Tall Walls Workbook

A guide to designing wood stud walls up to 10.7 m (35 ft) high for single storey commercial wood structures

Canadian Wood Council

Conseil canadien du bois © 2000 Copyright Canadian Wood Council Conseil canadien du bois 1400 Blair Place, Suite 210 Ottawa, Ontario, Canada K1J 9B8 http://www.cwc.ca/

ISBN 0-921628-59-5

8M00-3

Photographs courtesy of: Crestbrook Forest Industries D.E. Schaefer Architect Ltd.

Design and production: Eton Systems

Printing: Lomor Printers Ltd.

Produced with the financial assistance of Natural Resources Canada, Canadian Forest Service

Preface

In Canada, wood is well suited to commercial buildings of one to four storeys. The modifications to the fire resistance requirements in building codes and the development of stronger engineered wood products has expanded the permitted use of wood to longer spans with heavier loads. A new series of design publications has been produced to assist specifiers of larger commercial wood structures. A previous publication, *Design and Costing Workbook*, gives detailed design and costing information for a single storey commercial building typical of retail or commercial buildings up to 14400 m². The *Design and Costing Workbook* can be downloaded from http://www.wood-works.org/ or ordered from the Canadian Wood Council at 1-800-463-5091.

This follow-up publication provides detailed information on stud and tall wall design for commercial and industrial buildings which typically feature wall heights over 6.1 m (20 ft).

The *Tall Walls Workbook* provides stud tables for lumber studs and studs made from engineered wood products up to 10.7 m (35 ft). In addition, a detailed design example of a manufacturing facility is provided describing structural, thermal and fire considerations for tall walls.

The Canadian Wood Council has a complete set of publications and design tools to facilitate designing and building with wood. These include the *Wood Design Manual 1995*, referenced in the example, and the complete software for wood design, WoodWorks[®], Design Office. WoodWorks[®], Design Office includes SIZER, CONNECTIONS and SHEAR-WALLS to assist in the design process. A working demonstration of the software can be viewed at http://www.woodworks-software.com/.

The latest software, CodeCHEK, is a feasibility tool allowing the user to easily determine if a building, based on size and occupancy, is permitted to be built with wood according to the Building Code.

This free applet, or downloadable software, is available at http://www.wood-works.org/. This same web site also contains supplementary information on tall walls.

In particular, the web site contains the easy-to-use TallWALL sizer that provides stud sizes for a wider range of materials, lengths and load conditions than the stud tables published in this Workbook.

Http://wood-works.org/ has a feedback form used to collect your comments. Your comments play an important role in assisting the Canadian Wood Council to meet its goal of providing valuable design aids, such as this series.

In addition to structural and economic factors, environmental concerns may play a role in construction project decision making. In this area, wood has the following advantages:

- Wood is the only major building material that is renewable
- The volume of wood in Canada's commercial forests has increased over the past 20 years
- Wood produces less pollution during manufacturing and use than any other building material
- Wood provides superior energy savings because of its thermal performance.

Every effort has been made to ensure the data and information in this publication are as accurate as possible. The Canadian Wood Council does not, however, assume any responsibility for errors or omissions in the publication nor for any designs or plans prepared from it.

For more information, contact the Canadian Wood Council at 1-800-463-5091.

The Canadian Wood Council acknowledges the contributions of the following in the preparation of this workbook.

Rick Cunliffe. P. Eng, Cunliffe and Associates Ltd. Consulting Structural Engineers

