and lateral loading conditions can be assessed together. The interaction of the

slab and columns is accurately simulated, providing favorable results to approximations of

connection stiffness. An integrated approach to analysis and design thus emerges.

Significant research efforts have been devoted to the application of finite elements in

the analysis of reinforced concrete since the emergence of the finite element method in the

1950s. While many achievements have been accomplished in research environments, few of

these achievements have been implemented in practical applications for structural engineers

in the design office. While much analytical work has been focused on the application of

nonlinear constitutive modeling of reinforced concrete, most software packages currently

implemented offer only linear elastic finite element capabilities.

The following review details the progression from the conception of finite element based

flat plate design to the current state of the art. Much of the work cited deals primarily with

the modeling and analysis of flat plate systems by the finite element method, without ex-

plicitly discussing reinforcement design. However, the primary purpose of the finite element

model is the determination of design forces and moments, and once these quantities have

been accurately determined, the resulting design becomes a function of the active design

code.
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1.2.1 Design Based on Linear Analysis

One of the earliest published works concerning the application of the finite element method

to reinforced concrete slabs was by Zienkiewicz in 1964 [73]. In this work, Zienkiewicz

extended the general finite element method to flat plates and presented the formulation

for boundary conditions typical to these systems. The linear elastic isotropic analysis was

extended to orthotropic slab systems with variable thickness, and the ease with which a

slab can be analytically coupled to frame members or an elastic foundation was presented.

Several examples demonstrate excellent agreement between finite element solutions for de-

flections and moments and those of available exact solutions.

The initial philosophy of flat plate design based on finite element results was formulated

by Wood [72], although no explicit mention of the finite element method was made in the

original work. Instead, Wood describes the process of designing reinforcement in accordance

with a predetermined field of bending moments provided from “analysis by the theory

of elasticity ... possible with the use of computer programmes, which can print out a

complete field of moments Mx, My, and Mxy” [72]. In addition to presenting the associated

mathematical formulation, Wood also argued that design economy of such a method is

superior to that of both the yield line and strip design techniques.

Armer [4] generalized the work of Wood for efficient application to both slabs with

orthogonal reinforcement as well as skew reinforcement, and as a result, Wood argued that

Armer’s formulation should represent the general case. It was because of this collaboration

that this technique of design is presently referred to as the Wood and Armer technique.

Smith and Faulkes [66] applied the finite element method to analyze a multistory flat

plate building, one of the first three-dimensional applications of the method in reinforced

concrete, to analytically evaluate the flexural properties of flat plate systems. The analyses

conducted used a four-node non-conforming rectangular displacement-based element for-

mulated by Zienkiewicz. A 6 by 6 bay floor with square column spacing was analyzed, and

various ratios of column size to bay span were considered. The results of the presented

analyses suggest that the flexural behavior of a flat plate varies significantly from that of a

beam, and that as a result the equivalent frame technique has limited applicability to the
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case where lateral loads are significant.

The work of Gupta and Sen [31] presented alternative methods of reinforcement design

based on a predetermined field of bending moments Mx, My, and Mxy. The first method

was the Principle of Minimum Resistance, and ultimately yielded a formulation identical

to the Wood and Armer solution, although derived under different assumptions. The sec-

ond method applied was the Three Equivalent Moments Method, in which the slab was

reinforced according to computed equivalent normal moments in three unique specified di-

rections based on the bending moment field of the element. The second method was shown

to provide economy with respect to the total required design capacity, but not with regard

to the actual cost of construction. Thus, the general applicability of the Wood and Armer

formulation was confirmed.

The work of Gentry [29] confirmed that, in general, linear elastic finite element analysis is

applicable to the design of regular reinforced concrete flat plate systems. Various methods

of modeling columns and column-to-slab connections were evaluated. Designs based on

finite element analysis were critically compared with designs based on the direct design

and equivalent frame methods. Finite element designs using working stress design and

ultimate strength design, based on element nodal forces as well as element stress resultants,

were evaluated. Gentry showed that design using element forces produces results in closer

correlation with the equivalent frame technique than element stress resultants, and that the

ultimate strength approach is preferable to working stress with respect to performance and

economy. Only a rectangular column layout and bay spacing were considered in that study.

The work of Saleh [63] evaluated the applicability of linear elastic finite elements to the

analysis and shear design of regular reinforced concrete flat plate systems. In particular,

Saleh investigated a finite element determination of moment transfer at slab-column con-

nections, shear stress along the critical column perimeter, and the effect of modeling on

shear stress results, showing strong correlation with ACI method results.

Hrabok and Hrudey [35] presented an extensive review of the challenges associated

with the application of linear elastic finite element analysis to reinforced concrete flat plate

analysis. They cited lack of knowledge of element behavior, lack of experience, and lack of

6



suitable programs as primary hindrances to widespread application of finite element-based

design techniques. A detailed review was presented of several common linear elastic plate

bending elements, including the ACM element [1, 52], a selectively reduced bilinear Mindlin

element [39], a hybrid stress Kirchoff element [65], the heterosis Mindlin element [38], and

a Lagrangian Kirchoff element [34]. The hybrid stress element was recommended for future

application to flat plate design problems based on the ease of determination of stiffness

matrices for nonrectangular elements as well as the ability to account for the effects of

stress singularities within the element.

Davies [21] applied the finite element method to evaluate deflections and moments in a

corner supported rectangular slab. Both simple supports and fixed supports were consid-

ered. Several loading conditions were considered, and analytical results were compared with

scale model tests. Davies demonstrated strong correlation between analytical and experi-

mental studies and showed that actual slab-to-column connections were generally bounded

by the simple and fixed support models evaluated.

French [26] derived the stiffness of a single element panel, and implemented a modeling

technique based on using single elements for slab panels in the analysis of multistory flat

plate structures subjected to lateral loading. The demonstrated technique accurately pre-

dicted the distribution of lateral loads among columns as well as story drifts. This method

easily handled uneven bay spacings and nonrectangular plans, but provided no information

regarding the distribution of moments throughout the floor slab.

Mohr [54] demonstrated the successful application of elastic finite element analysis in

the determination of approximate plastic design results. In this research, the flat plate

was modeled as a weak core sandwich based on the assumptions that the reinforcement

had yielded and the concrete core was cracked. Based on these assumptions, the plastic

section modulus was computed and implemented instead of the elastic section modulus.

Eight slabs with various boundary conditions were considered, and the analyses showed

strong correlation between the finite element results and other well-known plastic design

techniques.

Anderheggen [3] presented a method of reinforcement design based on element nodal
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forces. In the method proposed, the reinforcement and the concrete were designed, not based

on stresses within the element, but based on the forces transmitted from the neighboring

elements and acting on the element as applied loads. Element stresses need not be computed.

The principles presented were a generalization of a truss model for building an equilibrium

system of forces and moments on which to base dimensioning.

Raisanen and the CASE Task Group on Finite Element Analysis [60] demonstrated

the successful application of linear finite element analyses to the solution of problems with

closed-form solutions as well as a powerhouse slab with openings. This work additionally

demonstrated the appropriate context of the application of a plate bending element based on

the Mindlin formulation, and stressed the significance of boundary conditions and modeling

verification.

For many years, researchers sought to optimize the yield line technique using finite

element analysis. Borkowski [8], as well as Figueiredo, Foseca, and Azevedo [23], labored

toward this end and reached favorable results by applying rigid-plastic modeling techniques,

coupled with linear and nonlinear optimization techniques, to compute the associated col-

lapse load of the flat plate. In these techniques, a finite element mesh was assumed and

adaptively modified to optimize the locations of yield lines.

The solution for flat slabs on elastic foundations has been another important topic of re-

search associated with the finite element method. Hudson and Stelzer [37], as well as Huang

and Wang [36], conducted studies in this area. Results of these implemented procedures

compare well with classical theory of thin plates supported on Winkler foundations.

1.2.2 Extension to Arbitrary Structures

The limited applicability of simplified ACI design techniques motivated the application of

the finite element method to irregular structures, and research into arbitrary configurations

began as the finite element method became widely accepted as an analysis tool.

Davies, Ma, and Cheung [22], under the direction of Zienkiewicz, studied the applica-

bility of the finite element method to the analysis of skew plates under a variety of loading

conditions. In this study, finite elements were applied to analyze a square slab, a skew slab
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oriented at 30◦, and a skew slab oriented at 45◦. Applied loading conditions included a

uniform loading over the entire slab, a concentrated load at the centroid of the slab, and

concentrated loads at the center of two opposite sides. Each slab was also experimentally

evaluated, and analytical results were confirmed with experimental data. The finite element

models were shown to compute deflections and bending moments in close agreement with

the experimental cases.

Cheung, King, and Zienkiewicz [10] presented a general method of analyzing slabs with

arbitrary shape and boundary conditions based on the finite element method, accounting

for the interaction of plate, beam, and column elements. Particular emphasis was placed

on the accuracy of various column-to-slab connection models that account for the finite

size of the column at the connection. The ability to compute support reactions using the

finite element method was investigated and shown to be in reasonable agreement with

experimental data. An actual bridge of arbitrary skewed shape and boundary conditions

was analyzed. The authors pointed out that column-to-slab connections may require a

three-dimensional analysis to adequately determine the deformation characteristics.

Similarly, Sawko and Cope [64] considered the application of finite elements to the case of

skew bridge decks. The benefits of the finite element method with respect to model testing,

finite difference methods, and the grillage approach were presented. The application of

finite elements to orthotropic skew decks, with longitudinal stiffness greater than transverse

stiffness, was detailed and shown to provide accurate results. This work also emphasized

the importance of Poisson ratio effects, citing that neglect of Poisson ratio effects can lead

to underestimation of maximum longitudinal moments by as much as 6% and transverse

moments by as much as 16%.

Law [44] critically evaluated solutions for an arbitrary fix-supported flat plate based

on the finite difference technique and the finite element method. The specific application

evaluated was an irregular panel resulting from a radial framing concept used in a circular

tower core area of a semicircular shaped aircraft hangar. Law demonstrated that for even a

generally coarse mesh, results obtained from the finite difference method and finite element

method were in close agreement, and that both of these solution techniques were in relative
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agreement with ACI approximate techniques for a similar rectangular configuration.

Douglas and Lunniss [24] demonstrated the application of finite elements in the design

of a three-dimensionally curved flyover bridge. The study focused on the correct modeling

of discrete supports and appropriate column simulation. Douglas and Lunniss concluded

that the finite element results for an elastic analysis give valid results, but that further com-

putations of local stresses associated with concentrated forces, such as vehicle loadings, are

possibly required. Finite element analysis results were validated with a three-dimensional

physical model.

While much work on skew slabs focused on flexure, Cusens and Besser [20] investigated

a skew bridge deck with particular focus on the obtuse corners and boundaries in deter-

mination of shear forces in the slab. The slab evaluated contained a 45◦ skew angle, and

was modeled as simply supported with one end restrained with semi-infinite rigidity and

the other end with several discrete elastic supports. They found that the Kirchoff bound-

ary conditions introduce physically significant corner and edge forces near obtuse corners,

distributing a large shear force close to the edge. Also, elastic bearings were recommended

in the regions near obtuse corners in order to provide a more even distribution of reaction

forces. Significant reversals in bending moment were detected near obtuse corners as well

as the largest values of torsional moment.

1.2.3 Design Based on Non-Linear Analysis

As the finite element method was gaining acceptance, researchers were quick to begin re-

evaluating the broad range of assumptions invoked when applying a linear elastic homoge-

neous isotropic analysis to reinforced concrete [9]. The first published works dealing with

nonlinear finite element analysis of concrete systems emerged in the late 1960s. These stud-

ies focused on various aspects of element formulation, including crack propagation and the

bonding of reinforcement.

Jofriet and McNiece [42] conducted some of the earliest research in this area. Their

work derived a slab analysis model based on the effects of cracking, capable of representing

the orientation of cracking with respect to the slab’s coordinate system, the rigidity of the
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cracked region when the section has exceeded the cracking moment, and the rigidity of steel

with relation to the crack direction. To simulate progressive cracking, the implemented

program incorporated a step-based analysis with a bilinear moment curvature relationship

for each element. Post-yield behavior of the reinforcement was neglected in their study.

This approach is called a modified stiffness model.

The work of Lewiński and Wojewódzki [45] demonstrated application of a nonlinear slab

model combining the modified stiffness approach and the layered model approach. Nonlinear

concrete behavior, such as cracking, and elastic-plastic steel reinforcement deformation were

incorporated as well as coupling between extension and flexure. Analyses were based on 10

cracking patterns. Several test analyses were conducted and compared with experimental

test data and showed that the proposed method is accurate for evaluation of in-plane and

out-of-plane effects in flat plates.

Bashur and Darwin [6] developed a non-layered finite element reinforced concrete model

in which a nonlinear variation in material properties could be represented through the

depth of the slab. In this study, concrete was modeled as nonlinear in compression and lin-

early brittle in tension, and steel was treated uniaxially with a bilinear stress-strain curve.

Flat plates were modeled as anisotropic plates that were incrementally elastic. Numerical

results showed that representation of cracking as a continuous process provides favorable re-

sults, and that smaller load increments provide more accurate results after cracking and/or

yielding begins. The nonlinear aspects incorporated in this model allow for accurate deter-

mination of the load-deflection behavior of the flat plate.

Barzegar and Maddipudi [5] extended many of the common nonlinear finite element

reinforced concrete techniques with respect to the simulation of reinforcement in three-

dimensional solid elements. Instead of either a smeared or layered approach, a model for

spatially embedded reinforcement independent of the finite element nodal coordinates was

presented by which an entire reinforcement cage is automatically mapped into a mesh of

solid isoparametric concrete elements. This technique was shown to be not only applicable

to straight reinforcing bars, but also readily applicable to prestressed systems in which the

strand geometry can be approximated using a piecewise linear tendon distribution.
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Lourenço and Figueiras [48] extended nonlinear finite element modeling of concrete slabs

toward a general element for the design of plates, slabs, and shells in which reinforcement

was computed locally at each integration point. The presented method takes into account

the biaxial behavior of concrete as well as different moment arms associated with all internal

forces, an important point neglected by Gupta and Sen [31]. The method was validated

with experimental test data.

More recently, Phuvoravan and Sotelino [57] derived a new finite element for nonlinear

finite element analysis of reinforced concrete slab systems. The new element was a combi-

nation of the classic four-node Kirchoff shell element with two-node Euler beam elements to

simulate the steel reinforcement. Rigid links were applied to couple the reinforcement to the

concrete. Prior applications of discrete reinforcement modeling incorporated reinforcement

in a mesh of three-dimensional solid elements. Replacing the three-dimensional mesh with

a two-dimensional mesh of modified Kirchoff elements allowed for a simple and efficient,

yet robust, manner of representing the system per element. The presented element shows

better prediction of reinforced concrete flat plate behavior than the general layered shell

element, and was verified with experimental data.

The extension to slabs of arbitrary shape was a topic of research in the nonlinear finite

element field as well. Famiyesin and Hossain [25] applied a three-dimensional degenerated

layered shell reinforced concrete model to determine model parameter values to calibrate

the nonlinear analysis of fully restrained slabs, with the goal of extension to arbitrary con-

figurations through parametric sensitivity studies. The resulting parameters were applied

to 36 previously tested slabs, with the accuracy of strength determination within a mean

value of 2% of experimental data.

1.2.4 Additional Applications

The ASCE (American Society of Civil Engineers) Task Committee on Finite Element Analy-

sis of Reinforced Concrete Structures has been a driving factor in the development and

implementation of finite element modeling of reinforced concrete. This committee has been
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responsible for consolidating much research and theory concerning this topic, and pub-

lished several volumes of conference proceedings. These works contain extensive treatment

of constitutive relations and failure theories, modeling of reinforcement and bond, con-

crete cracking formulations, shear transfer, viscoelastic effects, thermal effects, numerical

optimization, and dynamic analysis of reinforced concrete systems from a finite element

perspective [55, 53, 71, 40].

Additionally, much research has been conducted concerning the general application of

computers to reinforced concrete. Topics studied include the general optimization of design

of reinforced concrete systems using computers [32], the general development of program-

ming tools and resources suited to analyze and design reinforced concrete structures [50, 59],

and numerical advances in the modeling of multiscale behavior as well as the cyclic and seis-

mic response of reinforced concrete structures [7].

Several commercial software packages offer the capability to design slabs using finite

elements. Some of these programs include SAFE, RAM Concept (formerly ADAPT Floor),

and STAAD. Finite element-based slab design in SAFE, as well as RAM Concept, is based

on element force results [16, 61], while finite element-based slab design in STAAD is based

on element stresses, using the conventional Wood and Armer approach [62]. The exact

procedures that these software use to compute design moments are not disclosed in the

cited technical reference documentation.

1.3 Motivation

Despite the volume of research associated with finite element based flat plate analysis, the

finite element method is not without limitations. While finite elements easily handle com-

plexities that restrict simplified design methods, finite elements exhibit several important

practical constraints. First of all, the results of finite element analysis are difficult to in-

terpret and are usually unsuitable for direct use [33]. Interpretation of the results involves

understanding several sign conventions and coordinate systems. Mistakes are easily made,

and errors in interpretation can lead to the placement of steel reinforcement on the wrong

face of the member, or in the wrong direction, leading to catastrophic results.
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The second limitation pertains to the sheer volume of results produced by finite element

analyses. It is not uncommon for a structural model to contain several thousand finite

elements and fifty or more loading cases. If each element contains four nodes, each node

with six degrees of freedom, the volume of results computed in such an analysis would be

difficult for a single engineer to reduce to a simple design. Current practices require the

engineer to determine design forces along a cross-section on an element-by-element basis,

usually node-by-node per element. All loading conditions must be checked to determine the

maximum effect and reduced to a design envelope. This procedure is inefficient and prone

to mistakes on the part of the engineer.

Hrabok and Hrudey described other limitations facing the finite element method. Often

engineers are faced with “a perplexing array” of elements from which to choose for the

analysis, including various shapes, nodal configurations, and nodal degrees of freedom.

General lack of training in the finite element method complicates this further. Additionally,

they pointed out that there are few general purpose programs robust enough to model all

aspects of flat plate systems. Some of these capabilities include an extensive element library,

the ability to model eccentric stiffeners, the ability to model the finite size of connections

between the slab and columns, and techniques to evaluate the effects of stress singularities

at reentrant corners [35]. It should be noted that GT STRUDL provides capabilities to

model the structural characteristics that they listed.

The limitations of the finite element method demonstrate the need for a tool to simplify

the design of flat plates using finite elements. This tool must be capable of processing the

results of the finite element analysis and reducing the complexities of the sign conventions

and coordinate systems to a single rule stating which face of the slab to reinforce. It must

also transform the process from an element-by-element approach to one where the user

specifies cuts or sections to design, defined by a start and end node, and never individually

deals with single element results. This tool must automate the determination of the design

envelope such that the engineer deals with final design forces instead of individual loading

cases. This tool should also give the user multiple design options, such as the ability to

design “from scratch,” design with either the bar size or bar spacing constrained, or check
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a user-specified design.

The implementation of such a tool in commercial finite element software would allow

engineers to design reinforced concrete flat plates both responsibly and efficiently and would

constitute a major reduction in the limitations present in the current practice of finite

element based slab design.

1.4 Outline of Presentation

The purpose of this study was the implementation and verification of a procedure in GT

STRUDL to design reinforced concrete flat plate systems based on the results of finite

element analysis. The specific components of the remainder of the study are as follows.

Chapter 2 presents a review of conventional reinforced concrete slab design methodolo-

gies. Methodologies reviewed include the American Concrete Institute (ACI) direct design

technique, the ACI equivalent frame technique, the yield line technique, and the strip design

technique. The principles and limitations of these methods are presented.

Chapter 3 provides an introduction to the application of finite element analysis to re-

inforced concrete flat plate design. The effects of various modeling techniques are studied

and emphasized. Design based on element stresses is contrasted with design using element

forces.

Chapter 4 presents the implementation of a flat plate design program in GT STRUDL

based on the element force approach. A command was implemented in GT STRUDL, and

the resulting preprocessing and design algorithms are explained.

Chapter 5 presents the validation of the implemented design procedure. Test cases are

shown in order to determine the applicability of the procedure along with any potential lim-

itations. Finite element design results are compared with results from current approximate

techniques as well as experimental studies of both regular and irregular flat plate systems.

Chapter 6 summarizes the significant results of the study and concludes with recom-

mendations for future research.
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CHAPTER II

REVIEW OF CONVENTIONAL REINFORCED

CONCRETE FLAT PLATE DESIGN

The objective of this chapter is to provide an overview of the current state of practice of

the design of reinforced concrete flat plate systems. General ACI design requirements are

presented, along with a summary of the ACI direct design, ACI equivalent frame, yield line,

and strip design techniques. Each procedure as well as its limitations are discussed.

The following discussion is limited to flat plate systems. That is, the design method-

ologies presented below pertain only to slabs of constant thickness without drop panels,

column capitals, or edge beams. In addition, prestressed concrete is not considered.

The methodologies presented in this chapter provide the background for the reinforce-

ment design procedures in the implemented GT STRUDL command as described in Chapter

4.

2.1 General ACI Requirements for Reinforced Concrete Flat
Plate Design

The proper design and construction of buildings of structural concrete is dictated by “Build-

ing Code Requirements for Structural Concrete and Commentary (ACI 318-02)” [2], pub-

lished by the American Concrete Institute.

According to ACI 318-02, structures and structural members must be designed with a

load capacity greater than the required strength as determined by a suitable analysis. The

required strength, U , is computed based on combinations of the loadings required in the

general building code. These loads are increased by load factors, depending on the type of

load and the specific loading combination. Loads which must be considered include dead

loads, live loads, temperature loads, earthquake loads, and loads due to snow, rain, and

wind. Loadings considered to be determined less accurately and variable are assigned a

16



higher load factor. ACI 318 Section 9.2 presents nine loading combinations that must be

considered for the design of a reinforced concrete system [2].

The design strength at a location in the system is computed as the nominal capacity,

based on mechanics and code assumptions, multiplied by a strength reduction factor, φ. φ-

factors are always less than 1.0 and account for statistical variations in material properties

and inaccuracies in design equations. φ-factors vary based on the specific response quantity

being designed. For flexure, φ ranges from 0.65 to 0.9 depending on the strain condition,

while for shear and torsion, φ is 0.75 [2]. The basic requirements for strength design are

expressed as

Design Strength ≥ Required Strength

or

φ(Nominal Strength) ≥ U

2.1.1 Analysis Requirements

ACI 318 Section 13.5.1 states: “A slab system shall be designed by any procedure satisfying

conditions of equilibrium and geometric compatibility, if shown that the design strength at

every section is at least equal to the required strength and that all serviceability conditions,

including limits on deflections, are met” [2].

Generally a linear elastic analysis is performed to provide the basis for an initial design,

although use of a linear elastic analysis is not required. In fact, if inadequate reinforcement

is provided in a particular location, the reinforcement will yield locally and the moment

will be redistributed internally due to the redundancy of the slab system. Although such

behavior may satisfy strength requirements, it can lead to poor serviceability of the slab,

evidenced by undesirable cracking. If the slab is reinforced based on the distribution of

linear elastic moments, however, serviceability conditions will generally be satisfied [18].

ACI 318 presents two simplified linear elastic analysis techniques which are permitted,

providing the structure satisfies various requirements. These two methods are the ACI direct

design technique and the ACI equivalent frame technique. Both of these methods are based

on analytical studies of moment distributions using elastic theory, strength requirements
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from yield line theory, experimental testing of physical models, and previous experience of

slabs constructed in the field [27].

Practice has shown that it is acceptable to proportion reinforcement for ultimate limit

states as well based on the results of a linear elastic structural analysis. At this limit

state, the linear elastic moments do not closely predict the actual moment distribution in

the slab, but are acceptable for design provided that equilibrium and compatibility are

satisfied. The primary advantage of distributing reinforcement for the ultimate limit state

based on a linear elastic analysis is that deflection and cracking requirements are likely to

be satisfied, though this is not guaranteed [18].

The actual behavior of the slab at the ultimate limit state is plastic, and it is permitted

to apply limit analysis to the design of slabs. Using such a method, the ultimate load

is determined, and then the distribution of moments and shears at the ultimate level are

determined. Either a lower bound method or upper bound method may be employed.

A lower bound method assumes a distribution of moments at the ultimate condition such

that equilibrium is satisfied at all locations in the system, the yield criterion defining the

strength of the slab is not exceeded, and all boundary conditions are satisfied. Equilibrium

is applied, and with the assumed distribution of moments, the ultimate load can be deter-

mined. The lower bound method converges to the correct ultimate load from below the

actual value, and never overestimates the ultimate load [27]. The strip design technique is

a lower bound method.

An upper bound method assumes a collapse mechanism at the ultimate condition. In this

collapse mechanism, the moments at the plastic hinges are assumed to be less than or equal

to the ultimate moment capacity at the hinges, and the collapse mechanism must satisfy

the imposed boundary conditions of the structure. The upper bound method converges to

the actual ultimate load from above the actual value, and never underestimates this value.

As such, it is possible to compute an ultimate load that is too high if an incorrect collapse

mechanism is assumed [27]. The yield line technique is an upper bound method.

ACI 318 Section 13.5 sets out several other important principles related to the analysis

of slabs. For instance, for lateral load analysis, the model of the supporting frame must
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Figure 2.1: General Flexure: (A) Cross-Section, (B) Strain Distribution, (C) Stress Distri-
bution

account for the stiffness effects of cracking and reinforcement for frame members. Also, ACI

318 permits the results of gravity load analyses to be superimposed with results of lateral

load analyses per Section 13.5.1.3, even though different models may be used to compute

each of these structural responses. Displacements under both gravity and lateral loads must

remain small for this to remain applicable.

2.1.2 Flexural Strength Requirements

One of the significant design limit states considered for flat plate systems is the design of

reinforcement to resist flexure. Design for flexure will be the focus of the implemented

design procedure described in the following chapters of this study, and as such, will be

treated extensively in this section. The general requirements for flexural design are set

forth in ACI Chapter 10 [2]. A cross-section in a flat plate system is designed using the

same procedure as that in reinforced concrete beam design. The provided ultimate strength

of the member, φMn, must exceed the ultimate factored moment, Mu, for all locations in a

structure.
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2.1.2.1 Ultimate Flexural Capacity

Figure 2.1-A shows the cross-section of a general reinforced concrete member reinforced for

flexure. This figure will be used to develop the equations for the ultimate moment capacity

of the section. The concrete compressive strength is f ′c. The distance d is the distance from

the compression face of the member to the centroid of the layer of reinforcing steel. The

width of the beam is given by bw. The area of steel reinforcement is given as As, and the

steel has a yield strength equal to fy.

When the reinforced concrete member is subjected to a loading and a moment is pro-

duced, an assumed linear distribution of strain develops through the cross-section, as shown

in Figure 2.1-B. In this figure, εc is the strain at the extreme compression fiber of the

concrete, and εs is the tensile strain in the steel reinforcement at a distance d from the

compression face of the member. ACI 318 Section 10.2.5 states that the tensile strength of

concrete is to be neglected in the calculation of required flexural reinforcement, such that

the only tensile component in the system is the steel reinforcement. The neutral axis of the

member is located at a distance c from the compression face.

ACI 318 states that the crushing strain of the concrete, εcu, shall not be taken greater

than 0.003 [2]. Though experimental results show concrete can achieve compressive strains

significantly higher than this value, concrete is assumed to crush when the strain reaches

this lower bound for design purposes [49]. In flexure, there are three ways in which the

section will fail. First, a section is said to fail at a balanced strain condition when the

tension reinforcement strain, εs, reaches the strain corresponding to the specified yield

stress, fy, at the same time that the extreme compression fiber in the concrete reaches the

assumed ultimate strain, 0.003. Second, a section is said to be compression-controlled if the

extreme concrete fiber reaches the ultimate compressive strain prior to the tensile strain

in the reinforcement reaching εy. (For Grade 60 steel, this value may be taken as 0.002.)

In a compression-controlled section, the concrete will crush before any significant yielding

of reinforcement occurs, leading to a brittle failure mode with little or no visible warning.

Third, a section is said to be tension-controlled if the tensile strain in the steel is equal to

or higher than 0.005 when the extreme compression fiber reaches its assumed strain limit
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of 0.003 [2]. In a tension-controlled failure, the steel will undergo large strains, and the

concrete will experience significant cracking before the compression zone crushes, providing

warning of impending failure. Because of this, flexural members are designed to fail in a

tension-controlled manner when possible.

Per ACI 318 Section 9.3, the strength reduction factor φ is taken to be 0.9 for tension-

controlled sections and 0.65 for compression-controlled sections. At failure of the section,

if the strain in the steel falls between the limits for compression-controlled and tension-

controlled strains, the section is said to fail in the transition zone, and the strength reduction

factor is to be linearly interpolated between 0.65 and 0.9 based on the value of the strain in

the steel [2]. Initially in design, φ is assumed to equal 0.9, and after the section is designed,

the strain is computed at the ultimate state and verified to be greater than 0.005 in the

steel.

Based on the limiting criteria for the strains in both the steel and concrete, the ultimate

capacity of the cross-section can be computed. Since a tension-controlled failure is assumed,

the strain in the steel at failure is greater than the yield strain. The stress in the steel, fs,

is therefore set equal to the yield stress, fy, producing a tension force, T , in the section,

given by Equation 2.1.

T = As fy (2.1)

T acts at a distance d from the compression face of the member and is shown in Figure 2.1-

C. The tension force in the section must be resisted by an equal and opposite compression

force. Although the distribution of compressive stress in the concrete is nonlinear at the

ultimate level, ACI 318 permits the compression zone to be represented by a rectangular

distribution of stress of magnitude 0.85f ′c. This uniform stress distribution is also shown

in Figure 2.1-C, and extends a depth a into the section from the compression face. The

depth of the rectangular stress block is related to the depth of the neutral axis, c, by the

expression, a = β1c, where β1 is 0.85 for concrete strengths less than 4000 psi, 0.65 for

concrete strengths greater than 8000, and linearly interpolated between 0.65 and 0.85 for

concrete strengths between 4000 and 8000 psi. As such, the compressive force within the
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member, C, is given in Equation 2.2.

C = 0.85f ′c a bw (2.2)

Equating the tension and compression forces in the cross-section, the depth of the rectan-

gular compression block, a, can be computed using Equation 2.3.

a =
Asfy

0.85 f ′c bw
(2.3)

Now that the depth of the compression zone can be explicitly computed, the strain in the

steel should be checked to verify that the section is indeed tension-controlled as assumed.

The strain in the steel is determined in several steps. First of all, the distance to the neutral

axis, c, is computed as c = a/β1. Then by assuming εcu = 0.003, εs is computed by applying

similar triangles to the strain distribution, shown in Equation 2.4.

εs = εcu

(
d− c

c

)
(2.4)

If εs is less than 0.005, the value of φ must be accordingly computed. Then, the moment

capacity of the section, φMn, is determined by summing the internal moments from the

compression stress in the concrete and tension force in the steel, as shown in Equation 2.5.

φMn = φAsfy

(
d− a

2

)
(2.5)

2.1.2.2 Computation of Required Area of Steel

Now that the ultimate strength of the member has been formulated, the computation can be

modified for design application. Equation 2.5 computes the ultimate strength when a known

steel reinforcement area is provided. In design, however, the ultimate strength required is

known, but not the area of steel. By setting Mu = φMn and substituting Equation 2.3 into

Equation 2.5, a quadratic expression for As as a function of Mu can be formulated (Eqn.

2.6).

Mu = φAsfy

(
d− Asfy

1.7f ′cbw

)
(2.6)
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After several algebraic manipulations, Equation 2.6 can be rewritten using the quadratic

equation to explicitly compute the area of steel required (Eqn. 2.7).

As,req′d =
−(φfyd) +

√
(φfyd)2 − 4

(
φfy

2

1.7f ′
cbw

)
(Mu)

2
(
− φfy

2

1.7f ′
cbw

) (2.7)

The importance of Equation 2.7 is that all of the arguments are independent, the only

exception being the strength reduction factor, φ. Thus, once As is computed using Equation

2.7, the strain in the steel must be computed by Equation 2.4, indicating the appropriate

φ-factor. It may be necessary to iterate on φ using these equations until As converges.

Although the case of a rectangular cross-section reinforced only on the tension side is

one of the more simple cases for the design of reinforced concrete beams, it provides a sound

basis for the design of flat plate sections for several reasons. First of all, flat plate sections

are generally rectangular, so the formulation need not be specialized for more complicated

geometries. Second, although flat plates may contain reinforcement on both faces, the width

of design cross-sections (large with respect to the thickness of the slab) usually produces

an a-depth smaller than the cover between the compression-side bars and the extreme

compression face. Thus, compression reinforcement in flat slabs is usually located near the

neutral axis and can be neglected since the strain will be very small in comparison to the

strain in the tension-face reinforcement [43]. Appendix A presents the results of a study

that justifies neglecting the effect of compression reinforcement in flat plate systems.

2.1.2.3 Minimum Flexural Reinforcement Requirements

Section 10.5 of ACI 318 dictates that a minimum area of steel is required at all sections

of a beam where analysis demonstrates a need for tensile reinforcement. If the amount of

reinforcement computed using Equation 2.7 is very small, the computed ultimate moment

strength based on a reinforced concrete cracked section analysis can be less than the com-

puted ultimate moment strength of the same unreinforced concrete section computed based

on the modulus of rupture [2]. To prevent this, minimum flexural reinforcement must be

provided in beams according to Equation 2.8.

As,min =
3
√
f ′c

fy
bw d ≥

200 bw d
fy

(2.8)
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2.1.3 Shear Strength Requirements

2.1.3.1 General Shear Strength of a Cross-Section in Beam Action

The requirements for shear design of a reinforced concrete system are presented in Chapter

11 of ACI 318. In general, the shear capacity provided must be greater than the required

shear strength computed using the factored loading combinations of ACI 318 Section 9.2,

as shown in Equation 2.9.

φVn ≥ Vu (2.9)

In this equation, Vn is the nominal shear capacity of the section and is taken to equal the

sum of Vc + Vs where Vc is the shear capacity of the concrete and Vs is the shear strength

contributed by shear reinforcement. For flat plate systems, shear reinforcement is seldom

provided so it is sufficient to set Vn = Vc. Vc is a function of the cross-sectional geometry as

well as the compressive strength of the concrete. ACI 318 states that the allowable shear

stress for a beam member subjected to only flexure and shear be taken as 2
√
f ′c. Using this

stress, the nominal shear capacity of the concrete can be computed and is given in Equation

2.10 [2].

Vc = 2
√
f ′c bw d (2.10)

For a general cross-section of a flat plate in beam action, the ultimate shear force shall not

exceed the value computed by this equation.

If the section fails according to a shear criterion, there are several techniques to increase

the shear strength of the system. Drop panels or column capitals could be introduced into

the system. Increasing the depth of the slab will increase the shear capacity. The strength

of the concrete can be increased. The column dimensions can also be increased. Finally,

the section can be reinforced with either stirrups or a stud rail [43]. In fact, stud rails are

often the most economical solution to the complications caused by shear in flat plates.

2.1.3.2 Punching Shear with No Moment Transfer

To evaluate the shear strength of flat plate systems in regions near columns (where moment

is not transferred in the beam-to-column connection), it is insufficient to assume the slab

is behaving according to beam action. Thus the guidelines of the previous section are no
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longer valid. For punching shear, the critical section for design is a perimeter b0 (located

around the column) and is at a distance of d/2 from the edges or corners of the column [2].

The shear strength of the concrete is then computed as the minimum of Equations 2.11,

2.12, and 2.13. In Equation 2.11, βc is the ratio of long side to short side of the column

[2]. In Equation 2.12, αs is 40 for interior columns, 30 for edge columns, and 20 for corner

columns.

Vc =
(

2 +
4
βc

) √
f ′c b0d (2.11)

Vc =
(
αsd

b0
+ 2

) √
f ′c b0d (2.12)

Vc = 4
√
f ′c b0d (2.13)

If the shear capacity provided by these equations is less than that of the required ultimate

shear, shear reinforcement can be provided according to the stipulations in ACI 318 Section

11.12.3 [2]. To provide shear reinforcement, the effective depth of the section must be at

least 6 inches and not less than 16 times the shear reinforcement bar diameter. Shear

reinforcement in the slab must also satisfy development length requirements. Note that

if shear reinforcement is added to the section, the shear strength of the concrete must be

reduced to Vc = 2
√
f ′c b0d.

2.1.3.3 Moment Transfer Shear

In many slab-to-column connections, an unbalanced moment is transferred in addition to

the shear from the slab. The result of this unbalanced moment is non-uniform shear around

critical perimeter, as demonstrated in Figure 2.2 [27]. This will generally be the case for ex-

terior or corner columns and sometimes for interior columns depending on the geometry and

loading conditions. In these cases, the shear force and unbalanced moment are transferred

by a combination of bending, torsion, and shear at the faces of the critical perimeter.

The behavior of moment transfer shear can be analyzed using several techniques, in-

cluding analysis based on a linear variation in shear stress, analysis based on thin plate

theory, beam analogies, or truss analogies. The approach set forth in ACI 318 is to assume

that of the unbalanced bending moment Mu, γvMu is transferred by torsion and γfMu by

25



Mu

Vu

vAB

vCD

b1

b2

A

B D

C

M    -   V   gu

Vu

vAB

vCD

u

Vu

vB

uxM    -   V   gu x

uyM    -   V   gu y

vD

cAB
cCD

c1

c2

b1

b2

A

B D

C

cAB cCD

c1

c2

g

c

c

b1

A

B D

C

cAB cCD

cx

cy

g

c

c

d d

x

gy

cAC

cBD

c

c

(a)

(b)

(c)

Figure 2.2: Moment Transfer Shear - Interior, Edge, and Corner Columns [27]
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flexure, where γf is computed using Equation 2.14 [27]. Note that γv + γf = 1.0.

γf =
1

1 + 2
3

√
b1/b2

(2.14)

In this equation, the ratio b1/b2 is the ratio of the widths of the critical perimeter as labeled

in Figure 2.2. For square, interior columns, γf = 0.4.

The maximum shear stress on each face of the critical perimeter can then be computed,

providedMu and Vu have been computed at the centroid of the column, using Equations 2.16

through 2.20, depending on the nature of the connection. At each face, the moment transfer

shear stress is then compared with the nominal shear capacity of the critical perimeter, given

by Equation 2.15. If the slab contains no shear reinforcement, Vs = 0.0.

φvn =
φ(Vc + Vs)

b0d
(2.15)

The assumed critical section and shear stress distribution for an interior column con-

nection are shown in Figure 2.2(a). The shear stresses on each face of the critical section

are given by Equation 2.16 [27]. In this equation, Ac refers to the area of concrete enclosed

in the critical perimeter, Jc is the torsional constant of the critical section, and cAB and

cCD refer to the distance from the column centroid to faces AB and CD, respectively [2].

vu,AB =
Vu

Ac
+
γvMucAB

Jc
vu,CD =

Vu

Ac
− γvMucCD

Jc
(2.16)

For an edge column connection, the assumed critical section and shear stress distribution

are shown in Figure 2.2(b). The shear stresses on each face of the critical section for this

case are given in Equation 2.17 [27]. The distance g refers to the distance between the

centroidal axis of the critical section and the centroidal axis of the column.

vu,AB =
Vu

Ac
+
γv(Mu − Vug)cAB

Jc
vu,C = vu,D =

Vu

Ac
− γv(Mu − Vug)cCD

Jc
(2.17)

For a corner column connection, the assumed critical section and shear stress distribution

are shown in Figure 2.2(c). The shear stresses on each face of the critical section for this case

are given in the following equations [27]. The distances gx and gy refer to the distances in

the x- and y-directions between the centroidal axes of the critical section and the centroidal
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axes of the column. Mux and Muy are the unbalanced bending moments in the x- and

y-directions. Jcx and Jcy refer to the torsional constants about the x- and y-axes.

vA =
Vu

Ac
+
γvx(Mux − Vugx)cAB

Jcx
− γvy(Muy − Vugy)cAC

Jcy
(2.18)

vB =
Vu

Ac
+
γvx(Mux − Vugx)cAB

Jcx
+
γvy(Muy − Vugy)cBD

Jcy
(2.19)

vD =
Vu

Ac
− γvx(Mux − Vugx)cCD

Jcx
+
γvy(Muy − Vugy)cBD

Jcy
(2.20)

2.1.4 Serviceability Requirements

The performance of a slab at service loads is an important design consideration in addition to

strength requirements. Even if strength requirements are fully satisfied, excessive deflections

or cracking can interfere with the usefulness of the structure [27]. ACI 318 Section 9.5.1

states that “reinforced concrete members subjected to flexure shall be designed to have

adequate stiffness to limit deflections or any deformations that adversely affect strength or

serviceability of a structure.” For a slab, the maximum allowable deflections range from

l/480 to l/240, depending on the particular relationship of the slab with respect to the rest

of the structure. These criteria are given in Table 9.5(b) of ACI 318 [2].

The primary requirements implemented by ACI 318 to control deflections are the limiting

thicknesses for slabs in various applications, unless detailed deflection calculations are made.

If deflection calculations are not made and if the flat plate has no edge beams or drop panels,

the minimum thickness for exterior panels ranges from ln/30 for slabs reinforced with 40

ksi bars to ln/28 for slabs reinforced with 75 ksi bars. The minimum thickness for interior

panels ranges from ln/36 for slabs reinforced with 40 ksi bars to ln/31 for slabs reinforced

with 75 ksi bars. ACI 318 Table 9.5(c) presents these values along with limiting thicknesses

for reinforcement of intermediate strengths. Regardless of Table 9.5, ACI 318 limits the

thickness of flat plates without drop panels to 5 inches, provided the ratio of long to short

span of the panel is less than 2 [2].

By ACI 318 Section 9.5.3.4, a slab can be designed with a thickness less than the

minimum requirements described above if it can be shown by computation to satisfy the

minimum deflection criteria in ACI 318 Table 9.5(b). Deflection calculations must account

28



spacing
center-to-center

spacing
clear

cover
db

bw

h

Figure 2.3: Flat Plate Cross-Sectional Detailing Requirements

for the size and shape of the panel, conditions of support, and the nature of restraints at

the edges of the panel. Additionally, deflection calculations must reasonably agree with the

results of comprehensive experimental tests [2].

2.1.5 Detailing of Reinforcement

Once an area of reinforcing steel has been determined that satisfies strength and service-

ability requirements, this reinforcement must be physically constructed. ACI 318 places

many requirements on the actual layout and placement of reinforcing steel. Placement of

reinforcing bars must satisfy geometrical constraints, and the bars or welded wire fabric

must be of adequate length to fully develop their capacity.

2.1.5.1 Placement of Reinforcing Bars

ACI 318 Section 7.12 dictates that a minimum area of steel must be provided to resist

shrinkage and temperature effects. The minimum area of steel required is expressed as

the ratio, ρmin, of reinforcement area to gross concrete area and depends on the yield

stress of steel reinforcement used. For Grade 40 or 50 bars, ρmin = 0.0020. For Grade 60

bars, ρmin = 0.0018. For steel reinforcement with yield stress in excess of 60 ksi, ρmin =

(0.0018× 60, 000)/fy, but not less than 0.0014. The area of steel required as a result of this

minimum reinforcement ratio is given in Equation 2.21.

As,min = ρmin bw h (2.21)

Several stipulations apply to the spacing of bars throughout the cross-section. ACI 318

Section 13.3.2 requires that the center-to-center spacing of reinforcement at critical sections,
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labeled in Figure 2.3 as spacingcenter−to−center, must not exceed two times the thickness of

the slab. However, the maximum spacing for temperature and shrinkage steel is limited

to 18 inches per Section 7.12.2.2. Thus, Equation 2.22 can be applied to compute the

maximum allowable center-to-center spacing of bars.

smax = min(18 inches, 2h) (2.22)

The minimum allowable clear spacing of bars, labeled in Figure 2.3 as spacingclear, is

governed by ACI 318 Section 7.6.1, which states that the minimum clear spacing between

parallel bars is db, also shown in Figure 2.3, but not less than 1 inch [2]. The purpose of

this latter stipulation is to allow concrete to flow freely between bars during construction.

However, it has been suggested that this value is unconservative and that a minimum clear

spacing of 2.5 inches is more appropriate [43].

The vertical location of bars in a layer is generally governed by the cover requirements.

Cover refers to the distance from the concrete surface to the face of the bar, and is shown

in Figure 2.3. The purpose of cover is to provide adequate embedment of bars to protect

from moisture, other corrosive agents, and fire. The minimum applicable cover is a function

of the bar size used. ACI 318 Section 7.7.1 states that for slabs not exposed to earth or

weather, #14 and #18 bars require a minimum cover of 1.5 inches, and #11 bars and

smaller require a minimum cover of 0.75 inches [2].

2.1.5.2 Development Length Requirements

In general, the development lengths of various bar sizes are governed by Chapter 12 of the

ACI code. Development of flexural reinforcement is discussed in ACI 318 Section 12.10.

The stipulations of ACI 318 Chapter 12 are presented in a simplified form specific to slabs

without beams in ACI 318 Table 13.3.8 [2]. This table dictates the minimum extensions for

reinforcement in slabs without beams. The development lengths for slab reinforcing bars

are then determined without computing the development length individually for each bar

size used. In the case that adjacent spans are unequal, extensions of the negative moment

reinforcement beyond the face of the support must be based on the minimum development

length associated with the longer span.
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2.2 ACI Direct Design Technique

The ACI Direct Design technique is presented in Section 13.6 of ACI 318.

A flat plate system must meet several requirements for the direct design method to be

applicable. First, there must be a minimum of three consecutive spans, or bays, in each

direction. Second, panels must be rectangular, and in each panel, the ratio of the longer to

the shorter span must be less than 2. Third, successive span lengths must not vary by more

than one-third of the longer span in each direction. Fourth, columns must not be offset by

a distance greater than 10% of the span length in the direction of the offset between the

centerlines of adjacent columns. Finally, the structure must only be loaded with gravity

loads, and applied loads must be uniformly distributed over the entire panel. The applied

live load must not exceed two times the dead load [2].