Natural Resources Canada, Canadian Forest Service

Table of Contents

1.0	Intro	oduction1
2.0	Stud	Tables
	2.1	Lumber Studs for Wind Loads $-q_{1/30}$ 0.6 kPa; $q_{1/10}$ 0.5 kPa 5
	2.2	Lumber Studs for Wind Loads – $q_{1/30}$ 0.5 kPa; $q_{1/10}$ 0.4 kPa 8
	2.3	Lumber Studs for Wind Loads – $q_{1/30}$ 0.4 kPa; $q_{1/10}$ 0.3 kPa
	2.4	SelecTem [™] Studs for Wind Loads $-q_{1/30}$ 0.6 kPa; $q_{1/10}$ 0.5 kPa 14
	2.5	SelecTem [™] Studs for Wind Loads – $q_{1/30}$ 0.5 kPa; $q_{1/10}$ 0.4 kPa 15
	2.6	SelecTem [™] Studs for Wind Loads – $q_{1/30}$ 0.4 kPa; $q_{1/10}$ 0.3 kPa 16
	2.7	Timberstrand [®] Studs for Wind Loads – $q_{1/30}$ 0.6 kPa; $q_{1/10}$ 0.5 kPa 17
	2.8	Timberstrand [®] Studs for Wind Loads – $q_{1/30}$ 0.5 kPa; $q_{1/10}$ 0.4 kPa 18
	2.9	Timberstrand [®] Studs for Wind Loads – $q_{1/30}$ 0.4 kPa; $q_{1/10}$ 0.3 kPa 19
	2.10	Westlam® Studs for Wind Loads – $q_{1/30}$ 0.6 kPa; $q_{1/10}$ 0.5 kPa 20
	2.11	Westlam® Studs for Wind Loads – $q_{1/30}$ 0.5 kPa; $q_{1/10}$ 0.4 kPa 21
	2.12	Westlam® Studs for Wind Loads – $q_{1/30}$ 0.4 kPa; $q_{1/10}$ 0.3 kPa
3.0	Exan	nple23
	3.1	Overview of building
	3.2	Stud Design24
	3.3	Stud Connection Design
	3.4	Shearwall Design
		3.4.1 Lateral Load Path and Overturning
		3.4.2 Shear Panel Design
		3.4.3 Chord Design
		3.4.4 Anchor Bolt Design41
		3.4.5 Drag Strut Design
	3.5	Design of Members and Connections Around the Wall Opening45
		3.5.1 Lintel Member and Connection Design
		3.5.2 Jack Post Stud Design
		3.5.3 King Post Member and Connection Design
	3.6	Non-structural considerations
		3.6.1 Fire Resistance Rating
		3.6.2 Thermal Resistance

1. Introduction

This Workbook is intended to assist in determining the feasibility of using wood for the design of tall walls in commercial and industrial structures and to provide a step-by-step guide to the design of these walls. The popularity of single storey commercial projects, coupled with the wide availability of wood in Canada presents designers with many opportunities to use wood economically in these applications. Stud design tables for both lumber and engineered wood studs and a design example are provided to demonstrate wood's suitability for engineered tall wall construction.

The engineered tall walls described in this Workbook are extensions of the traditional stud walls used in Canada for over a hundred years. The traditional stud wall has proven to be such a successful construction technique because:

- The wood studs and framing can efficiently resist the snow loads on the roof and the wind loads on the wall and remove the need for an additional load bearing frame.
- When sheathing is added to the studs, the wall is very effective in resisting the lateral racking loads caused by wind and earthquakes.
- The walls can be easily insulated to provide excellent thermal resistance.
- Wood stud walls are readily finished with a wide range of finishing materials.
- Stud walls can be modified to adapt to the changing needs of the building.

The same rationale that has made the traditional stud wall so successful can be applied to the taller stud walls required for commercial structures. Larger lumber sizes or engineered wood products can be used to obtain the same wall strength in taller and longer walls. Shearwalls and connections can readily be designed to provide the required lateral resistance. Thermal requirements can be easily achieved with tall stud walls. By paying attention to details and selecting the correct finishing materials, tall stud walls can meet the more stringent fire and acoustical separation requirements for most commercial structures.

This publication is a design tool for tall walls used in single storey commercial structures. It will assist in evaluating the feasibility of using these walls and may also aid in design. This Workbook includes:

- Stud tables to determine the feasibility of building a tall wall out of wood studs.
- A step by step design example for a tall wall to assist in designs.