The direct design technique reduces the general slab structure to smaller panels within

the slab, which are designed independently. In Figure 2.4, a typical slab panel, or slab-

beam, is shown by the hatched pattern. Several key dimensions are given. The distance l1

is the spacing between column center lines in the direction parallel to reinforcement to be

designed. The distance l2 is the width of the slab-beam in the direction transverse to the
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reinforcement to be designed. The distance ln is the clear spacing between columns in the

same direction as l1, and becomes the effective length of the slab-beam for the distribution

of bending moment in the panel.

To compute the design moments at various sections throughout the panel, the distributed

load on the panel, w, must be computed. This load is the ultimate factored gravity load on

the slab and is computed using Section 9.2 of ACI 318 [2]. The fundamental calculation for a

slab panel in the direct design procedure is the computation of the total static moment, M0.

For a slab-beam, the total static moment is equal to the average of the negative moments

at each end of the member plus the maximum positive moment throughout the member.

The formulation for M0 is shown in Equation 2.23 [27].

M0 =
wl2ln

2

8
(2.23)

The total static moment is then distributed throughout the slab panel according to

the rules of ACI 318 Sections 13.6.3, 13.6.4 and 13.6.6. Depending on the location of the

panel within the structure, M0 is distibuted in different ways. For instance, for an internal

slab-beam, 65% of M0 is distributed to the negative factored moment at the column faces,

and 35% of M0 is distributed to the positive factored moment at the midspan. If the span

terminates at an outside edge or at special restraints such as a edge beams, the distribution

of M0 changes according to the table in ACI 318 Section 13.6.3.3.

Once the total static moment has been computed and distributed between the positive

and negative moment locations of the slab-beam, these moments must be distributed be-

tween column and middle strips. For a general case, the layout of the column and middle

strips is shown in Figure 2.4. ACI 318 defines a column strip as “a design strip with a width

on each side of a column centerline equal to 1
4 l2 or 1

4 l1, whichever is less ... A middle strip

is a design strip bounded by two column strips” [2]. The percentages of the total static

moment to be distributed to the column and middle strips are presented in tabular form in

ACI 318 Sections 13.6.4 and 13.6.6 [2]. Note that the design moment for the middle strip

is divided to each side of the column strip, and subsequently added to the design moment

in the middle strip from adjacent slab panels, and then the reinforcement is placed in the
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Figure 2.5: Elevation Showing Plane Frame Analytical Model for the Equivalent Column
Method

middle strip uniformly. The moment distribution factors are based on both experimental

and analytical studies of moments in linear elastic slabs, and are intended to “ensure that

steel stresses are not excessively high at service load so that crack widths and deflections

remain within acceptable bounds” [27].

2.3 ACI Equivalent Frame Technique

The ACI equivalent frame method is presented in Section 13.7 of ACI 318. The equivalent

frame method refers to two methodologies. The first is called the equivalent column method

and is the focus of this section. The second is the equivalent slab method and will be

discussed shortly in the conclusion of this section.

The premise of the equivalent column method is that a three-dimensional slab system

is represented by a series of adjacent two-dimensional frames. A general plane frame model

used in equivalent column design is shown in Figure 2.5. Applied loads act in the plane of

the frame. Each frame corresponds to a column line in the structure. Equivalent frames are

assumed longitudinally and transversely through the building, and each frame is analyzed

independently.

Accurate calculation of the stiffness of the slab-beams and columns is critical in equiv-

alent frame analysis. A slab-beam is a horizontal member in an equivalent frame, and for

a flat plate consists only of the slab. A slab-beam in the equivalent column method is the

same as that for direct design, as shown in Figure 2.4. The moment of inertia of each slab-

beam is computed based on the gross section area of the concrete, and variation in moment
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of inertia along the slab-beam must be taken into account, although there is typically none

in a plate. The moment of inertia of columns from the top to bottom of the slab-beam at

a connection is assumed to be infinite.

The columns in the slab system will actually be modeled as equivalent columns, with

geometry as shown in Figure 2.6. An equivalent column consists not only of the physical

columns above and below the connection, but it also contains a torsional member attached

at the level of the slab. For a flat plate, the torsional member consists of a portion of

the slab with a width equal to that of the column in the direction of the span for which

moments are being determined [2]. Thus, the stiffness provided by the equivalent column is

a combination of the stiffness of the physical columns and of the attached torsional member.

The equivalent column stiffness Kec is given in Equation 2.24 as a function of the column

stiffness Kc and the torsional member stiffness Kt [19].

1
Kec

=
1∑
Kc

+
1
Kt

(2.24)

Once the stiffness has been determined for the slab-beams and equivalent columns,

the structure is analyzed. When the equivalent frame technique was first introduced, the
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analysis was conducted using moment distribution, although today this procedure has been

largely replaced with frame analysis programs that analyze the system using the direct

stiffness procedure.

The results of the frame analysis will provide the distribution of moment and shear

throughout the slab-beam. The moments and shears must be determined at the face of

the columns, not the centerlines, and at other sections throughout the members to find

the critical effects. Once the critical design forces have been determined, the positive and

negative moments are distributed between column and middle strips using the same factors

as those used in the direct design method. The reinforcement is then designed using the

theory and procedures presented earlier in this chapter to resist flexure and shear, to satisfy

serviceability criteria, and to provide appropriate detailing of reinforcement.

The methodology presented so far for the equivalent frame technique is limited to gravity

load analysis only. However, the equivalent frame technique has been shown to be applicable

to analyze unbraced multistory buildings for both lateral loads as well as gravity loads using

a modified technique known as the equivalent slab technique [69]. According to ACI 318

Sections 13.5.1.2 and 13.5.1.3, any analysis accounting for lateral loads must take into

account the effects of cracking, and it is permissible to combine the results of lateral load

analysis with the results of gravity load analysis [2]. Literature pertaining to the lateral

load analysis of slab systems indicates that satisfactory deflections and force results can

be obtained provided that the technique is limited to parallel planar frames with similar

stiffnesses [69].

2.4 Yield Line Method

The yield line method is an upper bound approach to limit analysis of reinforced concrete

slab systems. As such, this method should only be applied with sufficient knowledge and

experience to assure an accurate design, or else the strength of the slab could be greatly

overestimated. Note that that yield line theory is generally applied to slabs with a uniform

distribution of reinforcement. The theory has been applied to slabs with non-uniform rein-

forcement, but this is not treated in this study. In general, the yield line theory is a method
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to check the strength of an already reinforced slab system [33]. For design, the distribution

of reinforcement is assumed initially and then checked.

The yield line method is particularly applicable to slab systems that cannot be analyzed

by either direct design or equivalent frames due to geometric limitations. The yield line

method can be used to design slab systems with various shapes, boundary conditions,

openings, and complicated loading conditions.

Due to the fact that reinforced concrete slab systems are generally designed to exhibit a

tension-controlled failure, most are under-reinforced. As the loading on the slab increases,

some of the steel begins yielding locally, and the stiffness of the system (and thus the

distribution of moment) redistributes in response to this yielding. The first instance of

localized yielding usually occurs at the location of maximum bending moment as determined

by elastic theory [27]. Assuming sufficient ductility is present, as this redistribution occurs

and subsequent progressive yielding of adjacent zones follows, large changes in curvature

occur with increase in loading until a collapse mechanism is exhibited in the form of one or

more plastic hinges. Yield lines are the narrow zones of localized yielding that occur as a

result of this plastic behavior [18].

The basic premise of design based on the yield line method is that the engineer must

postulate a collapse mechanism, i.e. the location of yield lines, that satisfies the boundary

conditions of the slab. For a given slab layout, multiple collapse mechanisms are often

possible, depending on the distribution of reinforcement, so the engineer must examine

all possible mechanisms to determine the actual ultimate load. Some examples of possible

collapse mechanisms for uniformly loaded slabs with various shapes and boundary conditions

are shown in Figure 2.7.

A combination of multiple yield lines in a slab panel is called a yield pattern. The

behavior of a yield pattern is subject to several principles that engineers may apply in the

determination of the collapse mechanism. In a slab panel, the slab segments between yield

lines are assumed to behave as a rigid plane and deflect as such after the plastic mechanism

is formed. In addition, to act as a plastic hinge, a yield line must be straight in order to form

an axis of rotation. Plastic hinges will always develop along fixed supports. For instance, a
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yield line may form along a fixed edge, and plastic hinges will develop over columns. Also, a

yield line must intersect at the axes of rotation of two adjacent slab segments if deflections

are to be compatible [27].

Once a yield pattern has been assumed, the system must be analyzed to determine

the actual location of the yield lines. The two primary methods employed to solve for the

unknown dimensions defining the actual yield pattern are analysis by the principle of vir-

tual work or analysis using the equations of equilibrium [27]. Theoretically, both solution

techniques should compute the same yield line geometry. Once the unknown yield pattern

dimensions are determined, the system can be evaluated to determine the ultimate uniform

load required to produce this yield pattern. After the actual collapse mechanism and ulti-

mate load have been determined, the engineer can distribute reinforcement throughout the

slab. Here, the engineer assumes the manner of yielding, and details the slab such that this

assumed yield pattern occurs.

The serviceability of slabs designed using the yield line method is an important concern.

At service loads, the slab system must be checked to determine that deflections and crack

widths are within acceptable bounds. Although uniform distribution of steel may satisfy the

ultimate states, concentrations of reinforcement may be required in some areas to provide

adequate performance at service loads.

2.5 Strip Design Technique

The development of the strip design procedure is attributed to Hillerborg [27]. In contrast to

the yield line technique, the strip design method is a lower bound approach to limit analysis

of reinforced concrete slab systems. Being a lower bound approach, the strip design method

will provide a solution for the ultimate load for a slab that is either correct or too low. Thus,

the strip design technique is generally conservative when applied appropriately. In fact, if an

unsuitable solution is computed, the strength of the slab may be so conservative as to lead

to poor economy [33]. Also in contrast to the yield line technique, the strip technique is a

pure method of design, not a method for checking a previously designed system. According

to Hillerborg, the stated objective of the strip design technique is to “seek a solution to the
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equilibrium equation [and] reinforce the slab for these moments” [33].

Stated by Hillerborg, the general premise of the strip method is that load is assumed

to be carried by strips of the slab that are oriented in the directions of reinforcement [33].

Strips are analogous to beams, and as such, this method is only applicable in scenarios where

the strips can be suitably approximated as beams with pin or fixed supports. The slab is

divided into these strips based on the assumed transfer of load to the supports. Stated

by Hillerborg, “The whole load within each part of the slab is assumed to be carried by

strips in one reinforcement direction [where] no torsional moments act in these strips” [33].

Distributing the load in this manner generally produces simple and economical designs.

The actual determination of the layout of design strips is subjective and requires a gen-

eral understanding of the behavior of the system being designed. The goal of design should

be to transfer the load to supports in the most economical manner possible. Practically,

this means for a rectangular slab with all edges fixed and dimensions a and b where a > b,

less reinforcement will be required if the load is assumed to transfer primarily to the sup-

ports on the edges of length a, between which the span is shorter, because the moments in

this direction will be less than the moments developed in the long direction, on the edges

of length b. Hillerborg suggests that the portions of the slab loading to be transfered to

different supports should be divided based on the location of lines of zero shear force, along
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which the shear force is assumed to be zero in all directions [33]. Figure 2.8 shows the

layout of strips commonly used for some simple slab systems.

Once a field of strips has been determined, each strip is then analyzed independently

for the loading assigned to that strip. Top and bottom reinforcement is designed for each

strip based on the results of the simple analysis of the strip. Sometimes interaction of strips

must be accounted for in the analysis, particularly if one strip is assumed to support others

as in the case of a strong band, where a concentrated area of steel may be provided.

The primary drawback to the strip design technique is the possibility of poor perfor-

mance with respect to serviceability. Applied incorrectly, the strip design technique can

lead to wide cracking or excessive deflections at the service load level [27]. To avoid this,

the distribution of moments should conform reasonably closely to that provided by elastic

analysis. Also, additional models may be required beyond those used in design to appro-

priately evaluate the actual deflections of the slab system.
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CHAPTER III

APPLICATION OF THE FINITE ELEMENT METHOD

TO REINFORCED CONCRETE SLAB DESIGN

3.1 Modeling of Slabs Using Finite Elements

If the finite element method is to be a useful tool in the design of reinforced concrete flat plate

structures, accurate modeling is a prerequisite. Accurate modeling involves understanding

the important relationships between the physical world and the analytical simulation. As

Clough states, “Depending on the validity of the assumptions made in reducing the physical

problem to a numerical algorithm, the computer output may provide a detailed picture of

the true physical behavior or it may not even remotely resemble it” [11]. The following

sections attempt to expose the gap between physical and analytical behavior.

3.1.1 General Modeling Requirements

The finite element method is an approximate technique, and as such, results computed

using the finite element method must be critically evaluated before relied upon in a design

application [46]. This process of critical evaluation involves several steps for any structure

being analyzed.

The number of elements used in a model can greatly affect the accuracy of the solution.

In general, as the number of elements, or the fineness of the mesh, is increased, the accuracy

of the model increases as well. As multiple models are created with an increasingly finer

mesh, the results should converge to the correct numerical solution such that a significant

increase in the number of elements produces an insignificant change in a particular response

quantity.

Not all response quantities will converge at the same rate, however. Displacements

will generally be the most accurate response quantity computed and will converge faster

than stresses, with the exception of some elements derived with hybrid stress formulations,
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in which case the stresses can converge at the same rate or higher than the displacements.

Generally, however, convergence of displacements does not guarantee convergence of stresses

since stresses are computed as derivatives of the displacement field. Furthermore, it may be

necessary to increase the number of elements in areas of the model near either concentrated

loads or boundary conditions, where the stress gradient is steeper.

The type of element applied in the analysis also can significantly affect the quality of

the results because various finite elements are derived from different assumptions. Since flat

plate systems are modeled using plate bending elements, this discussion will be limited to

several types of plate bending elements. For instance, Kirchoff plate elements are derived

for application to thin plates and only account for flexural deformation. “Thin” generally

refers to a plate with thickness much smaller than its in-plane dimensions [47]. Mindlin

plate elements are derived for application to moderately thick plates and account for both

flexural and shear deformations. Generally, a “thick” plate is one with a thickness greater

than one-tenth the span of the plate [47]. If an engineer used a Kirchoff element to analyze

a moderately thick plate, the results could deviate significantly from the physical behavior

of the real plate, as the Kirchoff element can only represent flexural deformation while the

physical structure is exhibiting significant shear deformation, behavior represented by the

Mindlin element. There are numerous other examples similar to this one that demonstrate

the importance of selecting an element appropriate to the specific application of the analyt-

ical model. Elements with higher order shape functions are more accurate than those with

lower, and elements with midside nodes are generally more accurate than those without.

Finally, once an engineer is confident that the numerical solution has converged and

that the specific element chosen is appropriate for the current application, several other

checks are necessary to validate the analysis. The sum of reactions of the model should be

verified with hand calculations. The magnitude of global displacements should be checked

and verified to be small with respect to the geometry of the structure. The equilibrium of

the structure must be verified, as the finite element method does not guarantee that this

important condition is satisfied.

Once these criteria have been satisfied, it is important to determine if the results roughly
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follow the expected outcome. “The engineer must determine whether or not the results make

physical sense” [70]. Contour plots of stresses and the displaced shape of the structure

should roughly correspond to the intuitive sense of the engineer. For example, symmetric

results must accompany a structure with symmetric geometry and symmetric loading. Any

deviation between expected and computed results must be critically investigated.

3.1.2 Assumptions in Reinforced Concrete Flat Plate Finite Element Analysis

Several important assumptions are invoked in the analysis of reinforced concrete flat plates.

Understanding these assumptions is critical if accurate design results are to be obtained.

First of all, the type of analysis applied in this study is a linear elastic analysis. This

introduces several important factors into the analysis. Reinforced concrete is a highly

nonlinear material. Made up of many elastic, brittle materials, the stress-strain curve of

concrete indicates some degree of ductility. This is due to the gradual development of

micro-cracking, internal to the concrete [49].

Concrete begins cracking at a tensile stress of approximately 8 to 15% of its compressive

strength [51]. While ultimately this cracking is indicative of a brittle failure mode, the re-

inforcing bars within the cross-section will begin yielding and introduce important ductility

to the failure of the component. At the ultimate level, ACI 318 states that the maximum

allowable strain at the extreme concrete compression fiber shall be assumed equal to 0.003

[2]. This limiting value of compressive strain corresponds to the lower bound of experimen-

tal test data [49]. A linear elastic analysis does not account for any of the above nonlinear

failure components. Instead, this analysis assumes the gross section is resisting the applied

loads at all stress levels, and that the stress-strain relationship is perfectly linear, even if

the compressive strain in the concrete exceeds 0.003 or if the tensile stress at the location

of the reinforcing bars exceeds the yield stress of the steel.

There are several methods that can be applied to effectively reduce the stiffness of the

finite element mesh in areas where cracking and highly nonlinear behavior are expected.

One technique is to reduce the thickness of the elements in the areas around columns or

supports. Another technique is to reduce the elastic modulus in these areas. While these
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methods may produce favorable results from an analysis perspective, they would be invalid

in an implemented program procedure where the thickness and elastic modulus are used

internally to the program for design calculations. In other words, the section must be

designed for the full thickness, not a reduced thickness; likewise for the elastic modulus. As

such, these techniques are not investigated in this study.

Another important assumption in finite element analysis is that the material is isotropic

and homogeneous. To the contrary, reinforced concrete is a highly composite material.

Plain concrete consists of many materials, primarily various aggregates, bound in a ma-

trix of cement. Aggregates range in size from roughly graded gravel to very fine sands.

Experimental tests show that plain concrete can be treated as statistically homogeneous.

However, the introduction of reinforcing bars disrupts the isotropy of the material, reducing

the actual behavior of the material to orthotropic at best, and anisotropic in some cases. As

such, the actual constructed concrete component will behave preferentially in some principle

direction, and the relative stiffness due to this preferential material orientation will produce

a distribution of stress much different from an analysis assuming isotropic conditions.

A third important assumption is that generally both Kirchoff and Mindlin plate bending

elements are derived based on the assumptions of small displacements and rotations. The

importance of this assumption is that it allows the application of a linear analysis that

ignores geometric nonlinearity. The exact meaning of “small” is a matter of interpretation

on the part of the engineer. However, in general the deflections are small if they are

small in comparison to the thickness of the slab [67]. Nonetheless, the requirement of

small deflections will usually be satisfied as a result of ACI 318 Section 9.5, “Control of

Deflections” [2].

3.1.3 Modeling of Boundary Conditions for Flat Plate Systems

The importance of accurately modeling boundary conditions should never be underesti-

mated or neglected in the analysis of any structure, particularly reinforced concrete flat

plates. Great efforts may be applied to verifying that a model has converged and that the

specific element used is appropriate to the behavior required. However, if the boundary
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conditions are inaccurate, the results of such an analysis may be worthless. There are

several important considerations concerning the appropriateness of various techniques of

modeling boundary conditions. The two types of boundary conditions presented in this

discussion pertain to support boundary conditions as well as slab-to-column connection

boundary conditions.

Two general methods are applied to simulate the boundary conditions of flat plates. In

the first method, the columns supporting the slab, as well as the columns above the slab,

are modeled using either frame elements or three-dimensional solid elements. This method

attempts to isolate a particular elevated floor of the structure, but still account for the

flexural effects of the columns framing into the floor. In the second method, the flat plate is

modeled as a plane of finite elements, and the flexural and translational stiffnesses physically

provided by columns are simplified to “pin” or “fixed” supports applied at the elevation of

the plane of the slab. Sometimes these supports are modeled as springs with a finite elastic

stiffness to improve the behavior of the model. The work of Gentry investigated which of

these connections produce the most favorable results. He found that in general, modeled

boundary conditions which account for the actual flexural stiffness of the columns, such as

modeling the columns with frame members or three-dimensional solids, are preferable to

approximations of the columns with pin or fixed supports at the mid-surface elevation of

the slab [29]. Based on Gentry’s work, only frame members or three-dimensional solids will

be used for column modeling in this study. The following considerations are important to

remember when applying these various boundary condition techniques.

First of all, to re-emphasize the concepts presented in Section 3.1.2, the finite element

model assumes that the material behaves in a linear elastic fashion. While this is generally

untrue in a physical sense, it is especially untrue for connections in flat plates between

the slab and columns [56]. These regions are often susceptible to cracking and subsequent

yielding of reinforcement, leading to highly nonlinear behavior. Even if the slab is modeled

as being supported on frame members, a fully fixed connection in the model dictates that the

angle between the column and the slab remain exactly 90 degrees after deformation. This

idealization overestimates the stiffness of this connection. An overestimation of stiffness
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leads to a change in the relative stiffness throughout the slab, thus significantly decreasing

the accurate representation of the physical distribution of stress in the slab.

Another important consideration involving boundary conditions is the physical size of

the connection versus that incorporated in the model. When a frame member is connected

to a node in the finite element plane, the connection occurs over an infinitesimal area, even

though the physical connection maintains some finite size. This is significant for several

reasons. First of all, an infinitesimal connection analytically increases the clear span between

adjacent columns by a distance equal to the width of the column. The moments computed

across a slab section are a function of the square of the clear span. Thus, application of

this technique overestimates the bending moments in the adjacent slab panels. Second,

design moments at the column face will be inaccurate because the distance between the

centroid of the column and the column face is now flexible, according to the stiffness of the

slab, when it should be much stiffer since this area is enclosed within the column. Third, a

concentrated boundary condition, such as column connected via a single node, causes the

same result that any concentrated effect in a finite element model produces: an unrealistic

stress concentration. In fact, the analytical solution will indicate a state of infinite stress

at locations such as this.

The finite element model will produce more realistic results if the column-to-slab con-

nection can be distributed over some finite number of nodes instead of concentrating the

effect at a single node. The first step in modeling the finite slab-to-column connection is

to model the slab with a fine enough mesh that multiple elements cover the cross-section

of the attached column. This will usually require a mesh fine enough that the column area

is overlaid with either a 2x2 or 3x3 mesh of elements, assuming that the overall model

converges with this degree of fineness.

After the flat plate mesh satisfies this requirement, there are several techniques to dis-

tribute the connection over the entire area of the column. The most accurate means of

accomplishing this connection is to model the columns using three-dimensional solid ele-

ments. These elements can easily be connected to the plate bending mesh over the entire

area of the column, as shown in Figure 3.1. The primary drawback to this method is
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that the computational and modeling costs of implementing such a large number of three-

dimensional solid elements are often uneconomical and impractical.

Another technique is to approximate the finite area of the column using joint constraints.

Using this technique, the columns are modeled using three-dimensional frame members, and

each frame member is geometrically placed according to the centroid of the column in the

physical structure. A rigid solid is then created at the column-to-slab connection to rigidly

tie all joints within the area of the column section to the end of the frame member. This

technique is otherwise referred to as a master-slave technique, where the end of the frame

member column is the master joint, and the joints in the slab within the column area are

slaves, as shown in Figure 3.2. This technique offers an advantage over the use of three-

dimensional solids with respect to computational efficiency. Numerical studies presented

in Chapter 6 will show that this technique is effectively equivalent to the use of three-

dimensional solids in terms of the accuracy of computed bending moments.
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3.2 Techniques for Flat Plate Design Using FEA Results

Assuming that adequate care has been applied in the modeling of the flat plate system, there

are two conventional methods for design based on the results of finite element analysis, each

of which are presented and evaluated below. These two methods are:

1. Design using average stress resultants

2. Design using element forces

3.2.1 Design Using Average Stress Resultants

3.2.1.1 Computation of Element Stress Resultants

Element stress resultants are the computed stress components per unit width located at a

node of a finite element. For a plate bending analysis, the primary element stress resultants

of interest are the bending stress resultants, which are the bending moments per unit width

evaluated at each node of the element, and the shear stress resultants, which are the shear

forces per unit width evaluated at each node.

Element stresses can be computed in many locations throughout the element, including

the centroid, Gaussian quadrature integration points, and at the nodes. Stresses computed

at the integration points are generally considered to be the most accurate [17]. These results

are of little use to engineers, however, because the physical locations of the Gauss points

are unknown to the user. A common solution to this problem is to extrapolate the stresses

to the nodes, a more useful location for the user. Element stresses can also be computed

directly at the nodes by evaluating the strain-displacement relation at the nodes instead of

the integration points, and then applying the material constitutive relation.

The element stress resultants can be understood as the integration of the stress field over

the thickness of the element, t. The following equations show the theoretical formulation of

the element stress resultants at a typical node [17].

Mxx =
∫ t/2

−t/2
σxzdx Myy =

∫ t/2

−t/2
σyzdx Mxy =

∫ t/2

−t/2
τxyzdx (3.1)

Qx =
∫ t/2

−t/2
τzxdx Qy =

∫ t/2

−t/2
τyzdx (3.2)
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Figure 3.3: Element Stress Resultants at a Node

Here, the z-axis is the direction perpendicular to the plane of the elements. A common

point of misinterpretation on the part of the engineer concerns the coordinate system of the

results of Equation 3.1. Mxx refers to a bending moment on the x-face of a small volume of

the element dV at a particular node, due to stress in the x-direction. Note that Mxx is not

a bending moment about the x-axis. Myy refers to a bending moment on the y-face of a

small volume of the element dV at a particular node, due to stress in the y-direction. Mxy

refers to a torsional moment on both the x- and y-faces of a small volume of the element

dV at a particular node, due to the shear stress at the particular node. Figure 3.3 presents

a visual representation of this concept. The units of each of the bending moment resultants

are force-length/length. An easy way to remember the naming convention when applying

these results in design is to say that Mxx is used to compute the reinforcing bars required in

the x-direction, and Myy is used to compute the reinforcing bars required in the y-direction.

In implemented finite element analysis codes, element stress resultants are seldom com-

puted by integrating the stress field because the moment-curvature relations can be directly

applied to the strain field. For a Kirchoff element, the moment resultants can be computed

directly using Equation 3.3 [17].
Mxx

Myy

Mxy


= −


D νD 0

νD D 0

0 0 (1−ν)D
2




w,xx

w,yy

2w,xy


(3.3)

49



In Equation 3.3, w is the normal displacement, ν is Poisson’s Ratio, and D is known as the

flexural rigidity and is given by Equation 3.4.

D =
Et3

12(1− ν2)
(3.4)

The shear resultants cannot be directly evaluated using the Kirchoff formulation, however.

Instead, these results are computed by evaluating the equilibrium of the element. Thus, Qx

and Qy can be computed using Equation 3.5 [67].

Qx =
∂Myx

∂y
+
∂Mxx

∂x
Qy =

∂Myy

∂y
− ∂Mxy

∂x
(3.5)

For the Kirchoff element, the accuracy of Qx and Qy will generally be less than that of

the bending stress resultants because, as shown in Equation 3.5, an additional derivative is

required to compute this response quantity.

For Mindlin elements, the bending moment resultants are computed using the exact

formulation as that for the Kirchoff element. However, because the Mindlin element has

the ability to represent transverse shear strain through the element thickness, the shear re-

sultants can be computed directly from the strain field. Equation 3.6 shows the formulation

of element stress resultants for a Mindlin element [17].

Mxx

Myy

Mxy

Qx

Qy


= −



D νD 0 0 0

νD D 0 0 0

0 0 (1−ν)D
2 0 0

0 0 0 kGt 0

0 0 0 0 kGt





ψx,x

ψy,y

ψx,y + ψy,x

ψx − w,x

ψy − w,y


(3.6)

In Equation 3.6, G is the shear modulus, ψx and ψy refer to the rotation of the mid-surface

normals at the node, and k accounts for the parabolic variation of transverse shear stress

in the z-direction. Generally, k = 5/6 for an assumed homogenous plate [17].

Once element stress resultants have been computed at each node of each element in

the structure, there is no guarantee that for nodes with multiple elements connected, the

element stresses computed at the node from contributing elements will be identical. This is

because the finite element method only guarantees compatibility of the displacements and
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rotations at the nodes. Thus, if four elements are connected to a single node, it is likely

that four different states of stress have been computed at that node from each element. As

the finite element solution converges, these results should approach each other, but even

in a converged solution, there is no guarantee that these results will all lie within a small

tolerance. If these results vary by more than an order of magnitude, further investigation

is required as to the source of the discrepancy.

As a solution to the variation in stresses computed at a node, most programs average

the stresses computed at a node to effectively smooth the solution of the stress field. Thus,

an acceptable convergence criterion is to assess whether the average element stresses have

converged. If so, the analyst may proceed with design, understanding that each element

contributes a different stress component to each node and that, as such, compatibility of

stresses is not satisfied.

Another important consideration in the computation of element stresses is that there is

no guarantee that equilibrium is satisfied. Since stresses are only computed at the nodes, if

an engineer wishes to consider the equilibrium of a single element, or the entire structure for

that matter, the stresses must be interpolated between nodes. The physical distribution of

stress will seldom be accurately predicted by such an interpolation procedure. This does not

mean that the solution is altogether invalid, but rather that the engineer must understand

that the applied technique is an approximate one, and that the resulting design should be

critically evaluated, as described in the introduction of this chapter.

3.2.1.2 Design Procedure Using Bending Moment Resultants

Once the average element bending moment resultants have been computed for each node

in the structure, the engineer must reduce this information to something useful for design.

The first step is to divide the finite element mesh into strips, similar to those in either direct

design or the equivalent frame method, which will bound the basic cross-sections, or cuts,

to be designed. This is most easily accomplished by generating contour plots of the three

bending moment resultants. Contour plots are useful because they provide an overview of

the distribution of moment in the slab, making it easy to see not only the areas of high
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Figure 3.4: X-Direction Strip Selection Based on Mxx Contour Plot

concentration, but also the inflection points where the moment changes from positive to

negative. An example of selecting strip locations based on a bending resultant contour plot

is shown in Figure 3.4. “Narrow” strips should be used in areas with a high stress gradient,

whereas “wider” strips can be used in areas with little variation in moment [43]. What

constitutes “narrow” or “wide” is subjective and can only be determined with experience

and expertise in modeling. One applicable guideline is that the width of a strip should

always be narrower than the dimensions of the adjacent bays. Another critical guideline is

that a strip should never represent a change in sign of bending moment across a cross-section

to be designed. If the moment changes signs across the cross-section, the cross-section is

too wide and must be reduced.

Once an adequate layout of strips has been determined, there are two methodologies

for determining the design moments for a particular cross-section of a strip, or cut. A

cut represents a free body upon which a resultant moment is computed for design. One

methodology for computing this design moment is to average the results of each node along

the cut. This method assumes it is possible at some locations along the cut that the capacity
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provided by the reinforcement will be exceeded, but that when this occurs, these areas will

crack and thus the moments will redistribute to areas that were over-reinforced initially.

The second methodology is to design a whole cut for the maximum effect present on that

cut. In this method, it is likely that more reinforcement will be provided than necessary,

leading to an uneconomical design as well as a decrease in ductility of the section. In this

study, the first methodology is applied: design based on average results along the cut.

3.2.1.3 Computation of Design Moments Using Bending Moment Resultants

The actual computation of design moments using bending moment resultants is attributed

to Wood [72] and Armer [4]. At a particular node to be designed, the slab must be reinforced

in the x- and y-directions to resist bending about both x- and y-axes. The capacity to be

resisted by bars in the x-direction is Mrx, and the capacity to be resisted by bars in the

y-direction is Mry. Initially, Mrx appears to be the same as Mxx, and Mry the same as Myy.

However, this neglects the effect of the computed torsional resultant Mxy. From Figure 3.3,

it is readily apparent that as dA becomes very small, Mxy acts simultaneously with both

Mxx and Myy. Because the shear stress, τxy, in the slab acts effectively without sign, the

effect of Mxy is to always increase the magnitude of moment to be designed.

Based on these concepts, reinforcement at the bottom of the slab in both directions

must be designed to provide positive bending moment resistance of

Mrx = Mxx + |Mxy| and Mry = Myy + |Mxy| (3.7)

If the required positive moment capacity computed using either of these equations is nega-

tive, the capacity for that component should be set equal to zero. Subsequently, reinforce-

ment at the top of the slab in both directions must be designed to provide negative bending

moment resistance of

Mrx = Mxx − |Mxy| and Mry = Myy − |Mxy| (3.8)

If the required negative moment capacity computed using either of these equations is posi-

tive, the capacity for that component should be set equal to zero [27].
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Figure 3.5: Average Bending Moment Resultants at Each Node Along Cut

Using the procedure set forth in Section 3.2.1.2 above, the resultant design moment

across the section can be determined. An example cut is shown in Figure 3.5 to illustrate

computation of the resultant moment for the design of reinforcement in the x-direction.

The average bending resultants at each node, Mrx,1 through Mrx,n, are computed using

Equations 3.7 and 3.8, where n refers to the number of nodes along the cross-sectional cut.

The total resultant moment acting on the cut, MB, is then computed as

MB =
1
n

{
n∑

i=1

Mrx,i

}
· (Width of Cut) (3.9)

In this equation, the average moment resultants from each node, Mrx,i, are averaged and

then multiplied by the width of the cut to compute the entire resultant moment acting

on the cross-section [29]. Once the resultant design moment has been computed, flexural

reinforcement is designed according to ACI 318 as explained in Section 2.1. The resultant

bending moment for the design of reinforcement in the y-direction is similarly computed

using Equation 3.9 by replacing Mrx,i with Mry,i.

3.2.2 Design Using Element Forces

3.2.2.1 Computation of Element Forces

Element forces are computed quite differently from element stresses, and can be computed

directly from the displacement field without evaluation of the strain field. Element forces
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Figure 3.6: Element Forces at a Node (a) Plate Bending Element (b) Plate Element
(Note: Forces shown with single arrow-head. Moments shown with double arrow-head.)

are computed as the product of the element stiffness matrix with the element displacement

vector, which is extracted from the global displacements. The results of this computation

are forces and moments computed at each node. For general plate bending elements, this

procedure computes three components: one shear force perpendicular to the plane of the

elements, and two orthogonal bending moments in the plane of the element. For a gen-

eral plate element, also known as a stretching and bending element, six orthogonal force

components are computed: two in-plane forces, an out-of-plane shear force, a moment per-

pendicular to the plane of the elements, and two bending moments in the plane of the cut.

These components are shown in Figure 3.6.

3.2.2.2 Computation of Resultant Design Moment Using Element Forces

Once element forces have been computed at each node for each element, the resultant forces

acting along a cross-sectional cut are easily computed. Let a cut be defined by a linear list of

joints. Then, the computed element forces at each node along that cut are simply summed.

In-plane torsional effects are neglected in the computation of the resultant bending moment.

Note that for some nodes along a cut, more than one element contributes to this resultant

computation. Thus, the resultant bending moment across the section, MB, is computed as

MB =
n∑

i=1

m∑
k=1

Mi,k (3.10)

where n is the number nodes along the cut, m is the number of elements contributing force

components at node n, and Mi,k is the moment component contributed at node i from

element k. This concept is expressed graphically in Figure 3.7.
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Figure 3.7: Element Force Resultant From Nodal Forces Along a Cut

Once the resultant bending moment acting on the cut has been computed, flexural steel

reinforcement for the cross section is designed according to ACI 318 as explained in Section

2.1.

3.2.2.3 Comments on Design Using Element Forces

Previous work by Gentry indicates that designs using element forces produce areas of re-

inforcement closely matching those of the equivalent frame technique for interior panels of

simple, regular structures. He states, “It would seem that element forces better predict the

actual bending moments in the plate ... For total steel placed in the plate, element forces

were more accurate than average stress resultants” [29]. The extension for using element

forces to design exterior panels is presented in Chapter 5.

One of the most important characteristics of element force results is that equilibrium

is preserved because forces are computed directly from element stiffnesses. As stated pre-

viously, element stress resultants do not always share this characteristic. Therefore, if an

engineer chooses to design based on element forces, he knows that although the finite element

technique produces an approximate solution, the computed solution satisfies equilibrium [3].

Another important characteristic of element force based design is that the application

of this method is much simpler than that of element stress resultants. With element forces,

the computation of the resultant moment along a cross section requires a simple summa-

tion. With element stress resultants, the average resultant must be computed from each

contributing node, and then this average resultant must be scaled by the width of the cross

section, introducing further approximation to an already approximate result. The use of
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element forces reduces this interpolative step from the design procedure, requiring less time

and reducing the opportunity for mistakes.
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CHAPTER IV

IMPLEMENTATION OF PROCEDURE

The objective of this chapter is to present in detail the reinforced concrete flat plate design

procedure implemented in GT STRUDL. A background of program development in GT

STRUDL is presented, and then the algorithm is explained, including the user options and

command, information pre-processing, computation of resultant forces, and design proce-

dure.

4.1 Programming Introduction

4.1.1 Overview of Algorithm

The goal of the implemented procedure is to design reinforced concrete flat plate systems

using finite elements as a tool for the determination of design moments. The algorithm

implemented in this study is intended to simplify the procedure presented in Chapter 3 to

design based on element force results.

Instead of dealing with results on an element-by-element basis, the user will be able to

design slab systems based on cuts. Here, the term cut refers to the cross-section of a strip

at a particular location to be designed. A cut is defined by two nodes identifying the start

and end of the cut, and by an element in the plane of the cut.

Once the definition of the cut has been determined, the resultant forces along the cut are

computed using element force results. The final design moment is determined by computing

the resultant moment on each side of the cut for each loading condition, and reducing these

moments to a design envelope.

Once the design envelope is computed, the cross-section is designed either “from scratch,”

or with certain design parameters, such as bar size or spacing, constrained.

An important distinction is to note that each cut is designed independently from all

other cuts. That is, a cut specified in one region is independent with respect to a design in
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another region. As such, if the user wishes to use the same bar size over multiple adjacent

cuts, this information must be specified for each cut.

Descriptions of each subroutine in the implemented algorithm are given in Appendix B.

4.1.2 Overview of GT STRUDL

The computational algorithm presented in this chapter is implemented as a sub-program in

GT STRUDL. GT STRUDL, which stands for “Georgia Tech Structural Design Language”,

is a computer aided structural engineering information processing software system designed

to aid engineers in the process of structural analysis and design [13].

GT STRUDL contains both a powerful command-driven environment as well as a user-

friendly graphical user interface. The command environment allows the engineer to commu-

nicate with the application via conventional structural engineering terminology. Commands

may be selected from menus, or they may be typed directly into the interface or input file.

The graphical interface allows the user to visually create the structural geometry, member

and element topology, properties, boundary conditions, material characteristics, loading

conditions, and other important model characteristics [15].

GT STRUDL maintains a broad range of finite element capabilities for solving a variety

of two- and three-dimensional linear and non-linear elastic continuum problems, both for

static as well as dynamic systems. The extensive element library contains multiple formula-

tions of the commonly applied finite element types, including plane stress, plane strain, plate

bending, shell, and three-dimensional solids, and allows for problems containing combina-

tions of these element types. Finite elements may be modeled with isotropic or anisotropic

materials, and be subjected to thermal, surface, edge, and body loading conditions. Power-

ful post-processing options of the finite element results include graphical visualization of the

displaced shape, contour plots of stresses, strains, stress resultants, failure/yield criterion,

and error estimation, and animation of the displaced shape under various loading conditions

[13].
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4.1.3 Tools Used

The flat plate design procedure was implemented using two tools developed by the GTICES

Systems Laboratory: CDL and ICETRAN.

A new user command was developed using “Command Design Language”, or CDL.

CDL allows for simple communication of information and control between the user and the

application in a format that is logical and intuitive to the engineer, yet robust and capable

of transmitting complex data [30].

The primary flat plate design algorithm called as a result of the user command was

developed using the ICETRAN language. ICETRAN is an extension to FORTRAN 77 that

provides extended array, module, and secondary storage management [30].

The program was developed on a Dell Inspiron 8600 notebook PC, with a 1.6 GHz

Intel Pentium M processor and 768 MB of RAM. The WATCOM FORTRAN and C/C++

compilers were used to develop the application.

4.2 Model Requirements

Before the user can begin the design of flat plate reinforced concrete systems using the

presented application, there are several modeling prerequisites that must be completed. It

is assumed that the engineer has created a model that accurately simulates the physical

behavior of the system, as described in Chapter 3.

First of all, the user must have specified the elements modeling the slab to be reinforced

concrete. This is accomplished simply by the command, MATERIAL REINFORCED CON-

CRETE [14]. This will allow the user to specify the appropriate compressive strength of

the material as well as the yield strength of the steel reinforcement.

Second, a stiffness analysis must be carried out before the slab can be designed. If

a stiffness analysis has not occurred, there will be no results with which to design. This

analysis is carried out in GT STRUDL via the command, STIFFNESS ANALYSIS.
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4.3 Command

A user begins design of flat plates by means of typing a command while in the Command

Environment of GT STRUDL. The following sections explain the options and syntax of this

command.

4.3.1 Overview of User Options

The implemented command allows the user to communicate all data necessary for design to

the application. The application processes this information and generates a design for the

system based on the input. The command is designed to provide varying levels of control

for the user so as to make the command as broadly applicable as possible.

The first information the user must communicate to the application is the cut definition.

A cut is defined by a start and end node ID, and an element ID in the plane of the cut. The

user has the option of giving each cut an alphanumeric name for organizational purposes.

The purpose of the required element ID is to determine the appropriate plane to design in

the event that multiple planes of finite elements intersect along the cut, as defined by the

start and end node. An example where this might occur is the intersection of a slab with

a shear wall. In this case, a misleading design could be generated if the slab was designed

using the forces in the shear wall. The cut definition constitutes all information required to

compute the resultant forces acting along the cut.

Once the cut has been defined, the user may indicate parameters to be used to design

the system. The user may constrain the bar size or spacing to a certain value, either for

the top face, bottom face, or for both faces. In this case, the final design will utilize the

information provided. If the bar size is constrained, the appropriate spacing of bars is

determined. If the bar spacing is constrained, the appropriate bar size is determined. In

the case that the user supplies a bar size and spacing for the cut, the application will simply

check the strength of the cross-section against the computed design envelope according to

ACI 318. If the user specifies no design constraints, the application assumes a bar size and

designs the section to satisfy ACI 318. As such, the user maintains explicit control over the

function of the application.
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The user may also specify which layer of bars to be designed and concrete cover. If

neither are specified, default values are applied as explained in the following sections. All

user-specified constraints, such as concrete compressive strength, yield strength, cover, and

spacing are checked against ACI minimum/maximum values. The thickness of the cross-

section is determined internally based on the modeled thickness of the user-specified element.

The DESIGN SLAB command is implemented in files DES.cdl and CRSLAB.cdl.

4.3.2 Command Syntax

The command implemented in GT STRUDL is of the following form:

DESIGN SLAB (REINFORCEMENT) (ALONG) (CUT


‘a’

i1

 )


JOINTS

NODES

 list1 −

ELEMENT list2

∗ 
TOP (FACE) (BARS i2) (SPACING v1)

BOTTOM (FACE) (BARS i3) (SPACING v2)

BOTH (FACES) (BARS i4) (SPACING v3)


−


OUTER (LAYER )

→ INNER (LAYER )

 (COVER v4) (TOLERANCE v5)−

(TORSIONAL (MOMENT) (WARNING) v6)

In this command, the input arguments are subject to the following descriptions.

’a’ or i1 = optional alphanumeric or integer cut name

list1 = list of start and end nodes of cut

list2 = alphanumeric or integer ID of element in plane of cut

i2 = integer bar size to be used to design top surface

i3 = integer bar size to be used to design bottom surface

i4 = integer bar size to be used to design both surfaces

v1 = bar spacing to be used to design top surface

v2 = bar spacing to be used to design bottom surface
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v3 = bar spacing to be used to design both surfaces

v4 = minimum concrete cover

v5 = linear tolerance for cut definition

v6 = ratio of torsional moment to bending moment warning threshold

TOP = surface with +ZPLANAR coordinate

BOTTOM = surface with −ZPLANAR coordinate

4.3.3 Explanation of Command

4.3.3.1 Command Description Conventions

In the above commands, the subtleties of the presented syntax are important. Each word

given in the command is called a modifier. Only the portion of the modifier that is underlined

in the command is required to indicate that modifier. As such, to denote the modifier

“DESIGN”, the user need only type “DES”. Any modifier given in parentheses, ( ), is

optional and is not required for the command to operate correctly. For optional input data,

if the modifier is not supplied by the user, the default value will be used. Curved brackets,

{ }, indicate that only one choice of the command elements within the brackets must be

given. As an example in the above commands, the user may type either “JOINTS” or

“NODES”, but not both, to indicate the list of nodes. An asterisk before curved brackets,

∗{ }, indicates that one, or multiple, choices of the command elements within the brackets

can be given. As an example from the above commands, the user may specify data for the

top face and then immediately specify data for the bottom face. An arrow (→) indicates

the default choice for an optional command. Thus, if the user does not specify which layer

to design, the inner layer is designed as the default option. Input arguments of the form

in refer to nth integer input value, and arguments of the form vn refer to the nth decimal

input value [12].

4.3.3.2 Example Commands

The following commands are examples of appropriate syntax conforming to the above rules.

1. “DESIGN SLAB NODES 1 2 ELEMENT 1” – This example indicates that the slab
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cross-section starts at node 1, ends at node 2, and element 1 defines the plane of the

slab. Default values are applied for all other design parameters, and reinforcement for

the cross-section is designed “from scratch”.

2. “DESIGN SLAB REINFORCEMENT ALONG CUT ‘A1’ JOINTS 1 2 ELEMENT 1

BOTH FACES BAR 5 SPACING 12.5 COVER 1.0” – This example indicates that a

slab cross-section labeled ‘A1’ is defined to start at node 1, end at node 2, and only

elements in the plane of element 1 are to be considered. Top and bottom reinforcement

is constrained to #5 bars at a spacing of 12.5 inches, such that the cross-section is

checked against the design envelope. A value of 1.0 inches is used for cover, instead

of the default 0.75 inches.