This Workbook is subdivided as follows:

- 1. INTRODUCTION gives background information.
- 2. STUD TABLES are provided for lumber studs up to 6.1 m (20 ft) and proprietary engineered wood studs up to 10.7 m (35 ft). These stud tables are intended for use in determining the feasibility of using tall wood stud walls for a given application. In a commercial application, a fully engineered design is required for each tall wall to consider the specific design considerations for that site, the connections and the other details required. In addition to the stud wall tables presented in the Workbook, http://www.wood-works.org/contains the easy to use TallWALL sizer that provides stud sizes for a wider range of materials, lengths and load conditions.
- 3. EXAMPLE provides a detailed design example of a 7.72 m (25 ft 4 in) tall wall using the Crestbrook Value Added Centre in Cranbrook, BC. References are noted as follows:

WDM

Wood Design Manual 1995

CSA 086.1

CSA 086.1–94 Engineering Design in Wood (Limit States Design)

National Building Code of Canada

User's Guide – NBC 1995 Structural Commentaries (Part 4)

The design example features stud and connection design, shearwall design, design around wall openings and wall requirements for thermal resistance and fire resistance rating.

Wood structures offer many advantages for commercial and industrial buildings. This publication will allow the user to quickly evaluate a wood option for their projects. In addition, wood offers a range of choices that include the following:

- · Competitive material costs
- · Availability of labour
- · Ease of installation and material handling
- · Shortened construction schedules
- · Finishing options
- Ability to create complex building shapes with relative ease
- Increased thermal performance and energy efficiency

2. Stud Tables

Scope

This section features stud tables for lumber studs and proprietary engineered wood studs. These stud tables are intended for determining the feasibility of using tall wood stud walls for a given application. In a commercial application, a fully engineered design is required for each tall wall to consider the specific design considerations for that site, the effect of openings, the connections and other details. A full design example for a tall wall is given in Section 3. TallWALL, an easy to use tool that provides stud sizes for a wider range of materials, lengths and load conditions, can be found at http://www.wood-works.org/.

Assumptions Used to Develop the Stud Tables

- The studs are laterally braced to prevent buckling in the narrow dimension.
- The loads are uniformly distributed along the top of the wall.
- The 1/10 and 1/30 hourly wind pressures (q_{1/10} and q_{1/30}) specified wind loads have been modified by the following coefficients:

 C_e = 0.9 for studs up to 6 m in length and 1.0 for studs 6 m to 12 m

$$C_p C_q = -2.0$$

$$C_{\text{pi}} = \pm 0.7$$

$$C_{qi} = 1$$

- The 1/10 hourly wind pressure (q_{1/10}) is used in deflection calculations.
- The 1/30 hourly wind pressure (q_{1/30}) is used in strength calculations.
- Total load deflection criteria is stud length/180.
 Calculated total load deflection for each stud is given in the Tables.
- The ratio of specified axial dead load to live load is 1. The tables can be used conservatively when the specified axial dead load is less than the specified axial live load.

- Stud sizes are based on Limit States Design. The Limit States Design load combinations considered are:
 - 1. axial load alone
 - 2. wind plus axial dead load and
 - 3. wind plus axial live load plus axial dead load.
- In conformance with Limit States Design philosophy a load combination factor of 0.7 is applied to the wind and axial live loads in load combination 3.
- Load cases 2 and 3 are considered short term loads.
- Eccentric axial loading of the studs is considered with maximum eccentricity equal to 1/6th of the stud depth.
- The Moment Magnifier Method is used to account for the secondary bending moment (PΔ) effect.
- Deflections from wind and eccentric axial loads are amplified to account for the P∆ effect.
- Studs are assumed to be pinned at both ends.
- The tables can only be used for untreated studs in dry service conditions.

For the lumber stud tables:

- Resistance values were calculated based on CSA Standard 086.1-94.
- A "Case 2" load sharing system, as defined in CSA 086.1-94, is assumed. In order to meet this requirement, the studs must be sheathed with plywood, waferboard, or OSB of minimum 9.5 mm thickness and attached to the studs to provide a minimum stiffness equivalent to that provided by 2-inch common nails at 150 mm centres at edges of sheathing panels and 300 mm centres elsewhere.