3. “DESIGN SLAB REINFORCEMENT NODES 1 2 ELEMENT 1 TOP FACE BAR

5 BOTTOM FACE SPACING 10” – This example gives the same cut definition as

the previous example. Top reinforcement is constrained to #5 bars, and bottom

reinforcement is constrained to a spacing of 10 inches. As such, spacing is computed

for top reinforcement, and a bar size is determined for bottom reinforcement.

4. “DESIGN SLAB REINFORCEMENT NODES 1 2 ELEMENT 1 OUTER LAYER

TORSIONAL MOMENT WARNING 0.25” – The cut definition provided is again the

same as the previous example. Neither a bar size nor spacing is specified for either

face. The user indicates that the reinforcement is to be located at the outer layer,

and that a warning should be issued if the resultant torsional moment computed on

the cross-section exceeds 25% of the resultant bending moment.

5. “DES SLAB JOI 1 2 ELE 1 BOTH BAR 5 SPA 12.5 COV 1.0” – This example com-

mand provides identical functionality as the second example command given above,

and is intended to illustrate the abbreviated syntax of the command.

4.3.3.3 Default Values

Default values are applicable to only the design parameters. If the user provides no bar

size to use for design, the program assumes #5 (M16) bars. In this case, no bar spacing
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is assumed, but rather the spacing is computed as a function of the bar size. The default

reinforcement yield stress, fy, is 60,000 psi, and a user-specified yield stress may not exceed

80,000 psi [2]. The default minimum concrete cover is 0.75 inches per ACI 318-02 [2]. The

default cut tolerance value is a relative tolerance computed as 0.1% of the length from the

start node of the cut to the end node. For example, if the cut is 100 inches from start node

to end node, all other joints along with cut must lie within a distance of 0.1 inches from

the cut to be considered to lie on the cut. The default torsional moment warning threshold

is 10%.

4.4 Pre-Processing

After the command has been processed from the user, a pre-processing algorithm uses the

input data to build all of the information necessary to compute the resultant forces acting

on the cut. The pre-processor was implemented in a general form that is not specific to flat

plates with the intention that the process could easily be extended to the design of other

reinforced concrete components, such as shear walls or shells, in the future. The components

of the pre-processor are described in the following sections.

4.4.1 Determination of Cut Definition

The first step in the pre-processor is to fully define the cut. While the user only needs to

supply the start and end node of a cut, the application must find all joints lying on a straight

line between the start and end node to define the cut. In the implemented procedure, this

process is accomplished in the subroutine CRCCGL.ice.

For the following formulation, let P1 refer to the start node of the cut, and P2 the end

node of the cut. Also, let (x1, y1, z1) be the global coordinates of P1 and (x2, y2, z2) be the

global coordinates of P2. Let Pc, located at (xc, yc, zc), be a candidate node (hence the

subscript c) for inclusion in the cut definition.

In order to find the nodes on the line between the start and end node of the cut, the

first step is to loop over all nodes in the structure. Only nodes with coordinates bounded

by the region between P1 and P2 are considered as candidates for nodes on the cut. That

is, xc must be located between x1 and x2, yc must be located between y1 and y2, and zc
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Figure 4.1: Bounded Region Between Start and End Node of Cut

must be located between z1 and z2. This concept of the bounded region is illustrated in

Figure 4.1. This check is imposed to increase the efficiency of the numerical algorithm by

reducing the number of operations.

Once the candidate node, Pc, has been determined to be inside the bounded region, it

is checked to determine if it is collinear with the start and end nodes of the cut, P1 and P2.

A direct way of checking if the three points are collinear is to check if the projections of the

lines formed by the three points onto each global plane are collinear. Thus, the projection

onto the XG − Y G plane must be collinear, the projection onto the Y G − ZG plane must

be collinear, and the projection onto the XG−ZG plane must be collinear. The expression

used to verify the collinearity of three points in a plane is given by Equation 4.1 in which

case the three coordinates are collinear if the given determinant is equal to zero [74].∣∣∣∣∣∣∣∣∣∣∣
x1 y1 1

x2 y2 1

xc yc 1

∣∣∣∣∣∣∣∣∣∣∣
= 0 (4.1)

In the form given, Equation 4.1 determines the collinearity of the three points in theXG−Y G

plane. The arguments of this equation are easily modified to check the collinearity of the

three coordinates in the Y G −ZG and XG −ZG planes. If a set of coordinates satisfies the
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collinearity requirements for all three global planes, Pc is added to the cut definition. All

joints in the structure within the bounded region are checked for collinearity with the start

and end node of the cut using this procedure.

4.4.2 Formulation of Cut Coordinate System

Once all nodes on the cut have been determined, a new coordinate system can be defined

specific to the cut. This system is referred to as the cut system, and the axes are denoted

Xcut, Y cut, and Zcut. The cut system is important for determining which elements to include

in the computation of resultant forces as well as for interpreting the signs of computed

results. In the implemented procedure, the transformation to the cut system is computed

in the subroutine CRCCTN.ice.

The cut system is a derivative of the planar coordinate system, which must be the same

for all elements located in a plane. To understand the formulation of the cut system, the

planar system and its determination will be explained. Let the planar coordinate system

be denoted XP , Y P , and ZP . Furthermore, the planar coordinate system is a derivative of

the element local coordinate system, denoted XL, Y L, and ZL, and the global coordinate

system, denoted XG, Y G, and ZG.

Each two-dimensional element in a structural model can have a unique local coordinate

system. The ZL axis is determined by applying the right hand rule to the order in which

the nodes were specified. Thus, the ZL axis is always normal to the plane. For an element

viewed in plan, if the nodes are specified counterclockwise order, the ZL axis is oriented out

of the plane, whereas if the nodes are specified in clockwise order, the ZL axis is oriented

into the plane. The XL axis is oriented from the first node to the second node in the

element’s node list. The Y L axis is determined by the cross-product of the ZL and XL

axes, such that Y L = ZL ×XL [13].

All elements in a common plane share the same planar coordinate system. It is assumed

that all elements in a common plane are oriented such that all share the same ZL axis.

Thus, all elements located in a common plane should be specified consistently with respect

to the incidence order of the nodes. If the engineer does not check this, the model may
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provide misleading results. The planar coordinate system is determined by the following

rules. First of all, the ZP axis is parallel to and oriented in the same direction as the ZL axis

of the elements in the plane. Second, the XP axis is located along the line of intersection

between the plane of the element and the XG − Y G plane, and is oriented such that its

projection on the XG axis is in the same direction as XG. The Y P axis is determined by

the cross-product of the ZP and XP axes, such that Y P = ZP ×XP [13].

To begin formulation of the cut system for a given cut, the start node of the cut,

P1, is assumed initially to be the origin of the cut system, and the Xcut axis is located

longitudinally along the line connecting P1 to P2.

The Zcut axis is determined based on the transformation from the global to the planar

system for the user-specified element in the command. The Zcut axis is taken to be the

same as the ZP axis of the specified element, and is always normal to the plane of elements

along the cut.

There are two cases that define the cut system: a general case and a special case. The

special case refers to the scenario in which the Xcut axis is parallel to the Y P axis. The

general case refers to all other cases.

For the general case, the Xcut axis is oriented in the direction of increasing XP coordi-

nates. However, for the special case, the Xcut axis is oriented in the direction of decreasing

Y P coordinates. Figure 4.2 graphically shows the general and special cases of the cut

system.

To construct these cases in the application, the first step is to compute the angle between

the Xcut and Y P axes to determine if the current cut definition is the special case. The

angle between two lines in space with direction cosines (a0, b0, c0) and (a1, b1, c1) is given in

Equation 4.2 [74].

θ = cos−1 a0a1 + b0b1 + c0c1√
a0

2 + b0
2 + c02

√
a1

2 + b1
2 + c12

(4.2)

If the angle θ, between Xcut and Y P , is equal to either 0 or π, the current cut definition is

the special case and Xcut must be oriented in the −Y P direction.

If θ ∈ (0, π), the cut definition is the general case, and the Xcut axis is oriented in the
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Figure 4.2: Cut Coordinate System: (A) General Case (B) Special Case

direction of increasing XP coordinates. To check this, the angle between the Xcut and XP

is computed using Equation 4.2, and if θ ≥ π/2, the direction of Xcut is reversed.

Now that the Xcut and Zcut axes have been determined, the Y cut axis is computed using

a right hand formulation such that Y cut = Zcut ×Xcut. In the final state, Xcut is collinear

with the cut, Y cut is normal to the cut in the plane of the cut, and Zcut is normal to the

cut out of the plane of the elements along the cut.

The transformation from the global coordinate system to the cut system, Tglobal→cut, is

then formed using the normalized direction cosines of the axes of the cut coordinate system.

This transformation is given in Equation 4.3, where Xcut
1 , Xcut

2 , and Xcut
3 are the direction

cosines of the Xcut axis, and so on.

Tglobal→cut =


Xcut

1 Xcut
2 Xcut

3

Y cut
1 Y cut

2 Y cut
3

Zcut
1 Zcut

2 Zcut
3

 (4.3)

Equation 4.3 is applied to a set of coordinates in the global system to compute the cut
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coordinates of a node according to Equation 4.4.
xcut

ycut

zcut


= Tglobal→cut


xG

yG

zG


(4.4)

4.4.3 Element Selection Procedure

The design forces for the slab cross-section will eventually be designed based on single

element force results that contribute to the forces and moments acting on the cut. In order

for these results to be computed, the application must determine which elements should

be included in this computation and which should be excluded. In the application, this is

accomplished in subroutine CRCCGE.ice. So far, the only information the application has

about the topology of the cut are the nodes collinear with the cut, and a single element in

the plane of the cut.

The primary goal of the element selection algorithm is that equilibrium be preserved

for a given layout of cuts. Another way of saying this is that element forces at one node

of an element typically should not contribute to the resultant force for more than one cut.

If this occurred, the procedure would account for portions of the loading twice, and thus

the total sum forces that the structure was designed to resist will not agree with the global

equilibrium of the system. Thus, the resulting design will not always be conservative.

To avoid this overestimation of design force as thoroughly as possible, a heirarchy of

element selection rules was developed to determine the optimal configuration of elements to

include in the cut definition. The applicability of a given finite element to the computation

of resultant force is a function of the behavior of the element as well as geometric constraints

related to the cut definition. As will be shown, this overestimation cannot be avoided for

all cases, but it can be minimized for many.

The element selection algorithm, as explained in the following paragraphs, can be re-

duced to fifteen cases, each demonstrated in Figure 4.3. These cases indicate which elements

are included in the cut definition.

The first step of the element selection procedure is to build a list of all elements connected
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to the nodes forming the cut definition line. Each element in this list is a candidate for

inclusion in the cut definition. At this point, this list may include truss or frame members,

cable members, two-dimensional finite elements, and three-dimensional finite elements. All

incident nodes of each attached “element” are assembled into a book-keeping array, and the

coordinates of these nodes are transformed into the cut system using Equation 4.4. These

coordinates are critical to the element selection algorithm.

Each attached element is then evaluated one by one to determine its applicability to

the cut. The first check is to determine if the member is a finite element. If the attached

element is a truss or frame member, it is neglected in the resultant computation. If the

member is a finite element with two nodes, as in the case of a cable element, it is neglected

in the resultant computation. In addition, if the element is three-dimensional, it is also

excluded. Elements not eliminated thus far are either triangular or quadrilateral in shape.

Triangular elements are subject to the same selection rules as quadrilateral elements.

Candidate elements include 3 node triangles, 6 node triangles, 4 node quadrilaterals, and

8 node quadrilaterals. Midside nodes are ignored in the selection rules such that the inclu-

sion of an element is only a function of its corner nodes. The only restriction concerning

midside nodes is that a cut may not originate nor terminate at a midside node. A graphical

representation of cuts beginning or ending on a midside is shown in Figure 4.3, Cases 4,

6, and 12. If a cut is detected starting or ending on a midside node, an error message is

printed and execution of the “DESIGN SLAB” command is ended.

The primary purpose of the element ID supplied by the user in the command environ-

ment is to indicate the plane of finite elements to consider for inclusion on the cut. A

practical example of the importance of this is the case of a slab supported on a shear wall.

If the specified slab design cut is coincident with the intersection of the slab and shear wall,

the specified element indicates which plane corresponds to the slab and which corresponds

to the shear wall, information the application cannot intuitively determine. As such, the

zcut coordinate of each node of each candidate element is checked. If an element contains

any node where |zcut| > 0, the element is not co-planar with the user-specified element and

is neglected in the element force resultant computation.
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After a candidate is determined to be an appropriate element in the plane of the cut, an

element’s inclusion in the cut definition is a function of the geometry of the corner nodes.

The following rules apply to both triangular and quadrilateral elements.

If two corner nodes of a candidate element are co-incident on the cut line, the element

is included in the cut definition. An element with two corner nodes on the cut will not be

included in the cut definition for an adjacent, collinear cut, thus satisfying the equilibrium

requirement explained above. The only stipulation for an element with two corner nodes

incident on the cut is that the two corner nodes must be adjacent on the element boundary,

i.e., the cut cannot cross over an element surface, but only along its edge. If the application

detects a cut definition that traverses an element surface, an error message is printed and

the command is aborted.

If a candidate element has only one node co-incident with the cut, the element may or

may not be added to the cut definition depending on several stipulations. First of all, if the

co-incident node is interior to the cut (i.e. neither the start nor end node of the cut), the

element is added to the cut definition and used in the computation of the resultant moment.

If a candidate element with only one node co-incident with the cut is attached at either

the start or end node of the cut, a more complicated system of logic is applied. The inclusion

of such an element is a function of the geometric location of all nodes of the element with

respect to normals at each end of the cut. These normals are located at the start and end

of the cut, in the plane of the cut, parallel to the Y cut axis. In Figure 4.3, the normals

are indicated by section arrows. The linear tolerance specified by the user applies to the

location of nodes with respect to the cut bounds as well. If the user does not specify a

linear tolerance, the default value of 0.1% of the length of the cut is used.

If all nodes of the candidate element are located within the normals of the cut, the

element is included in the cut definition. If all nodes of the element are located outside the

normals of the cut, the element is excluded from the cut definition.

If a candidate element contains a combination of nodes within the bounds of the cut as

well as outside the bounds of the cut, the element is included in the cut definition if no more

than one node lies outside the bounding normals of the cut. This is most clearly expressed
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by comparing the treatment of the quadrilateral element in Cases 14 and 15 of Figure 4.3.

This selection rule insures that for quadrilateral elements at the cut boundary incident with

only node, adjacent cuts will not double-count the contribution of the elements on the edge.

This is not true for triangular elements, however, as evidenced by Case 8 of Figure 4.3.

Triangular elements that overlap the cut bounds are always included in the cut definition,

and when adjacent cuts are designed, the contribution of these elements will be accounted

for twice. The magnitude of the effect this introduces to the final design results has not

been investigated.

When an element is determined to belong to the cut definition, it is added to one of two

arrays corresponding to elements on either the +Y cut side of the cut or the −Y cut side of

the cut. The purpose of this separation of elements is explained in the following section.

The above discussion can be simplified to several selection rules. In summary, an element

is included in the cut definition if:

1. The element is a 2-D finite element with more than 2 nodes.

2. The element is located in the plane of the cut.

3. The element only contains nodes on one side of the cut.

4. The element has two corner nodes located on the cut.

5. The element has only one corner node incident on the cut, and this node is not the

start or end node of the cut.

6. The element has only one corner node incident on the cut, this node is the start or

end node of the cut, and at least all but one of the corner nodes of the element are

geometrically located within the normals at the cut bounds.

4.4.4 User-Defined Element List

In some cases, a user may require more explicit control over which elements are included in

the cut definition and which are excluded. To accomodate this, the user is given the option

to specify a full node list and full element list in the DESIGN SLAB command.
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Case 4

Case 5

Cut Section

Selected Elements

Figure 4.3a: Element Selection Cases 1-5 (Plan View)
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Case 6

Case 7

Case 8

Case 9

Case 10

Cut Section

Selected Elements

Figure 4.3b: Element Selection Cases 6-10 (Plan View)
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Case 11

Case 12

Case 13

Case 14

Case 15

Cut Section

Selected Elements

Figure 4.3c: Element Selection Cases 11-15 (Plan View)
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This option is activated when the user specifies more than two nodes and more than

one element in the command input. When the application detects this, the entire element

selection procedure is bypassed, and the user-specified list is used. In this method, only the

contribution of elements on one side of the cut is allowed.

4.4.5 Contribution from Both Sides of Cut

So far, finite elements have been added to the cut definition located on both sides of the cut.

These elements will be used to compute the resultant forces on each side of the cut. This

is an important point in the design procedure without which the design forces computed

could possibly significantly misrepresent the actual behavior of the system.

The reason for this extra step is the possibility of a concentrated moment effect located

along the cut line. The effect of this discontinuity is that the resultant forces computed on

each side of the cut need not necessarily be the same. There are several ways this disconti-

nuity could be introduced: an incident frame member such as a column, intersection with

a shear wall that provides bending restraint, a transverse force applied at an eccentricity

such as in the case of a crane rail, among others. It is possible that the discontinuity could

be significant enough that the sign of the bending moment could reverse from one side of

the cut to the other.

By computing the resultant forces on each side of the cut, the cross-section of the slab

is then designed to resist the maximum effect on each side. In many cases, the effect on

both sides will indeed be identical, but the algorithm will confirm, not assume, this to be

true.

4.4.6 Element Type Restrictions

Only elements known to appropriately model the behavior of slab systems are allowed for

inclusion in the computation of design forces. For a flat plate system, only plate bending

and flat shell elements are used. Thus, if the user models the system using plane stress

/ plane strain elements, and then issues the “DESIGN SLAB” command, the algorithm

recognizes that the modeled elements are not appropriate to the application, the user is

warned, and the command is ignored.
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Plate bending elements supported in the implemented command include the BPHT,

BPR, BPHQ, CPT, and IPBQQ finite elements. General plate elements supported in the

implemented command include the SBCT, SBCR, SBHQ, SBHQCSH, SBHT, SBHT6, AND

SBHQ6 finite elements [13].

4.4.7 Further Error Checking

A final set of error checking measures are applied to the elements included in the cut

definition prior to computation of element force results. First of all, the element list is

checked to determine that all elements included are of constant thickness. The slab design

algorithm will not design a cross-section with varying thickness. The thickness of all included

elements must match the thickness of the user-specified element in the command.

Second, material properties must be the same for all elements along the cut. Neither

the modulus of elasticity, nor the concrete compressive strength, f ′c, may vary from that of

the user-specified element in the command.

These error checking measures are implemented in subroutine CRCHEC.ice.

4.5 Computation of Resultant Forces Along Cut

The purpose of the pre-processor described in the previous section is to make all neces-

sary preparations to compute resultant forces acting along the user-specified cut. In fact,

the entire collection of information in the pre-processor is designed with an existing GT

STRUDL command in mind, the CALCULATE RESULTANT command. The DESIGN

SLAB command makes explicit calls to the subroutines within the CALCULATE RESUL-

TANT command to compute the resultant forces in the flat plate system.

4.5.1 The CALCULATE RESULTANT Command

“The CALCULATE RESULTANT command computes resultant forces at the transformed-

section geometric centroid of a cut. A ‘cut’ is defined as a combination of straight lines pass-

ing through nodes that belong to a series of adjacent, coplanar, PLANE STRESS/STRAIN,

PLATE BENDING, or PLATE elements or the faces of TRIDIMENSIONAL finite ele-

ments” [13]. As such, the CALCULATE RESULTANT command is applicable in a broad
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range of applications.

In this command, cuts need not consist of a single straight line. In fact, multiple straight

line cuts can be combined to compute the resultant forces acting on a plane. Using this

capability, an I- or T-beam could be modeled using finite elements, and the section forces

at a given location could be computed over the I or T shape.

The required input for the CALCULATE RESULTANT command consists simply of a

node list and an element list. The node list must include all nodes incident on the cut that

the user wishes to utilize in the computation of forces. The element list must include all

elements located on one side of the cut. Each node of the element incident on the cut must

be included in the node list. If an element in the element list is not associated with at least

one node in the node list, the element is ignored.

The DESIGN SLAB pre-processor automates this step by allowing a user to only specify

the start/end nodes of the cut as well as an element in the plane, instead of supplying the

entire node and element lists manually. As such, it takes no more appreciable time to design

a cut across 50 elements than it does to design a cut across 5 elements. This presents a

significant increase of efficiency for the handling of finite element analysis results.

4.5.2 Computation of Design Forces

The computation of resultant forces in the CALCULATE RESULTANT command is based

on element force results. The procedure of the CALCULATE RESULTANT command is

similar to that presented in Chapter 3.

The purpose of the node list and element list is to communicate to the application

exactly which results should contribute to the resultant forces acting on the cut. Element

forces are computed for each element in the element list, at each node in the node list. After

the forces at each node along the cut are computed, the equilibrium of the cut is evaluated

to compute the resultant forces and moments. Resultant forces are computed simply by

summing the force components present at each node. Resultant moments are a function

of not only the summation of moment contributions at each node, but also of nodal forces

acting at a moment arm as computed from the geometric centroid of the cut.
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Figure 4.4: CALCULATE RESULTANT Command Results

Various resultants are computed based on the type of element used. These results are

listed as follows:

P = in-plane force normal to cut

V = shear force parallel to cut

FZ = transverse (out-of-plane) shear force

MB = bending moment vector parallel to the cut

MT = torsional in-plane moment perpendicular to cut

MZ = rotational moment about out-of-plane axis

For plane stress/strain elements, only P , V , and MZ are computed. For plate bending

elements, only Fz, MB, and MT are computed. For general plate elements, all six result

components are computed. The forces and moments reported act at the transformed section

geometric centroid of the cut. Figure 4.4 shows the six resultants acting on a cut section.

4.5.3 Reduction of Multiple Load Cases to Design Envelope

In the CALCULATE RESULTANT command, the resultant forces acting on the cross-

section are computed for each active loading condition. This includes single loading con-

ditions as well as combinations of multiple loading conditions. The results of each loading
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case are simply output to the GT STRUDL Output Window for the user to review.

In design, however, it is impractical to design each loading condition individually. There-

fore, when the procedures in the CALCULATE RESULTANT command are called from the

DESIGN SLAB command, the results from each loading condition are stored in an array.

The application then scans the array to determine the maximum positive and negative

bending moments developed from all of the active loading cases. These two bending mo-

ments define the design envelope. The cross-section is then designed only to resist the design

envelope. It is assumed then that all other loading cases will be bounded by the provided

design. If the DESIGN SLAB command was extended in the future to design prestressed

systems, each load case would have to be considered independently.

Note that this reduction to a design envelope occurs for the element lists on both sides

of the cut. The maximum effects from each side are determined and used for design of the

section.

A limit of 1000 loading conditions has been placed on the DESIGN SLAB command.

If the number of active loading conditions exceeds this value, the command is aborted and

the user is instructed to reduce the number of active loading conditions to 1000 or less.