How to Use the Tables

- Determine the 1/10 and 1/30 (q_{1/10} and q_{1/30})
 Hourly Wind Pressures for the building location.
 This is found in the Climatic Data Section of the *National Building Code* or appropriate Provincial Building Code.
- Calculate the specified uniformly distributed dead load based on materials supported. Consideration is to be given to the self weight of the wall. Under many conditions it is appropriate to include the weight of the top half of the wall.
- Calculate the specified uniformly distributed live load based on specified live loads due to snow and associated rain in the Building Code and tributary width of roof.

- The stud tables are appropriate for the typical case where the specified axial dead load does not exceed the specified axial live load.
- Calculate the factored uniformly distributed load (1.25D + 1.5L) kN/m along the stud wall.
- Select the table(s) for the stud material(s) being considered. The table(s) selected should have q_{1/30} and q_{1/10} wind loads which are greater than or equal to the climatic data for the building site.
- Based on the length of the stud, the spacing of the stud and the axial load, select a stud depth.
 The associated deflection should be considered for appropriateness where finishes are susceptible to cracking.

Table 2.1 - Lumber Studs

Wind pressure $q_{1/30}$ 0.6 kPa; $q_{1/10}$ 0.5 kPa

Depth required (mm) for 38 mm thick studs

	Factored		S-P-F No. 2 Gra	ade (or beti	ter)			D.Fir-L No. 2 Grade (or better)				
Stud spacing mm	axial load kN/m		Stud leng 3.66 m (12 ft)	oth 4.27 m (14 ft)	4.88 m (16 ft)	5.49 m (18 ft)	6.10 m (20 ft)	Stud leng 3.66 m (12 ft)	th 4.27 m (14 ft)	4.88 m (16 ft)	5.49 m (18 ft)	6.10 m (20 ft)
305	10	depth deflection	140 L/335	140 L/211	184 L/324	184 L/228	235 L/314	140 L/389	184 L/245	184 L/376	184 L/264	235 L/364
	20	depth deflection	140 L/321	140 L/202	184 L/314	184 L/220	235 L/306	140 L/374	140 L/236	184 L/365	184 L/256	235 L/356
	30	depth deflection	140 L/308	140 L/193	184 L/304	184 L/213	235 L/299	140 L/359	140 L/226	184 L/354	184 L/249	235 L/348
	40	depth deflection	140 L/295	140 L/185	184 L/294	184 L/206	235 L/292	140 L/345	140 L/217	184 L/343	184 L/241	235 L/340
	50	depth deflection	140 L/283	184 L/422	184 L/285	184 L/200	235 L/285	140 L/332	184 L/492	184 L/333	235 L/500	235 L/333
406	10	depth deflection	140 L/250	184 L/361	184 L/242	235 L/357	235 L/235	140 L/290	140 L/183	184 L/281	184 L/197	235 L/272
	20	depth deflection	140 L/238	184 L/347	184 L/233	235 L/346	235 L/228	140 L/277	184 L/404	184 L/271	235 L/402	235 L/265
	30	depth deflection	140 L/226	184 L/334	184 L/225	235 L/336	235 L/222	140 L/265	184 L/390	184 L/262	235 L/391	235 L/258
	40	depth deflection	140 L/215	184 L/322	184 L/216	235 L/326	235 L/216	140 L/253	184 L/376	184 L/253	235 L/380	286 L/459
	50	depth deflection	184 L/484	184 L/310	235 L/447	235 L/317	235 L/210	184 L/565	184 L/363	235 L/521	235 L/370	286 L/449
610	10	depth deflection	184 L/378	184 L/239	235 L/336	235 L/236	286 L/282	184 L/439	184 L/277	235 L/390	235 L/274	286 L/327
	20	depth deflection	184 L/361	184 L/228	235 L/324	235 L/228	286 L/274	184 L/419	184 L/266	235 L/377	286 L/481	N/A N/A
	30	depth deflection	184 L/344	184 L/218	235 L/313	235 L/220	286 L/266	184 L/401	235 L/537	235 L/364	286 L/467	N/A N/A
	40	depth deflection	184 L/328	235 L/444	235 L/301	286 L/389	N/A N/A	184 L/384	235 L/517	235 L/352	286 L/453	N/A N/A
	50	depth deflection	235 L/657	235 L/428	235 L/291	286 L/378	N/A N/A	235 L/765	235 L/499	286 L/616	286 L/440	N/A N/A