The design envelope is determined in subroutine CRCCEV.ice.

4.5.4 Interpretation of Results

The interpretation of design results from the CALCULATE RESULTANT command is a

critical step in the DESIGN SLAB procedure. If the bending moment is misinterpreted,

for instance, the slab will be reinforced on the compression face instead of the tension face,

possibly leading to disastrous consequences.

The primary result of interest is the bending moment, MB, as this value is used to

design flexural reinforcement. The transverse shear, FZ , is retained such that a shear check

can be performed. The axial force, P , is retained (provided the element can represent in-

plane effects). This value is not used explicitly in design. However, if the cross-section has a

significant axial force resultant, it may indicate that the slab is in fact prestressed (perhaps if

the user has modeled the system using the balanced load technique) or undergoing significant
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membrane action. If either of these is true, the design procedure of the DESIGN SLAB

command is not applicable. The application cannot always recognize when this is the case,

however, so as a safety measure, the application issues a warning to the user if the cross-

section has an axial stress greater than 10% of f ′c in compression or
√
f ′c in tension.

The resultant torsional moment, MT , is not directly used in design, either. However,

if MT is greater than 10% of MB, the resultant bending moment may be inappropriate

for design, as demonstrated in Examples 4 and 5 of Chapter 5. The user is warned if the

computed torsional moment exceeds either the default threshold or the ratio specified in

the command. For flat plate design, V and MZ are ignored.

Once the resultant bending moment has been computed, the orientation of this moment

must be determined. In order to express the sign of this moment in a manner consistent

with standard engineering terminology, a rule for defining the top and bottom of the slab

must be introduced. Because the structural model is physically abstract with no knowledge

of the orientation of gravity, the terms up and down are of irrelevent in terms of determining

the direction of bending. Therefore, let the top surface of the slab refer to the face of the

slab with largest positive ZP coordinate, and the bottom surface refer to the face of the slab

with the largest negative ZP coordinate. Thus, the top and bottom surfaces are defined

without respect to a gravity reference frame.

Based on this definition of top and bottom, the terms positive bending and negative

bending can be defined. In the DESIGN SLAB command, positive bending occurs when

the top surface is in compression and the bottom surface is in tension. Conversely, negative

bending occurs when the top surface is in tension and the bottom surface is in compression.

Figure 4.5 illustrates the case of positive bending for two different orientations of the ZP

axis. In this graphic, positive bending is defined independently from what a user might

intuitively consider to be the top or bottom surface of the slab.

Since the results of the CALCULATE RESULTANT command are reported in the cut

coordinate system, positive and negative bending must be interpreted in this system. As

explained previously, the resultant forces and moments are computed on each side of the

cut, and because equilibrium of the cut must be conserved, these results may be opposite

82



bottom surface

bottom surface+ZP

+ZP

Figure 4.5: “Positive” Bending and Surface Naming Convention

in sign across the cut.

The key to the interpretation of CALCULATE RESULTANT results is Figure 4.4, where

a general cut is shown, along with the cut coordinate system axes and force resultants. In

this figure, the elements shown are located on the +Y cut side of the cut. To comply with

the sign convention presented in Figure 4.5, the sign of MB must be reversed in order to

produce a positive moment in the slab, where the top surface is in compression. However,

due to the equilibrium of the forces acting on the cut, the resultant moment due to elements

on the −Y cut need not be reversed. Thus, these two moments, though effectively equal and

opposite in the case where no concentrated loads are present, result in the same physical

bending behavior although opposite in sign when initially computed.

CALCULATE RESULTANT results are interpreted in subroutine CRCCMN.ice.

4.6 Design Procedure

Now that the slab cross-section has been defined and the resultant forces acting on the cut

have been computed, steel reinforcement must be designed to resist the design envelope.

The cross-section in the flat plate is designed using the same general method as that in

reinforced concrete beam design. A procedure to design reinforcement in strict conformity

to the ACI requirements presented in Chapter 2 is described in the following sections.

The primary design algorithm is implemented in subroutine CRCSLB.ice.
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4.6.1 Initial Design Processing

4.6.1.1 User Intent

The first step in the design procedure is to determine the design intention of the user. The

DESIGN SLAB command was implemented in a manner as to provide the user varying

degrees of control, in which case the user can constrain the bar size and spacing, the bar

size or spacing, or neither the bar size nor spacing. Based on which input the user specifies,

the algorithm determines the appropriate course of action.

For both top and bottom reinforcement, the user can specify any combination of bar sizes

and spacing. If the user specifies a bar size or spacing for top and bottom bars separately,

and then issues the BOTH FACES modifier followed by a bar size and spacing for both

faces, the data specified after the BOTH FACES modifier replaces the data specified by

either the TOP or BOTTOM modifiers, and a message reports this to the user.

If the BOTH modifier is not given, top and bottom reinforcement can be designed

using different methods. For instance, top reinforcement may be designed with the spacing

constrained to 12 inches and bottom reinforcement may be designed with the bar size

constrained to #6 (M19) bars.

If the user specifies neither a bar size nor spacing for either face, the algorithm assumes

an initial bar size of #5 (M16), and the both faces are designed accordingly.

4.6.1.2 Direction of Reinforcement

In the DESIGN SLAB command, reinforcing bars are designed perpendicular (⊥) to the

cut. In terms of the cut coordinate system, reinforcing bars are placed parallel (‖) to

the Y cut axis and perpendicular (⊥) to the Xcut axis. In the case of a skewed mesh, the

reinforcement will often not be orthogonal to the planar axes, as shown in Figure 4.6.

The practical implication of this is that the user must create the finite element model

with mesh lines that correspond not only to the locations of the intended cuts, but also

perpendicular to the reinforcement direction. A future enhancement to the program may

be to design reinforcement at an arbitrary angle with respect to the cut, as has been

implemented previously in other studies [68].
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Figure 4.6: Direction of Reinforcing Bars for Non-Orthogonal Cut (Plan)

4.6.1.3 Initial Design Calculations

Before the area of steel required can be computed, several parameters must be calculated.

First of all, the yield strain of the steel is computed based on the yield stress. The

yield stress can be specified via the CONSTANTS command, otherwise the default value of

60,000 psi is used. By Hooke’s Law, the yield strain of the steel is given by εy = fy/E.

The factor, β1, is computed based on the compressive strength of the concrete, f ′c, and

ranges from 0.65 to 0.85 per Section 2.1.2.1. This factor relates the depth of the assumed

rectangular compression zone to the location of the neutral axis.

The depth of steel reinforcement must also be determined prior to the computation of

area of steel required. Typically, a slab is reinforced in two orthogonal directions, and two

directions of bars cannot occupy the same depth in the cross-section. Instead, these bars

are placed on top of each other such that two layers of steel reinforcement are formed. This

concept is demonstrated in Figure 4.7.

The user has the option in the DESIGN SLAB command to specify whether to design the

interior layer or the exterior layer of reinforcement. When the user does not specify a layer,

the DESIGN SLAB command is not aware of which layer is currently being designed, so it

always assumes the distance to the interior layer. This assumption is conservative because

the steel will be placed physically in the slab at a distance equal to this assumption or

greater, such that the moment arm between this layer of reinforcement and the compression

zone is never smaller than assumed. This assumption also assures that the physical strain
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Figure 4.7: Slab Cross-Section: d−Distance

in the steel will be at least equal to the computed value as well.

The depth to the assumed location of the bars is given in Equations 4.5 and 4.6. The

depth, either dshort or dlong, is a function of the slab thickness, t, the cover, the diameter

of the bars being used, db, and is labeled in Figure 4.7.

dshort = t− cover − 1.5× db (4.5)

dlong = t− cover − 0.5× db (4.6)

If the user specifies to design the interior layer, dshort is used. If the user specifies to design

the exterior layer, dlong is used.

The maximum and minimum spacing of reinforcement for the slab must be determined

according to the rules presented in Chapter 2. First of all, the maximum center-to-center

spacing is computed as the minimum of either 18 inches or two times the slab thickness.

The minimum clear spacing between bars is set to 2.5 inches.

4.6.1.4 Scope of Design

A flat plate system will not require reinforcement on both faces at all locations. Intepreta-

tion of the design envelope indicates which faces of the slab should be reinforced.

If both the positive ultimate moment and the negative ultimate moment are non-zero,

both faces must be designed to resist flexure.

If the set of active loading cases only produces either positive or negative bending,

only the face subject to tensile stress during bending must be designed. No reinforcement

is required at the opposite face from a flexural perspective. Detailing requirements may
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ultimately dictate bars must extend into this region based on continuity and cut-off length

requirements, however.

If the envelope suggests that the section is subject neither to positive nor negative

bending, the slab is designed with one layer of steel on the bottom surface to satisfy shrinkage

and temperature requirements.

4.6.1.5 Required Area of Steel

In order to design steel reinforcement, the required steel to resist flexure is computed, along

with the minimum flexural steel requirements and minimum shrinkage and temperature

requirements.

The first computation in determination of the required steel area is the calculation of

the area of reinforcement required to resist flexure. The area of flexural steel reinforcement

required is computed for the cross-section using Equation 2.7. Here, φ is initially assumed

to equal 0.9 (for a tension-controlled section), and all other parameters are known. The

discriminant of this quadratic equation must be checked to be greater than zero, or else

a valid solution for the required steel area does not exist. After computing the area of

steel, the depth of the compression block is computed using Equation 2.3. The depth to

the neutral axis is computed then such that the strain in the steel can be determined by

Equation 2.4. At this point, the assumption that the section is tension-controlled must be

verified. If the strain in the steel is less than 0.005, φ is decreased based on the strain and the

area of steel is recomputed with Equation 2.7 using the new φ-factor. This procedure must

continue iteratively on φ until As converges. In the implemented procedure, if the solution

does not converge after 10 iterations, an error is issued to the user and the command is

exited.

The minimum area of steel required to resist the effects of temperature and shrinkage

is computed using Equation 2.21.

The required area of steel for design is taken as the greatest of these computed values.
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4.6.2 Check Specified Bar and Spacing

If a user has specified final bar size and spacing, the capacity of the section must be checked.

The same procedure is applied to check a user-specified design via the command, as well as

check the results of the DESIGN SLAB-generated designs where either the bar size, spacing,

or neither is constrained.

The first step in the ultimate strength check is to compute the area of steel provided.

The area of steel provided is simply the area of a single bar divided by the bar spacing to

compute the area of steel per unit width, and then scaled by the width of the cross-section.

Next, the distance dshort must be modified to account for the diameter of the actual bar

size provided. The depth of the compression block, a, is computed such that the location

of the neutral axis, and thus strain in the steel, εs, can be computed.

Based on the strain condition, the appropriate φ-factor is determined, and the ultimate

moment capacity is computed using Equation 2.5. The results of the ultimate strength

check are reported to the user via the GT STRUDL Output Window.

4.6.3 Design with No User Constraints

If the user specifies neither a bar size nor spacing in the DESIGN SLAB command, the

algorithm essentially designs the section “from scratch.”

First of all, the algorithm initially assumes #5 (M16) bars for design. The area of steel

per bar as well as the bar diameter are retrieved. Based on this information, the algorithm

then determines the minimum number of bars required to collectively supply the computed

area of steel required or greater. Based on the number of bars required, the center-to-center

spacing of the bars is computed as the width of the slab cross-section divided by the number

of bars. From this value, the clear spacing is calculated as the center-to-center spacing minus

the width of one bar, db. Both center spacing and clear spacing are reported to the user

in 0.5 inch increments, always rounded down. Thus, a computed spacing of 10.79 inches is

replaced by the value 10.5 inches.

At this point, the center spacing is compared to the maximum allowable center-to-

center spacing. If the center spacing exceeds the maximum, the bar size must be decreased
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to generate a smaller spacing. If the clear spacing is smaller than the minimum allowable,

the bar size must be increased, thus generating a larger spacing.

After each modification of bar size, the center and clear spacings are computed and

checked against the maximum and minimum allowable requirements. If all bar sizes are

checked and shown to provide unsatisfactory spacings, the user is issued an error message

stating that the required reinforcement cannot be physically constructed due to geometric

constraints.

Once a reinforcing solution has been determined, consisting of a bar size, number of bars,

and spacing, the ultimate strength of the cross-section must be checked via the procedure

described in Section 4.6.2.

4.6.4 Design with Bar Size Constrained

When the user specifies a bar size constraint but no spacing limitations, the procedure

followed is similar to that of Section 4.6.3 with a few modifications.

Based on the specified bar size, both the center-to-center spacing and clear spacing are

computed. These values are compared to the minimum and maximum spacing requirements.

If the spacing computed satisfies the maximum and minimum requirements, the ultimate

strength is checked as described in Section 4.6.2.

If the design spacing exceeds the maximum spacing requirements, the computed spacing

is reduced to the maximum allowable spacing. This effectively increases the area of steel

provided in the cross-section. At this point, the algorithm does not know if this will be an

allowable design. Based on the new spacing, the strain in the steel at ultimate conditions

must yield. If this does not occur, this technique will not produce a satisfactory design.

If the minimum spacing requirements are violated with the user-specified bar size, an

error message is issued to the user stating that the requested reinforcement cannot be

physically constructed due to geometric constraints.

Once a design has been determined, the ultimate strength must be checked using the

procedure described above. The final bar size and spacing, along with the area of steel

required per unit length, are output to the GT STRUDL Output Window.
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4.6.5 Design with Bar Spacing Constrained

Occasionally an engineer will wish to constrain the spacing of reinforcement in the slab. A

scenario requiring such a technique may occur if the slab must have special openings for

mechanical systems.

In this case, once the required area of steel is computed, the required area is divided

by the width of the cross-section, and then scaled by the constrained spacing to determine

the minimum area each bar must provide, assuming that the specified spacing satisfies the

maximum and minimum spacing requirements described in Chapter 2. The list of available

bar sizes are scanned to find the smallest bar satisfying the minimum area requirement. If

the required area per bar is greater than that of standard bar sizes, the user is warned that

a design using the specified spacing could not be determined.

If a satisfactory bar size is found, the ultimate strength of the provided design is checked

using the procedure described in Section 4.6.2.

4.6.6 Shear Check

As implemented, the procedure offers no provisions for the design of shear reinforcement.

However, a simple check is provided to indicate the significance of any shear effects acting

on the cross-section.

The check performed is the same as that applied to check the shear strength of a re-

inforced concrete beam without stirrups. The shear capacity is computed using Equation

2.10, and is compared with the ultimate shear, as determined from the CALCULATE RE-

SULTANT command results.

Satisfaction of this check does not guarantee that punching shear and moment transfer

shear have been satisfied throughout the system.

4.6.7 Final Comments

The design procedures described are executed for both surfaces of the slab based on the

user intent and design envelope. Once both designs have been completed, the results are

presented to the user through the screen in command mode.
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Because the results reported consist simply of a bar size and spacing for the top and

bottom surfaces, the engineer must appropriately detail the system based on the full require-

ments explained in Chapter 2, including development length and continuity requirements.

Another important point is that because the design only accounts for flexural resistance,

the engineer must determine independently that serviceability requirements are satisfied for

the slab system. The benefit of a finite element-based design procedure is that the engineer

will have already created a detailed analytical model of the system that can be used to

evaluate deflections. However, these checks are not integrated into the DESIGN SLAB

command because only local effects are known for a given cut.
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CHAPTER V

RESULTS AND NUMERICAL STUDIES

The objective of this chapter is to validate the reinforced concrete flat plate design procedure

implemented in GT STRUDL by means of several example problems and numerical studies.

Examples presented include single-panel flat plate systems with various support conditions

as well as multi-panel flat plate systems with regular and irregular column spacing.

5.1 Example 1 - Convergence of Area of Steel

As stated in Chapter 3, in order for the finite element method to be used for design ap-

plications, careful steps must be followed in order to determine that the model accurately

represents the physical behavior of the slab. One of the critical components in the valida-

tion process is to confirm that the final finite element model has converged, as explained in

Section 3.1.1. In general, convergence is confirmed by systematically refining the mesh and

tracking the changes in key response quantities. When the model has converged, a signifi-

cant increase in the number of elements in the model results in an insignificant change in

the desired response quantity.

In order to demonstrate the convergence of a flat plate system, a square, fix-supported

flat plate was modeled. The geometry of this system is shown in Figure 5.1. The slab was

6 inches thick and was composed of 4000 psi reinforced concrete. The slab was subjected

to its own self-weight as well as a 50 psf live load.

The slab was analyzed using four different models, each with an increasing number of

finite elements. Each of these models are shown in Figure 5.2. The four meshes contained

16 elements (4x4 mesh), 64 elements (8x8 mesh), 256 elements (16x16 mesh), and 1024

elements (32x32 mesh), respectively. Fixed support conditions were achieved by restraining

all translations and rotations for the joints along the boundaries. Each model used the BPR

finite element in GT STRUDL, and was then re-analyzed using the BPHQ element [13].
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20'

20'

Figure 5.1: Example 1 - Geometry

Figure 5.2: Example 1 - Finite Element Models

Note that in Example 2, the SBHQ6 finite element was used although the convergence of

this element is not explicitly demonstrated in this example. The SBHQ6 is a shell element

capable of representing stretching and bending action. In this element, the in-plane and

plate bending components are uncoupled, and the plate bending formulation is exactly that

of the BPHQ element [13]. As such, the SBHQ6 was not evaluated in this example as

bending results obtained from this element would be identical to those obtained by the

BPHQ element.

In each model, three key response quantities were examined. First of all, the transverse

displacement at the center node; second, the bending moment acting on the cut shown in
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Table 5.1: Example 1 - Computed Response Quantities

Element # Elements Center Displacement Design Moment As,required
(in) (lb-in) (in2)

BPR 16 -0.1032 146465.60 0.636
64 -0.0965 172594.40 0.751
256 -0.0945 178981.40 0.779
1024 -0.0940 180499.00 0.786

BPHQ 16 -0.0919 148913.98 0.647
64 -0.0920 170687.77 0.742
256 -0.0939 178475.89 0.777
1024 -0.0940 180446.98 0.785

Figure 5.1; and finally, the required area of steel along the cut as computed by the DESIGN

SLAB command. The summary of these response quantities is presented in Table 5.1.

Not all of these response quantities converged at the same rate. For the center displace-

ment and the required area of steel, the percent difference between each progressive mesh

and the final converged solution were computed. The displacement computed using the 4x4

mesh was within 9.7% of the converged displacement solution computed using the 32x32

mesh. However, the area of steel computed using the 4x4 mesh was 19.1% less than the con-

verged area of steel computed using the 32x32 mesh. Figure 5.3 graphically demonstrates

how the center displacement is more rapidly convergent than the required area of steel for

both elements used.

Example 1 demonstrated the need to carefully confirm convergence of the actual design

response quantity. Although convergence of displacements demonstrates that the model

is beginning to accurately simulate the behavior of the slab, it does not guarantee that

bending moments have converged. If the mesh is such that the results have not converged,

a significant error in the area of steel computed can result. For the structure in Example 1,

an inappropriate mesh was shown to produce an error as large as 19% in the area of steel

computed.

Based on the small percentage of difference in area of steel obtained between the model

with 256 elements and the model with 1024 elements, the analysis results are assumed
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Figure 5.3: Example 1 - Convergence of Key Response Quantities
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Figure 5.4: Example 2 - Simplified Model with Edge Beams Neglected and Space Frame
Member Columns

Figure 5.5: Example 2 - Detailed Model with Edge Beams and 3D Solid Interior Columns

to converge with the model containing 1024 elements. This dense meshing philosophy is

applied to the models in the subsequent examples.

5.2 Example 2 - Comparison with Experimental Data

The practice of designing flat plate systems using finite elements cannot be validated solely

on the basis of agreement with accepted design techniques. Both ACI direct design as well

as the equivalent frame technique are approximate and subject to many limitations. As

such, finite element based flat plate analysis must correspond with experimental data as

well for purposes of verification.

The particular experimental study used for comparison was conducted by Gamble at

the Univeristy of Illinois [28]. The test structure consisted of a quarter-scale, nine-panel
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reinforced concrete flat plate. The columns were spaced at a distance of 5 ft, and the

thickness of the slab was 13
4 in. Edge beams were located around the perimeter of the

structure. On two adjacent edges, the edge beams were deep (5 in. deep × 2 in. wide),

and on the other two adjacent edges, the edge beams are shallow (23
4 in. deep × 4 in.

wide). The structure was progressively loaded from 44 psf to 140 psf. Bending moments

were determined throughout the test structure from measured strains in the reinforcement

of the structure. The flat plate was supported on 111
4 in. tall, 6 in. x 6 in. columns.

The compressive strength of the concrete was measured as 2510 psi, and the modulus of

elasticity was 2800 ksi. The details of reinforcement and arrangement of strips are given in

Figures 5.6 and 5.7.

Two finite element models were created to analyze the structure: a simplified model and

a more detailed model. The same bending moments were computed and compared for both

of these models. The mesh for these models was chosen based on the results of Example 1.

In the simplified model, the flat plate was modeled in GT STRUDL using the SBHQ6

plate element. The columns were modeled using space frame members, and the rigid solid

technique was employed to accurately model the slab-to-column connection. In the simpli-

fied model, the edge beams were neglected. The base of the columns were pin-supported to

simulate the bearing support discussed by Gamble [28]. The simplified GT STRUDL model

contained 3985 nodes, 3844 finite elements, and solved in 50.37 seconds. The simplified GT

STRUDL model for Example 3 is shown in Figure 5.4.

The detailed finite element model was similar to the simplified model, except with a

few modifications. First of all, the interior columns were replaced with 3D solid elements

to more accurately represent the interaction of the column and slab. Second, the edge

beams were modeled around the exterior of the system using frame members with eccentric

connections to translate the centroid to the appropriate depth below the surface of the slab.

The detailed GT STRUDL model contained 4125 nodes, 260 members, 3908 elements, and

solved in 62.67 seconds. The detailed GT STRUDL model for Example 3 is shown in Figure

5.5.

The interior panels were divided into column and middle strips based on ACI 318. The
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Figure 5.6: Example 2 - Test Structure Top Reinforcement (Gamble, [28])
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Figure 5.7: Example 2 - Test Structure Bottom Reinforcement (Gamble, [28])
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strip dimensions used in the models were the same as those used in the experimental study,

shown in Figures 5.6 and 5.7. For the interior panel, bending moments were computed along

several sections at each load level, including the negative moment region in the column strip,

negative moment region in the middle strip, positive moment region in the column strip,

and positive moment region in the middle strip. In addition, the negative moments in the

column strip and middle strip were combined to compute the total negative moment in

the strip, and the positive moments in the column strip and middle strip were combined

to compute the total positive moment in the strip. Finally, the total negative moment

was combined with the total positive moment to compute the total static moment, or total

variation of moment in the panel. The experimental and finite element results are presented

in Table 5.2. Experimental bending moments in the exterior panels were not available and

thus not compared.

In the experimental structure, the bending moments were computed based on the strain

in the steel as measured at various sections across each region. Based on the details in

Gamble’s work showing the strain gage locations, it was not completely clear where all of

the response quantities were located in the structure. The positive moment regions were

located exactly at the center span between columns, and the middle strip negative moment

cut was located on the column line. However, what was unclear was whether the column

strip negative moment was computed at the face of the column or at the centroid, or even

perhaps a piecewise combination. Over the width of the physical column, strain gages were

placed at the face of the column. However, in the column strip region beyond the width of

the column, the gages appeared to be located at the transverse column line. As such, the

column strip negative moment varied depending where it was computed. In the table below,

the GT STRUDL values reported (e.g. 10.90 k-in and 10.74 k-in) were located at the column

face. Taking the entire cut across the centroid of the column yielded a negative moment

equal to 7.14 k-in. If the resultants were computed exactly as detailed (i.e. the resultant

across the column width was computed at the column face while the rest of the column

strip resultant was computed at the column line, as shown in Figure 5.8), the computed

negative moment was equal to 10.67 k-in.
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Column Strip

 

Figure 5.8: Example 2 - Moment Components Corresponding to Strain Gage Locations

Table 5.2: Example 2 - Experimental and Finite Element Bending Moments

Location Uniform Applied Load (psf)
44 72 84 101 107 118 140

Negative Moment Column Strip
Experimental (k-in) 2.62 4.46 5.17 6.12 6.67 7.38 8.61
FEA Simplified (k-in) 3.42 5.60 6.54 7.86 8.33 9.18 10.90
FEA Detailed (k-in) 3.38 5.52 6.44 7.75 8.21 9.05 10.74

Negative Moment Middle Strip
Experimental (k-in) 1.40 2.26 2.90 3.47 3.66 4.08 4.65
FEA Simplified (k-in) 0.89 1.46 1.71 2.05 2.18 2.40 2.85
FEA Detailed (k-in) 1.16 1.89 2.21 2.66 2.81 3.10 3.68

Total Negative Moment
Experimental (k-in) 4.02 6.72 8.07 9.59 10.33 11.46 13.26
FEA Simplified (k-in) 4.32 7.07 8.25 9.91 10.50 11.58 13.74
FEA Detailed (k-in) 4.53 7.42 8.65 10.40 11.02 12.16 14.42

Positive Moment Column Strip
Experimental (k-in) 1.42 2.39 2.81 3.47 3.73 4.18 4.87
FEA Simplified (k-in) 1.42 2.32 2.71 3.26 3.45 3.81 4.52
FEA Detailed (k-in) 1.49 2.43 2.84 3.41 3.61 3.98 4.73

Positive Moment Middle Strip
Experimental (k-in) 1.04 1.69 2.06 2.46 2.63 2.91 3.40
FEA Simplified (k-in) 1.04 1.71 1.99 2.39 2.54 2.80 3.32
FEA Detailed (k-in) 1.02 1.67 1.95 2.34 2.48 2.73 3.24

Total Positive Moment
Experimental (k-in) 2.46 4.08 4.87 5.93 6.36 7.09 8.27
FEA Simplified (k-in) 2.46 4.03 4.70 5.65 5.99 6.61 7.84
FEA Detailed (k-in) 2.50 4.10 4.78 5.75 6.09 6.72 7.97

Total Static Moment
Experimental (k-in) 6.48 10.80 12.94 15.52 16.69 18.55 21.53
FEA Simplified (k-in) 6.78 11.10 12.95 15.57 16.49 18.19 21.58
FEA Detailed (k-in) 7.04 11.52 13.43 16.15 17.11 18.87 22.39
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Figure 5.10: Example 2 - Total Moment in Interior Panel
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Several important trends are shown in Table 5.2. First of all, for positive bending in

both the column strips and the middle strips, the analytical results from the simplified and

detailed finite element analyses were in close agreement with experimental data.

However, the negative moments in the column strip and middle strip computed using the

finite element models deviated from the experimental results. Graphically, this is shown in

Figure 5.9. In the column strip, both finite element solutions overestimated the experimental

negative bending moment by approximately identical margins. However, in the middle strip,

both finite element solutions underestimated the experimental negative bending moment.

The simplified finite element model underestimated this quantity by approximately twice as

much as the detailed finite element model. The disagreement between these two models was

attributed to the inclusion of exterior edge beams in the detailed model. These edge beams

alter the relative stiffness of the system, resulting in a distribution of more moment to the

exterior from the interior middle strip negative moment region. These results indicate that

the edge beams should be modeled if present in the physical structure.

However, comparing the total negative moment acting on the combined column and mid-

dle strips showed that both finite element solutions slightly overestimate the total negative

moment in the slab strip. Similarly, both finite element solutions slightly underestimated

the total positive moment in the slab strip. As a result, the total static moment in the

slab predicted using both finite element models was in close agreement with experimental

results. Graphs of these combined moments versus load level are given in Figure 5.10.

The comparison of measured and analytical bending moments in the interior slab panel

yielded several important points. First of all, the computed accuracy of the total negative

moment, total positive moment, and total static moment confirmed that the application

of the finite element element method is viable from an equilibrium perspective. If the

total static moment computed from the finite element models significantly varied from the

experimental results, the applicability of the technique would be suspect.

Further, the fact that more moment was distributed to the column strip in the negative

moment regions of the finite element models than in the experimental structure indicated

that the finite element models represent a higher stiffness of the column-to-slab connection.
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Figure 5.11: Example 3 - Geometry

5.3 Example 3 - Square Bay Flat Plate Structure

For many years, flat plate structures have been designed using approximate techniques

such as ACI direct design or equivalent frame design. Despite the approximations of these

techniques, many structures designed using these methods have performed well. In Example

3, the DESIGN SLAB command was used to design a square bay flat plate in order to

compare with the results of simplified ACI methods.

The structure modeled consisted of 9 square panels (3 bay × 3 bay). The plate was 8

inches thick and constructed of 4000 psi concrete. The structure was supported on columns,

2 ft square and 12 ft tall, above and below the slab, and the columns were spaced at 24 feet

on center in each direction. The geometry of the structure is shown in Figure 5.11. The

structure was loaded with its self-weight, 40 psf superimposed dead load, and 40 psf live

load. A load factor of 1.2 was applied to dead loads, and a load factor of 1.6 was applied

to live loads. Pattern live loadings were considered for the system, and will be discussed

later. Only reinforcement in the East-West direction was designed because of the symmetry

of the structure. Column and middle strips were used to define the cut sections, and were

determined according to ACI requirements.

Two GT STRUDL finite element models were developed to evaluate the system, and

are shown in Figure 5.12. In the first model, the slab was modeled using the BPHQ element
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Figure 5.12: Example 3 - Finite Element Model with Space Frame Member Columns (left)
and Finite Element Model of 1

4 of Structure with 3D Solid Columns (right)

[13]. The columns were modeled using space frame members, and the connection between

the column and slab was assumed to be fully rigid. The finite size of the column connection

was modeled using the rigid solid technique. The columns were fix-supported at the top and

bottom. The mesh was chosen for this example based on the results of Example 1. This GT

STRUDL model contained 5657 nodes, 5476 elements, 9 independent loading conditions, 8

dependent loading conditions, and solved in 71.69 seconds.

In order to validate the use of the rigid solid technique to model the slab-to-column

connection, a second GT STRUDL model was created in which the columns were modeled

using 3D solid elements. The example structure was doubly symmetric, so only one fourth

of the structure was modeled in order to improve the solution time. This GT STRUDL

model consisted of 26,656 nodes, 22,545 elements, 1 loading condition, and solved in 22.15

minutes.

The slab was then designed using direct design, the equivalent column method, the

Wood and Armer method, and then the DESIGN SLAB command for both GT STRUDL

models. For each method, interior as well as exterior regions were designed. The results

of these analyses are given on the following pages. The tabulated bending moments and

required area of steel for the interior panel are given in Table 5.3, and the tabulated bending

moments and required area of steel for the exterior region are given in Table 5.4. The results

in Tables 5.3 and 5.4 corresponded to the case where all loads were applied uniformly over

the entire structure.
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Several important comments can be made regarding the results in Tables 5.3 and 5.4.

First of all, all three finite element-based design methods produced designs in close agree-

ment with each other. Small variations were expected based on the difference in formulation

used in the computation of response quantities. However, the close correlation indicated

that modeling the columns using frame members and then distributing the finite size of the

column to the slab via the rigid solid technique can be used in place of a more detailed

analysis where the columns are modeled as 3D solid elements. The use of 3D solids was

uneconomic, and based on the results of these analyses, provided no significant increase in

accuracy over the rigid solid technique.

Second, for the interior region, a comparison of bending moments as well as required

area of steel showed that the solutions based on finite element analysis deviated only slightly

from the simplified ACI methods. For the interior panels, the maximum difference in area

of steel computed between the DESIGN SLAB command and all other methods was less

than 0.50 in2 at each interior location.

However, comparison of finite element-based solutions in the exterior region showed

significant deviation from simplified techniques, especially at the exterior column strip neg-

ative moment region. In fact, the finite element solutions predicted higher moments at

exterior columns by approximately a factor of 2. It is apparent from these values that the

assumption of linear elastic behavior (i.e. no cracking), as well as the assumed fully rigid

connection, generated a higher stiffness of the slab-to-column connection in these regions.

This stiffening of the structure caused a redistribution of moment throughout the exterior

panel, accounting for further variation between the finite element results and the simplified

ACI methods.

It is also possible that, in this example, the larger moments computed at the exterior

column faces are associated with the relatively large columns used. Example 4 show that

for smaller column sizes, closer agreement with simplified methods was obtained.

This same phenomenon likely occured at interior column-to-slab connections as well.

Column size differences did not produce as much variation in the design results, however,

because the continuation of the slab on the opposite side of the column effectively stiffened
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the interior panel boundary to a condition of near fixity.

So far the discussion of results has neglected the effects of pattern live loadings. Previous

work by Jirsa, Sozen and Siess showed that in flat plates, pattern live loadings may influence

bending moment design quantities significantly [41]. In addition to influencing bending

moments, pattern live loadings can also develop significant torsional moments in the flat

plate.

To evaluate the effect of pattern live loadings on the behavior of the system, the flat

plate was subjected to 6 pattern loading cases in addition to the initial case where the live

load was applied everywhere simultaneously. The six pattern live loads that were applied

are shown in Figure 5.13. These pattern loads were then combined with the self-weight

(SW) and superimposed dead load (DL) to create the following ultimate load combinations

(PLC stands for Pattern Load Combination):

Uniform = 1.2SW + 1.2DL + 1.6LL

PLC #1 = 1.2SW + 1.2DL + 0.75 · 1.6PL1

PLC #2 = 1.2SW + 1.2DL + 0.75 · 1.6PL2

PLC #3 = 1.2SW + 1.2DL + 0.75 · 1.6PL3

PLC #4 = 1.2SW + 1.2DL + 0.75 · 1.6PL4

PLC #5 = 1.2SW + 1.2DL + 0.75 · 1.6PL5

PLC #6 = 1.2SW + 1.2DL + 0.75 · 1.6PL6

For each ultimate pattern load combination, the bending moment at each interior and

exterior region was computed and tabulated in comparison to the moments obtained from

the original loading case wherein the live load was distributed everywhere (denoted Uniform

in the list of loading combinations). Each region was designed using the DESIGN SLAB

command, the Wood and Armer method, and the Equivalent Column technique. Note

that the equivalent column technique is applicable only for pattern load cases 2, 4, and

6 for the design of reinforcement in the East-West direction. For the interior region, the

pattern bending moments are given in Table 5.5 and required area of steel in Table 5.6. For

the exterior region, the pattern bending moments are given in Table 5.7 and required area
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Load Pattern 1 Load Pattern 3 Load Pattern 5

Load Pattern 2 Load Pattern 4 Load Pattern 6
NORTH

Figure 5.13: Example 3 - Pattern Live Loadings

of steel in Table 5.8. In addition, the ratio of torsional moment to bending moment was

computed for each pattern load combination. The torsion-to-bending ratios are presented

in Table 5.9.

Tables 5.5 through 5.8 show some important trends with respect to the influence of pat-

tern live loads. First of all, for the cases considered, pattern live loads did not significantly

increase the bending moments for design in any of the three methods employed. In fact,

as shown in Tables 5.6 and 5.8, the increase in area of steel for all cases (both interior and

exterior) was smaller than that provided by a #3 bar, indicating that the pattern loads

produced insignificant changes in actual design results. Pattern live loadings had such a

small effect due to the 0.75 live load reduction factor applied based on ACI 13.7.6 [2].

Perhaps more significantly, pattern live loads created torsional effects that would never

be considered if the live load were applied uniformly over the entire structure. Notice in

Table 5.9 that under the Uniform loading, the maximum torsional moment (MT ) in the

interior region was 3.97% of the column strip negative moment (MB). However, this ratio

increases to 14.31% under PLC #3. Similarly, the column strip exterior negative MT /MB

ratio increased from 3.45% to 16.04% under PLC #3. High torsional moments, such as those

developed under the pattern loading conditions, indicated that the principle bending axes

were not parallel with the user-selected cut, and as such, must be evaluated with caution.
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For the cases where the torsional moment was greater than 10%, it was important to

determine if the Wood and Armer method produced a design moment and area of steel

different from the DESIGN SLAB command, since the DESIGN SLAB command did not

incorporate the resultant torsional moment. For the interior column strip negative moment

region under loading condition PLC #3, the DESIGN SLAB command produced a design

moment of -144.58 kip-ft and an area of steel of 5.37 in2, while the Wood and Armer

technique produced a design moment of -134.90 kip-ft and an area of steel of 5.06 in2. For

the exterior panel column strip exterior negative moment region under loading condition

PLC #3, the DESIGN SLAB command produced a design moment of -128.80 kip-ft and an

area of steel of 4.75 in2, while the Wood and Armer technique produced a design moment

of -123.64 kip-ft and an area of steel of 4.70 in2. For the interior panel column strip interior

negative moment region under loading condition PLC #3, the DESIGN SLAB command

produced a design moment of -156.90 kip-ft and an area of steel of 5.86 in2, while the Wood

and Armer technique produced a design moment of -143.56 kip-ft and an area of steel of

5.43 in2. Note that the equivalent column technique neglected cases producing torsion in

the slab, such as loading combinations PLC #3 for East-West reinforcement, and as such

was not compared.

The significance of these findings was that in the case of a square flat plate system, for

regions where the resultant torsional moment is as large as 16% of the resultant bending

moment, the DESIGN SLAB command provides more steel reinforcement than the Wood

and Armer technique, which explicitly accounts for Mxy bending stresses.

5.4 Example 4 - Irregular Bay Rectangular Flat Plate Struc-
ture

Up to this point, only structures with square panels have been studied. Few structures in

practice conform to such uniform spacing. Because of this, a flat plate system with irregular

spacing was designed using the DESIGN SLAB program.

The structure evaluated in this example was similar to that of Example 4. The system

had 9 panels, consisting of rectangular 3 × 3 bays. The span lengths are shown in Figure
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NORTH

18'

18'

18'

24' 18' 24'

Figure 5.14: Example 4 - Dimensions and Finite Element Model

5.14. The columns were 12 feet tall and 12 inches square. The flat plate was 9 inches

thick according to ACI deflection criteria. The concrete had a compressive strength of

4000 psi. The slab was loaded with self-weight, 40 psf superimposed dead load, and 40

psf live load. The live load was applied in the same patterns as given for Example 3 in

Figure 5.13. Additionally, the same load combinations were used as that of Example 3.

For this example, strips oriented in the North-South direction were those reinforced parallel

to the North-South direction. Similarly, strips oriented in the East-West direction were

those reinforced parallel to the East-West direction. Column and middle strips were used

to define the cut sections, and were determined according to ACI requirements.

The structure was modeled in GT STRUDL using the same techniques as Example 3.

The flat plate was modeled with BPHQ finite elements [13], the columns were modeled

using frame members, and the column-to-slab connection was accomplished using the rigid

solid technique. The GT STRUDL model contained 15,017 nodes, 14,740 elements, and

solved in 180.24 seconds. A graphic of the GT STRUDL model is shown in Figure 5.14.

The mesh size corresponded to elements of size 6 inches × 6 inches, allowing four elements

to cover the cross-section of the column.

Bending moments at critical design locations in the North-South as well as East-West

directions were computed using ACI direct design, the ACI equivalent column technique,

and the DESIGN SLAB command in GT STRUDL for the ultimate uniform load. Then, the
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distribution of bending moment and area of steel were evaluated for each pattern loading,

along with the ratio of torsional moment to bending moment. Results in the North-South

direction are given in Tables 5.10 through 5.16, and results in the East-West direction are

given in Tables 5.17 through 5.23. Several important findings emerged from this example.

For the North/South direction, the bending moments and area of steel computed under

uniform factored loads using the DESIGN SLAB command were in close agreement with

the Wood and Armer method and the equivalent column technique for the interior panel,

as shown in Table 5.10. The maximum difference between area of steel computed using the

DESIGN SLAB command and either equivalent frame or Wood and Armer was approxi-

mately the area provided by one #5 (M16) bar, 0.31 in2. Direct design results deviated by

a difference of as much as 0.91 in2.

For the North/South exterior panel, the bending moments and area of steel computed

under uniform factored loads using the DESIGN SLAB command were in close agreement

with the equivalent column results and Wood and Armer results in all regions except for the

column strip exterior negative moment region, as shown in Table 5.11. At this location, the

DESIGN SLAB command calculated a bending moment of -34.96 kip-ft, while the Wood

and Armer method computed a bending moment of -46.45 kip-ft, resulting in a difference

in computed area of steel of 0.382 in2. At this location, the equivalent column technique

design moment was only -6.87 kip-ft. Again, Direct Design produced a distribution of

steel throughout the system different from that of the equivalent column method and finite

element solutions.

Similar to Example 3, pattern live loadings generated only minor increases in bending

moments and area of steel computed in the North/South direction. The results of the

pattern live loads are given in Tables 5.12 to 5.15. For instance, pattern load combination

PLC #5 increased the interior column strip positive moment from 35.03 kip-ft to 38.25

kip-ft and increased the middle strip positive moment from 15.20 kip-ft to 20.07 kip-ft. For

North/South strips, pattern live loads did not increase exterior region bending moments.

In the North/South direction, slab strips were unsymmetric because of varied column

spacing on each side of the strip. This lack of symmetry resulted in the generation of
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signficant torsional effects for cuts oriented in this direction. Table 5.16 gives the ratio of

resultant torsional moment, MT , to resultant bending moment, MB, as a percentage at each

design location for all loading conditions. For instance, in the exterior region at the column

strip exterior negative moment location, a torsional moment equal to 33.47% of the bending

moment was computed. Under loading condition PLC #6, this percentage was as large as

50.79%. It was under conditions such as these, where significant torsional effects occurred,

that the results of the DESIGN SLAB command deviated the most from the Wood and

Armer results. In the exterior region at the column strip exterior negative moment location,

under the uniform loading condition the DESIGN SLAB command calculated a bending

moment of -34.96 kip-ft, while the Wood and Armer method computed a bending moment

of -46.45 kip-ft. At the same location under loading condition PLC #6, the DESIGN

SLAB command calculated a bending moment of -28.71 kip-ft, while the Wood and Armer

method computed a bending moment of -37.94 kip-ft. Both cases demonstrated a difference

in design moment of approximately 10 kip-ft, and the Wood and Armer method produced

the higher value in both cases. At numerous other locations with a large percentage of

torsional moment, the Wood and Armer technique predicted a higher moment than the

DESIGN SLAB command, indicating that the DESIGN SLAB command does not produce

an appropriate bending moment for design in areas of high torsional moment (> 30%).

In the East/West direction, comparison of direct design results and equivalent column

results in Tables 5.17 and 5.18 show substantial disagreement in terms of bending moments

computed. This was particularly evident in the interior column strip negative moment

region as well as the exterior column strip negative moment region. The reason for this

discrepancy is an important limitation of the direct design method. While the equivalent

column method explicitly accounts for the size of the column in the computation of the

equivalent column stiffness, direct design only accounts for the size of the column in terms

of the clear distance between the columns in the strip. As such, under direct design, the

column strip negative moment in a system with 12 inch square columns could be the same

as that of a system with 24 inch square columns, provided the clear distance was the same.

Obviously, the latter case should generate more negative moment because of the increased
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column stiffness. In this example, the column size used (12 inches square) was relatively

small, so deviation between the direct design and equivalent column techniques in the

regions adjacent to the columns was expected. Futher comparison of design moments and

area of steel in the East/West direction shows that the DESIGN SLAB command produced

design moments and subsequent reinforcement in close agreement with the Wood and Armer

technique.

Unlike Example 3, the DESIGN SLAB command appeared to more accurately compute

the values of bending moment in both the exterior and interior East/West strips at the

column face, in comparison with the equivalent column technique and direct design results.

Because the columns were more flexible (due to a much smaller column size than Example

3), the finite element method appeared to more accurately represent the stiffness of the

connection. This suggests agreement with the equivalent column method may only be

applicable for a range of column sizes, and must be further investigated.

In Table 5.17, an interesting trend emerged relating to the positive moment regions in the

East/West interior panel. Because the exterior spans in the East/West direction were longer

than the interior span, the equivalent column method resulted in the entire interior panel

exhibiting negative bending, such that a positive bending moment was never developed at

the middle of the panel under uniform loading. Direct design does not account for this case,

as evidenced by the large positive moments computed. The DESIGN SLAB command,

however, showed that the entire interior panel was not in negative bending. Instead, the

moment in the column strip positive moment region was in fact positive, while the moment

in the middle strip positive moment region was in fact negative. The equivalent column

method is incapable of generating a distribution of bending moments such as this – both

strips are limited to the same sign. This demonstrated that the DESIGN SLAB command

is preferable to both simplified techniques because it created a more detailed representation

of the three-dimensional plate behavior of the system, instead of reducing the system to a

simplified two-dimensional approximation.

In general, pattern live loadings had little effect in terms of increasing bending moments

in the East/West direction. The two primary locations that experienced an increase in

135



bending moment were the interior positive moment regions in the column strip and middle

strip. In both of these areas, the magnitude of the design moment was not only increased,

but the pattern loadings created a full moment sign reversal. A reversal such as this indicates

the need for reinforcement on both faces.

Table 5.23 shows the torsional moment percentages for the East/West strips. Note

that since the slab-beam was symmetric, only small torsional effects were developed. The

maximum torsional percentage was 12.31%, developed at the column strip exterior negative

moment region under loading condition PLC #5. At this location and loading condition, the

DESIGN SLAB command computed a design moment of -54.97 kip-ft, while the Wood and

Armer method computed a design moment of -55.96 kip-ft. The close agreement between

the DESIGN SLAB command and Wood and Armer suggests that at the maximum torsional

moment of 12.31% the bending moment, the DESIGN SLAB command can be used even

though it does not explicitly account for the torsional effects.

5.5 Example 5 - Square Flat Plate Fix-Supported on Two
Sides

Example 5 demonstrated a critical example of the role that torsional moments can play in

the distribution of reinforcement in a slab system.

The geometry of Example 5 is given in Figure 5.15. The structure was a 30 ft by 30 ft

flat plate. The slab was fix-supported on two adjacent sides, and the other two adjacent

sides were free. The slab was 12 inches thick and constructed with 4000 psi concrete. The

slab was loaded with self-weight along with 50 psf live load.