- The designer must ensure that the assumptions used to develop the tables are appropriate for the application.
 See Page 3 for stud table assumptions.
- 2. The Canadian Wood Council recommends that both faces of the studs be covered by sheathing or cladding. At least one face of the stud should be sheathed with 9.5 mm or thicker waferboard, plywood or OSB and fastened to meet the requirements of the *National Building Code of Canada*. The other face may be sheathed with cladding, sheathing or drywall meeting the requirements of the *National Building Code of Canada*. The sheathing and fastening must meet the shearwall requirements for the application.
- 3. Maximum spacing of full depth blocking of 2.4 m is recommended.

 The blocking must meet the shearwall requirements for the application.
- Before specifying, the designer should ensure that the studs are available in the size, length and grade specified. Stud tables for additional lengths are available at www.wood-works.org.
- 5. Nominal imperial equivalents for the stud depths are:

depth mm	140	184	235	286
nominal denth inches	6	8	10	12

Table 2.1 (continued) - Lumber Studs

Wind pressure $q_{1/30}$ 0.6 kPa; $q_{1/10}$ 0.5 kPa

Depth required (mm) for 38 mm thick studs

	Factored		Hem-Fir No. 2 Gra	ade (or bet	ter)				Northern Species No. 2 Grade (or better)					
Stud spacing mm	axial load kN/m		Stud leng 3.66 m (12 ft)	oth 4.27 m (14 ft)	4.88 m (16 ft)	5.49 m (18 ft)	6.10 m (20 ft)	Stud leng 3.66 m (12 ft)	th 4.27 m (14 ft)	4.88 m (16 ft)	5.49 m (18 ft)	6.10 m (20 ft)		
305	10	depth deflection	140 L/389	140 L/245	184 L/376	184 L/264	235 L/364	140 L/245	184 L/355	184 L/238	235 L/350	235 L/230		
	20	depth deflection	140 L/374	140 L/236	184 L/365	184 L/256	235 L/356	140 L/233	184 L/341	184 L/229	235 L/340	235 L/224		
	30	depth deflection	140 L/359	140 L/226	184 L/354	184 L/249	235 L/348	140 L/222	184 L/328	184 L/220	235 L/330	235 L/218		
	40	depth deflection	140 L/345	140 L/217	184 L/343	184 L/241	235 L/340	184 L/495	184 L/316	184 L/212	235 L/320	286 L/388		
	50	depth deflection	140 L/332	184 L/492	184 L/333	184 L/234	235 L/333	184 L/475	184 L/304	235 L/439	235 L/311	286 L/379		
406	10	depth deflection	140 L/290	140 L/183	184 L/281	184 L/197	235 L/272	140 L/182	184 L/265	235 L/372	235 L/262	286 L/312		
	20	depth deflection	140 L/277	184 L/404	184 L/271	184 L/190	235 L/265	184 L/400	184 L/253	235 L/359	235 L/253	286 L/303		
	30	depth deflection	140 L/265	184 L/390	184 L/262	235 L/391	235 L/258	184 L/382	184 L/242	235 L/347	235 L/244	286 L/295		
	40	depth deflection	140 L/253	184 L/376	184 L/253	235 L/380	235 L/252	184 L/365	235 L/493	235 L/335	286 L/432	286 L/288		
	50	depth deflection	184 L/565	184 L/363	235 L/521	235 L/370	235 L/245	235 L/729	235 L/475	235 L/324	286 L/419	N/A N/A		
610	10	depth deflection	140 L/191	184 L/277	235 L/390	235 L/274	286 L/327	184 L/277	235 L/367	286 L/446	286 L/314	N/A N/A		
	20	depth deflection	184 L/419	184 L/266	235 L/377	235 L/265	286 L/318	184 L/263	235 L/351	286 L/429	N/A N/A	N/A N/A		
	30	depth deflection	184 L/401	184 L/255	235 L/364	286 L/467	286 L/310	235 L/524	235 L/336	286 L/414	N/A N/A	N/A N/A		
	40	depth deflection	184 L/384	235 L/517	235 L/352	286 L/453	N/A N/A	286 L/891	286 L/583	286 L/399	N/A N/A	N/A N/A		
	50	depth deflection	235 L/765	235 L/499	235 L/340	286 L/440	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A		

Notes:

- The designer must ensure that the assumptions used to develop the tables are appropriate for the application.
 See Page 3 for stud table assumptions.
- 2. The Canadian Wood Council recommends that both faces of the studs be covered by sheathing or cladding. At least one face of the stud should be sheathed with 9.5 mm or thicker waferboard, plywood or OSB and fastened to meet the requirements of the *National Building Code of Canada*. The other face may be sheathed with cladding, sheathing or drywall meeting the requirements of the *National Building Code of Canada*. The sheathing and fastening must meet the shearwall requirements for the application.
- 3. Maximum spacing of full depth blocking of 2.4 m is recommended.

 The blocking must meet the shearwall requirements for the application.
- Before specifying, the designer should ensure that the studs are available in the size, length and grade specified. Stud tables for additional lengths are available at www.wood-works.org.
- 5. Nominal imperial equivalents for the stud depths are:

depth mm	140	184	235	286
nominal depth inches	6	8	10	12

Table 2.1 (continued) - MSR Lumber Studs

Wind pressure $q_{1/30}$ 0.6 kPa; $q_{1/10}$ 0.5 kPa

Depth required (mm) for 38 mm thick studs

	Factored		Grade 1650f-1.	5E				Grade 2100f-1.8E					
Stud spacing mm	axial load kN/m		Stud leng 3.66 m (12 ft)	yth 4.27 m (14 ft)	4.88 m (16 ft)	5.49 m (18 ft)	6.10 m (20 ft)	Stud leng 3.66 m (12 ft)	yth 4.27 m (14 ft)	4.88 m (16 ft)	5.49 m (18 ft)	6.10 m (20 ft)	
305	10	depth deflection	140 L/364	140 L/229	184 L/352	184 L/247	235 L/341	140 L/439	140 L/277	140 L/185	184 L/299	184 L/196	
	20	depth deflection	140 L/349	140 L/220	184 L/341	184 L/240	235 L/333	140 L/423	140 L/267	184 L/413	184 L/290	184 L/191	
	30	depth deflection	140 L/335	140 L/211	184 L/331	184 L/232	235 L/325	140 L/407	140 L/257	184 L/401	184 L/282	184 L/185	
	40	depth deflection	140 L/322	140 L/202	184 L/320	184 L/225	235 L/318	140 L/392	140 L/248	184 L/389	184 L/274	184 L/180	
	50	depth deflection	140 L/309	140 L/194	184 L/311	184 L/218	235 L/310	140 L/378	140 L/238	184 L/378	184 L/266	235 L/377	
406	10	depth deflection	140 L/271	184 L/392	184 L/263	184 L/184	235 L/255	140 L/328	140 L/206	184 L/317	184 L/223	235 L/307	
	20	depth deflection	140 L/259	184 L/378	184 L/254	235 L/376	235 L/248	140 L/314	140 L/197	184 L/307	184 L/216	235 L/300	
	30	depth deflection	140 L/247	184 L/364	184 L/245	235 L/365	235 L/241	140 L/301	140 L/189	184 L/297	184 L/208	235 L/293	
	40	depth deflection	140 L/235	184 L/351	184 L/236	235 L/355	235 L/235	140 L/288	140 L/181	184 L/288	184 L/202	235 L/286	
	50	depth deflection	140 L/225	184 L/338	184 L/228	235 L/345	235 L/229	140 L/276	184 L/412	184 L/278	184 L/195	235 L/279	
610	10	depth deflection	184 L/411	184 L/259	235 L/365	235 L/257	286 L/306	140 L/217	184 L/313	184 L/210	235 L/310	235 L/204	
	20	depth deflection	184 L/392	184 L/248	235 L/352	235 L/248	286 L/298	140 L/205	184 L/301	184 L/202	235 L/300	235 L/198	
	30	depth deflection	184 L/374	184 L/238	235 L/340	235 L/240	286 L/290	140 L/195	184 L/289	184 L/194	235 L/291	235 L/192	
	40	depth deflection	184 L/358	184 L/227	235 L/328	235 L/231	286 L/282	140 L/184	184 L/278	184 L/186	235 L/282	235 L/186	
	50	depth deflection	235 L/715	235 L/466	235 L/317	235 L/224	286 L/274	184 L/418	184 L/267	235 L/386	235 L/273	235 L/180	