The system was modeled in GT STRUDL. The flat plate was modeled using triangular

BPHT elements [13]. Triangular elements were used so as to orient the mesh lines for

diagonal cuts. For the fixed edges, all degrees of freedom were restrained at each node. The

model contained 961 nodes, 1800 elements, and solved in 0.86 seconds.

Four design cuts, labeled 1-4 in Figure 5.15, were evaluated and designed. Cuts 1 and 2

were orthogonal with respect to the edges of the structure, and cuts 3 and 4 were diagonal

(oriented at 45◦) with respect to the edges of the structure. The computed bending moment
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Figure 5.15: Example 5 - Geometry

Table 5.24: Effect of Torsion

Cut Bending Moment Torsional Moment As,required Surface
# (k-ft) (k-ft) (in2)
1 6.51 240.09 0.1405 Bottom
2 6.51 -240.09 0.1405 Bottom
3 -176.10 0.00 3.8703 Top
4 172.85 5.87 3.7974 Bottom

as well as required area of steel computed for each cut are presented in Table 5.24.

The result of this example was that for the given conditions, the reinforcement pro-

vided in both directions by cuts 1 and 2 was insufficient to resist the bending moments

computed about cuts 3 and 4. For the required bending moment from cut 3 to be resisted

by the combined reinforcement from cuts 1 and 2, cuts 1 and 2 must have each provided

176.10/
√

2 = 124.52 kip-ft of resistance via top bars. For the required bending moment

from cut 4 to be resisted by the combined reinforcement from cuts 1 and 2, cuts 1 and 2

must have each provide 172.85/
√

2 = 122.22 kip-ft of resistance via bottom bars.

Instead, cuts 1 and 2 only provided steel on the bottom face, and the area of steel

provided was dangerously insufficient to resist the principal bending moments in the system.

For bottom reinforcement, each direction was designed for 6.51 kip-ft when it should have

been designed for 122.22 kip-ft.

To investigate this deviation, cuts 1 and 2 were designed using the Wood and Armer
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method. The result of these computations were that the Wood and Armer technique pro-

vided reinforcement for both top and bottom for both cuts 1 and 2 that was close to that

required to resist the principal bending moments computed using element forces along cuts

3 and 4. When transformed to the principal directions, the Wood and Armer method pro-

vided 3.85 in2 of steel in the top (compared to 3.87 in2 required), and 3.42 in2 of steel in

the bottom (compared to 3.79 in2 required).

The reason for the large variation in design between these various cuts and methodologies

is that, at the present time, design using element forces does not incorporate the torsional

moment acting on the cross-section into the design bending moment. For cuts 1 and 2, the

resultant torsional moment was much larger than the resultant bending moment, indicating

that that cuts 1 and 2 were not oriented orthogonally to the directions of principal bending.

Figure 5.16 shows the Mxx, Mxy, and Mxy bending resultant contours, confirming that the

design cuts were located at the region of highest Mxy bending stresses in the system. In such

a region, the resultant torsional moment cannot simply be added to the bending moment,

analogous to the Wood and Armer method. First of all, this example problem showed that

adding MT to MB would be prohibitively inefficient – each direction would be designed for

a capacity of 246.60 kip-ft (over twice the required value). Second, whereas in the Wood

and Armer method Mxy acts in the same direction as both Mxx and Myy, in the DESIGN

SLAB method the resultant torsional moment from element forces acts orthogonally to the

resultant bending moment. As such, the direct combination of the MB and MT acting on

a cross-section is not justified.

This does not mean that the proposed methodology cannot appropriately design the

given structure in this example. Instead, cuts must be oriented so as to roughly correspond

orthogonally to the principal bending directions. If the cut lies at a skew to the principal

axes, a large torsional moment will be present. In GT STRUDL, vectors showing the

directions of principal bending can be generated graphically and are useful for determining

the appropriate orientation of strips. For the structure in Example 5, the principal bending

vectors M1 and M2 are shown in Figure 5.17. A tool such as this allows the user to efficiently

understand the behavior of the system in order to select appropriate cuts. Based on these
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principal bending vectors, the user would know to design using cuts 3 and 4 from Figure

5.15 instead of cuts 1 and 2.
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Figure 5.16: Example 5 - Bending Resultant Contours
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Figure 5.17: Example 5 - Principal Bending Vectors - M1 (top) and M2 (bottom)
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CHAPTER VI

CONCLUSIONS

6.1 Summary

In this study, a procedure was developed in GT STRUDL to design reinforced concrete flat

plate systems based on the results of finite element analysis.

The current state-of-practice of reinforced concrete flat plate design was reviewed, in-

cluding the ACI direct design and equivalent frame techniques, the yield line method, and

the strip design method. The principles of these methods along with a critical evaluation of

their applicability and limitations were presented as motivation for a finite element based

design procedure.

The current state-of-the-art of flat plate design based on finite element results was pre-

sented. Various flat plate modeling techniques were evaluated. Design methods studied

included the Wood and Armer approach, based on element stress resultants, and the resul-

tant force approach, based on element forces.

A flat plate design procedure based on the element force approach, the DESIGN SLAB

command, was implemented in GT STRUDL. The DESIGN SLAB command provides the

user the ability to specify a design cross-section simply by a start and end node, an element in

the plane of the cut, and several optional design parameters. The procedure then determines

all nodes and elements along the cut, computes the resultant forces and moments acting on

the cut, and designs according to ACI 318 and any input parameters, such as bar size and

spacing, specified by the user.

Several realistic flat plate systems were modeled and designed using the implemented

procedure. These examples allowed for critical comparison with results from experimental

studies and currently applied design methods to determine the applicability of the imple-

mented procedure. The DESIGN SLAB command was shown to produce design moments

for regular flat plate systems in agreement with experimental data as well as conventional
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design techniques. ACI column and middle strips were used to define the cut sections for

the DESIGN SLAB command.

In the given examples, a technique for modeling slab-to-column connections using joint

constraints was shown to appropriately simulate the transfer of moment over a finite area.

The results obtained employing this technique did not differ significantly from those ob-

tained by modeling the columns with 3D solid elements. The rigid solid technique is much

more efficient than use of 3D solids, both in terms of modeling time as well as computational

cost, and as such is recommended for the modeling of slab-to-column connections.

Example 1 of Chapter 5 demonstrated that an appropriate mesh size must be used

for the computation of accurate design results. An inappropriate mesh size can lead to a

significant error in the area of steel computed. For the structure in Example 1, the percent

change in area of steel computed between the most coarse mesh containing 16 elements and

the finest mesh containing 1024 elements was 19%.

In Example 2 of Chapter 5, the DESIGN SLAB command was shown to accurately

represent the total static moment in the interior panel of a square, 3-bay flat plate system.

This example showed that the finite element model was generally stiffer at column connec-

tions than the experimental structure. As such, the DESIGN SLAB solution distributed

more moment to the column strip negative moment region and less to the middle strip neg-

ative moment region than the experimental structure. The distribution of interior positive

moment was accurately predicted using the DESIGN SLAB command. A comparison of a

simplified model neglecting edge beams and a detailed model including edge beams showed

that modeling edge beams when present significantly affects the distribution of moment in

the system.

In Examples 3 and 4 of Chapter 5, the DESIGN SLAB command was used to design

interior and exterior panels of two 3-bay flat plate structures subjected to pattern loadings.

Example 3 had uniform column spacing in both directions, while Example 4 contained

varied column spacing. The DESIGN SLAB results for the interior panels agreed with both

Wood and Armer design results as well as results of the direct design and equivalent column

techniques. The DESIGN SLAB and Wood and Armer techniques showed agreement in the
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exterior regions, although both finite element techniques produced moment distributions

different from the results of the direct design and equivalent column techniques, particularly

at the exterior column strip negative moment region.

For cross-sections in a flat plate system where a large resultant torsional moment is

present, designing reinforcement based on bending moments computed from element forces

may be inappropriate. For Examples 3 and 4, the ratio of resultant torsional moment to

resultant bending moment was computed at each design cross-section under pattern loading

conditions. When this ratio was less than 15%, the DESIGN SLAB command was generally

shown to provide more reinforcement than the Wood and Armer method. However, when

the torsional moment ratio exceeded 15%, the DESIGN SLAB command was shown to

provide significantly less reinforcement than the Wood and Armer technique. As a result of

these studies, a warning was implemented in the program to notify the user if the torsional

moment exceeds 10% of the bending moment for a cross-section.

Example 5 of Chapter 5 showed that when cuts were not defined orthogonally to the di-

rections of principle bending, resulting designs could significantly under-reinforce the cross-

section. As such, cuts are recommended to be oriented orthogonally to the directions of

principle bending. If taking such a cut is prohibitive due to the element mesh geometry,

the Wood and Armer technique is recommended.

6.2 Future Work

6.2.1 Recommendations for Research

One of the most significant questions raised by this study pertained to the correct processing

of the resultant torsional moment acting on a cross-section, MT . At the present time,

no proposed method for including this component as a part of the design envelope was

developed.

Future research must be conducted to further define the scenarios in which significant

torsional moments are developed, and to define acceptable torsional moment bounds for

application of resultant force-based design. Furthermore, research must be conducted into

why for some cases of moderate torsional moment the DESIGN SLAB command was shown
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to provide more reinforcement than the Wood and Armer method, which directly accounts

for torsional effects. The effect of mesh sensitivity must be evaluated in such cases.

The ultimate goal of this study was to develop a framework for the eventual extension

of the proposed methods to highly irregular structures. Highly irregular structures include

those with openings, non-orthogonal boundaries and reinforcement, non-orthogonal column

lines, radial reinforcement, and plate/shear wall interaction. Such structures were not

evaluated in this study, and the implemented procedure cannot be assumed to be applicable

to such structures. Instead, it must be validated with analytical and/or experimental studies

of irregular structures of a variety of classifications.

Further research must be applied toward the development of methodologies for model-

ing nonlinearity in reinforced concrete flat plates. Implementation of such a methodology

will allow for a distribution of reinforcement corresponding to the distribution of bending

moments at the ultimate condition. Once this tool has been developed, the distribution

of reinforcement based on nonlinear analysis must be studied and contrasted with that of

linear elastic analysis to determine the method most appropriate for design practice.

The capability to analyze and reinforce for direct punching shear and moment transfer

shear at column-to-slab connections was not implemented. Instead, for each cross-section,

the resultant shear is checked against the shear strength computed based on beam shear

design. A procedure to account for direct punching shear and moment transfer shear using

finite elements must be developed. This is especially significant for flat plates because shear

at slab-to-column connections controls the design in many applications [58].

Only gravity loading conditions were considered in this study. Before the proposed

methodology can be applied in the design of structures subjected to lateral loads, it must

be validated by comparison with analytical solutions and experimental studies of laterally

loaded flat plate structures.

6.2.2 Program Enhancements

In the current implementation of the DESIGN SLAB command, a user must specify the

input data via the GT STRUDL Command Window. In order to input this information,
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the user must have previously gathered the cut data from the graphical user interface, GT

Menu. In GT Menu, the user must determine which joints form the beginning and end of

the cut, and also determine an element in the plane of the cut.

If, instead, the user could graphically select the start node, end node, and in-plane

element defining the cut, productivity would be greatly enhanced. By implementing this

change in GT Menu, the step of transferring the cut information from GT Menu to the

Command Window would be bypassed, possibly reducing the amount of time required to

design a cut by a factor of two.

Also, in the current implementation, all strips must be defined individually by the user.

Automation of the strip selection procedure would greatly enhance the productivity of the

user. The primary point of concern related to automation of strip selection is related to

the responsibility of the engineer in the design process. The manner in which the command

is currently implemented places the responsibility on the user to select appropriate cuts

and fully understand the consequences of the cuts they select. Automating this procedure

may allow the user to think less during design and blindly accept the generated design

without critically evaluating the relevance of the computer output. The extent of this point

of concern cannot be evaluated until possible automation algorithms are developed and

evaluated.

If the strip selection procedure were automated, the possibility would be opened for

development of an adaptive algorithm to optimize the layout of strips and reinforcement

with regard to various performance measures, such as reinforcement economy, deflections,

etc.

Axial force was neglected in the design procedures implemented as described in this

study. Axial forces, however, may become significant in some cases, and as such, the pro-

cedure must be extended to account for these effects. Incorporating axial forces would

significantly change the manner in which the design forces are computed. The technique

implemented in this study for determining the design envelope simply extracted the maxi-

mum positive and negative bending moments for each active loading condition. Once axial

forces are considered, each loading case must be considered independently so that axial
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forces remain coupled with the associated bending moments.

The DESIGN SLAB command was implemented with the future extension to other

reinforced concrete systems in mind. By including axial force, several additional structural

types could be analyzed. As such, the procedure could be extended to design shear walls,

foundation structures, shells, tanks, and slabs with beams, drop panels, and column capitals.

In addition, this would allow for the extension to prestressed slab systems.
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APPENDIX A

COMPRESSION REINFORCEMENT

The purpose of this Appendix is to confirm the applicability of the assumption presented in

Chapter 2 which stated that compression reinforcement can be neglected in the computation

of ultimate moment strength. The greater aim of this Appendix was to show that for a

range of geometric and loading configurations, “compression” reinforcement was not actually

within the compression zone, but rather was very near the neutral axis and in tension.

A parametric study was conducted where the negative moment in an interior panel

column strip was computed under a variety of conditions. The problem studied was as

follows:

• Rectangular Bay Layout

• Longitudinal column spacing 1.5 times transverse column spacing

• Loading: Self-Weight + 50 psf live load

• f ′c = 4000 psi

• fy = 60000 psi

• Longitudunal Column Spacing varies from 15 feet to 35 feet

• Thickness computed based on ACI ratio l
33

Based on these parameters, the critical moment was computed for each case. Only the

column strip negative moment was considered in this study in order to design the location

of highest moment in the slab. The width was computed based on the ratio of longitudinal

column spacing to transverse column spacing. Using this critical moment, the required

area of steel was computed using Equation 2.7. The depth of the compression block was

computed using Equation 2.3, and the depth to the neutral axis was computed as c = a/β1.
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Table A.1: Computation of Depth to Neutral Axis

Span Thickness Moment As,required Cover Neutral Axis Depth, c
(ft) (in) (lb-in) (in2) (in) (in)
15 5.45 266241 1.35 0.75 0.23
20 7.27 737455 2.51 0.75 0.33
25 9.09 1648082 4.24 0.75 0.44
30 10.91 3206864 6.62 0.75 0.57
35 12.73 5662423 9.78 0.75 0.73

0.00

0.25

0.50

0.75

1.00

15 20 25 30 35

Span Length (ft)

R
at

io
 o

f N
eu

tra
l A

xi
s t

o 
C

on
cr

et
e 

C
ov

er

Figure A.1: Depth to Neutral Axis Divided by Concrete Cover

The results of these calculations are presented in Table A.1. The depth to the neutral axis,

c, was then compared with the concrete cover.

Figure A.1 graphically shows the trends in Table A.1. This graph shows the ratio of

the neutral axis depth, c, divided by the concrete cover versus the span length. Since

this ratio was less than 1 for the range of spans considered, “compression” steel can be

neglected in ultimate strength computations because this level of reinforcement was not

even in compression. Instead, it was very close to the neutral axis and was in tension.
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APPENDIX B

MODULE DESCRIPTIONS

The following is an alphabetical listing of all modules developed for the execution of the

DESIGN SLAB command.

BARDAT.ICE

BARDAT.ice is called from various subroutines during the actual design procedure.

This subroutine contains an array with information for all applicable bar sizes, including

area and diameter. This subroutine is passed a bar size, and the area and diameter are

returned. An additional flag is passed to this subroutine when called, and is set to either

1, 0, or -1. If the flag is set to 1, the next larger bar size than the current bar size and

associated properties are returned. If the flat is set to -1, the next smaller bar size than the

current bar size and associated properties are returned. If the flat is set to 0, the properties

associated with the current bar size are returned.

CRCASR.ice

CRCASR.ice is called from CRCSLB.ice and computes the required area of steel to resist

the bending moment design envelope. This subroutine first computes the minimum area of

steel required to resist temperature and shrinkage effects. Then, the quadratic equation for

area of steel required is solved iteratively. Once the area of steel required has converged,

the area of steel required for temperature and shrinkage is compared with the area of steel

required for flexure, and the maximum of these two values is the required area of steel

returned to CRCSLB.ice.

CRCCEV.ice

CRCCEV.ice is called from CRCCMN.ice. This subroutine scans the RESULT array
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for all active loadings to determine the maximum positive and negative bending moments

computed on the section, thus defining the bending moment design envelope.

CRCCGC.ice

CRCCGC.ice is called from CRCCGE.ice. This subroutine is passed a node ID and

returns the CUT system coordinates of the requested node by searching the array of CUT

coordinates computed in CRCCTC.ice.

CRCCGE.ice

CRCCGE.ice is called CRCCMN.ice. This subroutine is responsible for building the list

of elements along the cut to be used in the calculation of the resultant forces acting on the

cut. All elements are checked, and those incident on the cut (the element candidates) are

checked according to the selection rules explained in Chapter 4. Once an element has been

determined to be included in the computation of force, the element is added to either a list

of elements located on the positive Y-CUT side of the cut or to a list of elements located

on the negative Y-CUT side of the cut.

CRCCGL.ice

CRCCGL.ice is called from CRCCMN.ice and is responsible for finding all nodes on

a straight line between the start and end nodes of the cut. This subroutine retrieves the

coordinates of the start and end nodes of the cut and defines the bounded region based on

this information. Nodes within this bounded region are checked individually for collinearity

with the cut line. Once all applicable nodes have been checked, this subroutine sorts all

collinear nodes into the correct geometric order in the model.

CRCCMN.ice

CRCCMN.ice is the primary algorithm for the DESIGN SLAB command and is called

from CRSLAB.cdl once all input data has been processed. This subroutine calls CRC-

CGL.ice to find all nodes on the cut and populate the cut node list. It calls CRCCTN.ice
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to form the transformation to the CUT coordinate system, and then calls CRCCGE.ice

to select which elements should be included in the cut definition. The node and element

lists are then prepared for the resultant force computation by a call to CRCHEC.ice, and

then for each side of the cut, a call is made to STCRES.ice, the primary algorithm of the

CALCULATE RESULTANT command. The results of the CALCULATE RESULTANT

command are interpreted and the design envelope is determined by calling CRCCEV.ice.

CRCSLB.ice is then called in order to design the cross-section to resist the design envelope.

CRCCTC.ice

CRCCTC.ice is called from CRCCGE.ice. This subroutine transforms all nodes of all

elements incident on the cut line to the CUT coordinate system. This information is then

used in the element selection algorithm. Only the coordinates the nodes of incident elements

are transformed to increase the efficiency of solution.

CRCCTN.ice

CRCCTN.ice is called from CRCCMN.ice. This subroutine forms the tranformation to

the CUT coordinate system according to the theory set forth in Chapter 4.

CRCHEC.ice

CRCHEC.ice is called from CRCCMN.ice prior to each call to STCRES.ice for the com-

putation of the resultant forces on the section. The purpose of this subroutine is to check

that all elements in the element list are of constant thickness and material properties.

CRCSLB.ice

CRCSLB.ice is the subroutine containing the main design algorithm for the DESIGN

SLAB command. This subroutine interprets the user input to determine the intention of the

user and appropriate design method and parameters. The bending moment design envelope

is interpreted to determine which surfaces of the slab must be reinforced. Initial design

calculations such as material-related parameters are performed, and for each surface, a call
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is made to CRCASR.ice to compute the area of steel required. Once the required area of

steel has been computed, the appropriate design subroutine is called depending on the para-

meters specified in the user command. The design subroutine called is either CRSLM1.ice,

CRSLM2.ice, CRSLM3.ice, or CRSLM4.ice. After the appropriate design routine returns a

design bar size and spacing to CRCSLB.ice, a call is made to CRSULT.ice to compute the

ultimate strength of the final design and compare with the design envelope. This subroutine

also executes the beam shear check for the cross-section.

CRSLAB.cdl

CRSLAB.cdl is the primary CDL routine that processes the DESIGN SLAB command

input parameters. First of all, this subroutine processes the cut name, node list, and ele-

ment list. Design parameters associated with each surface of the slab are then processed,

including specific reinforcement sizes and spacing to be used either for the top, bottom,

or both faces. Finally, additional optional design parameters, such as reinforcement layer,

concrete cover, and the torsional warning threshold, are processed. CRSLAB.cdl is called

from DES.cdl.

CRSLM1.ice

CRSLM1.ice is called from CRCSLB.ice when the user has specified neither a bar size

nor spacing for the cross-section being designed. This subroutine begins design by assum-

ing a #5 bar, determining the number of #5 bars required to provide the required area

of steel, and then computing the associated clear and center-to-center spacing. If spacing

requirements are violated, the bar size is either increased or decreased and number bars and

spacing recomputed until an acceptable design is found. If no acceptable design is found,

the user is notified.

CRSLM2.ice

CRSLM2.ice is called from CRCSLB.ice when the user has specified a bar size but not
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a spacing for the cross-section being designed. This subroutine begins design by deter-

mining the number of bars required (of the user-specified bar size) to provide the required

area of steel, and then computing the associated clear and center-to-center spacing. If

the center-to-center spacing computed is greater than the maximum allowable spacing, the

center-to-center spacing is reduced to the maximum allowable spacing. If the minimum

clear spacing requirement is violated, the cross-section cannot be designed with the user-

specified bar size and the user is notified.

CRSLM3.ice

CRSLM3.ice is called from CRCSLB.ice when the user has specified a spacing but not

a bar size for the cross-section being designed. The user-specified spacing is first checked

against the maximum and minimum spacing requirements. If the spacing is valid, the area

of steel required per bar is computed, and the smallest bar size satisfying this steel area is

used. If a bar size with large enough area does not exist, the section is not designed and

the user is notified.

CRSLM4.ice

CRSLM4.ice is called from CRCSLB.ice when the user has specified both a bar size and

spacing for the cross-section being designed. When this occurs, the cross-section is simply

checked for the user-specified bar size and spacing, and no modifications are made to the

bar size or spacing if the section fails.

CRSULT.ice

CRSULT.ice is called from CRCSLB.ice. This subroutine provides the final ultimate

strength check for the design, regardless of the design method or which properties the user

may have constrained. First of all, the actual d-distance is computed based on the final

design bar size, and the total area of steel provided in the cross-section is computed. The

depth of the rectangular compression block is computed, along with the depth to the neutral

axis to check the strain condition in the reinforcement. Based on the reinforcement strain,
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the appropriate strength reduction factor is determined, and the ultimate moment capacity

of the section is computed. CRSULT.ice is called separately for the design of the top and

bottom surfaces. The numerical results of the ultimate strength check are reported to the

user via the GT STRUDL Output Window.

DES.cdl

DES.cdl is the first routine called when the DESIGN SLAB command is given. This

command is the initially called routine for any GT STRUDL command begining with the

word DESIGN. When the SLAB modifier is present, this subroutine calls CRSLAB.cdl,

which processes all information relevant to the DESIGN SLAB command.
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