- The designer must ensure that the assumptions used to develop the tables are appropriate for the application.
 See Page 3 for stud table assumptions.
- 2. The Canadian Wood Council recommends that both faces of the studs be covered by sheathing or cladding. At least one face of the stud should be sheathed with 9.5 mm or thicker waferboard, plywood or OSB and fastened to meet the requirements of the *National Building Code of Canada*. The other face may be sheathed with cladding, sheathing or drywall meeting the requirements of the *National Building Code of Canada*. The sheathing and fastening must meet the shearwall requirements for the application.
- 3. Maximum spacing of full depth blocking of 2.4 m is recommended.

 The blocking must meet the shearwall requirements for the application.
- 4. All sizes may not be available in both grades. Before specifying, the designer should ensure that the stude are available in the size, length and grade specified. Stud tables for additional grades are available at www.wood-works.org.
- 5. Nominal imperial equivalents for the stud depths are:

depth mm	140	184	235	286
nominal denth inches	6	8	10	12

Table 2.2 - Lumber Studs

Wind pressure $q_{1/30}$ 0.5 kPa; $q_{1/10}$ 0.4 kPa

Depth required (mm) for 38 mm thick studs

	Factored		S-P-F No. 2 Gra	ade (or beti	ter)			D.Fir-L No. 2 Gra	D.Fir-L No. 2 Grade (or better)					
Stud spacing mm	axial load kN/m		Stud leng 3.66 m (12 ft)	oth 4.27 m (14 ft)	4.88 m (16 ft)	5.49 m (18 ft)	6.10 m (20 ft)	Stud leng 3.66 m (12 ft)	th 4.27 m (14 ft)	4.88 m (16 ft)	5.49 m (18 ft)	6.10 m (20 ft)		
305	10	depth deflection	140 L/416	140 L/263	184 L/404	184 L/284	184 L/186	140 L/483	140 L/305	140 L/204	184 L/329	184 L/216		
	20	depth deflection	140 L/397	140 L/250	184 L/389	184 L/274	235 L/381	140 L/462	140 L/292	140 L/195	184 L/318	184 L/209		
	30	depth deflection	140 L/378	140 L/238	184 L/375	184 L/264	235 L/370	140 L/441	140 L/279	184 L/437	184 L/308	184 L/202		
	40	depth deflection	140 L/360	140 L/227	184 L/361	184 L/254	235 L/360	140 L/422	140 L/267	184 L/422	184 L/298	235 L/420		
	50	depth deflection	140 L/344	184 L/513	184 L/349	184 L/245	235 L/351	140 L/403	184 L/599	184 L/408	184 L/288	235 L/409		
406	10	depth deflection	140 L/310	140 L/195	184 L/301	184 L/211	235 L/292	140 L/361	140 L/227	184 L/350	184 L/246	235 L/339		
	20	depth deflection	140 L/294	140 L/184	184 L/289	184 L/203	235 L/283	140 L/342	140 L/216	184 L/336	184 L/236	235 L/329		
	30	depth deflection	140 L/278	184 L/411	184 L/277	184 L/194	235 L/275	140 L/325	184 L/479	184 L/323	184 L/227	235 L/320		
	40	depth deflection	140 L/263	184 L/394	184 L/266	235 L/401	235 L/266	140 L/309	184 L/460	184 L/311	235 L/467	235 L/311		
	50	depth deflection	184 L/585	184 L/378	184 L/255	235 L/388	235 L/258	184 L/682	184 L/442	184 L/299	235 L/453	235 L/302		
610	10	depth deflection	140 L/204	184 L/297	184 L/199	235 L/294	235 L/193	140 L/238	184 L/345	184 L/231	235 L/342	286 L/407		
	20	depth deflection	140 L/191	184 L/282	184 L/189	235 L/283	286 L/340	140 L/223	184 L/328	235 L/466	235 L/329	286 L/395		
	30	depth deflection	184 L/421	184 L/268	235 L/384	235 L/271	286 L/329	184 L/490	184 L/313	235 L/448	235 L/317	286 L/383		
	40	depth deflection	184 L/399	235 L/540	235 L/369	235 L/261	286 L/319	184 L/466	235 L/630	235 L/430	286 L/555	286 L/372		
	50	depth deflection	235 L/787	235 L/517	235 L/354	286 L/460	286 L/309	184 L/444	235 L/603	235 L/414	286 L/537	N/A N/A		

Notes:

- The designer must ensure that the assumptions used to develop the tables are appropriate for the application.
 See Page 3 for stud table assumptions.
- 2. The Canadian Wood Council recommends that both faces of the studs be covered by sheathing or cladding. At least one face of the stud should be sheathed with 9.5 mm or thicker waferboard, plywood or OSB and fastened to meet the requirements of the *National Building Code of Canada*. The other face may be sheathed with cladding, sheathing or drywall meeting the requirements of the *National Building Code of Canada*. The sheathing and fastening must meet the shearwall requirements for the application.
- 3. Maximum spacing of full depth blocking of 2.4 m is recommended.

 The blocking must meet the shearwall requirements for the application.
- Before specifying, the designer should ensure that the studs are available in the size, length and grade specified. Stud tables for additional lengths are available at www.wood-works.org.
- 5. Nominal imperial equivalents for the stud depths are:

depth mm	140	184	235	286
nominal depth inches	6	8	10	12

Table 2.2 (continued) - Lumber Studs

Wind pressure $q_{1/30}$ 0.5 kPa; $q_{1/10}$ 0.4 kPa

Depth required (mm) for 38 mm thick studs

	Factored		Hem-Fir No. 2 Gra	ade (or beti	ter)				Northern Species No. 2 Grade (or better)					
Stud spacing mm	axial load kN/m		Stud leng 3.66 m (12 ft)	oth 4.27 m (14 ft)	4.88 m (16 ft)	5.49 m (18 ft)	6.10 m (20 ft)	Stud leng 3.66 m (12 ft)	th 4.27 m (14 ft)	4.88 m (16 ft)	5.49 m (18 ft)	6.10 m (20 ft)		
305	10	depth deflection	140 L/483	140 L/305	140 L/204	184 L/329	184 L/216	140 L/305	140 L/192	184 L/296	184 L/208	235 L/287		
	20	depth deflection	140 L/462	140 L/292	140 L/195	184 L/318	184 L/209	140 L/288	140 L/181	184 L/284	184 L/199	235 L/278		
	30	depth deflection	140 L/441	140 L/279	140 L/186	184 L/308	184 L/202	140 L/273	184 L/404	184 L/272	235 L/407	235 L/270		
	40	depth deflection	140 L/422	140 L/267	184 L/422	184 L/298	184 L/196	140 L/258	184 L/387	184 L/261	235 L/394	235 L/261		
	50	depth deflection	140 L/403	140 L/255	184 L/408	184 L/288	235 L/409	184 L/574	184 L/371	235 L/534	235 L/381	235 L/253		
406	10	depth deflection	140 L/361	140 L/227	184 L/350	184 L/246	235 L/339	140 L/227	184 L/329	184 L/220	235 L/326	235 L/214		
	20	depth deflection	140 L/342	140 L/216	184 L/336	184 L/236	235 L/329	140 L/212	184 L/313	184 L/210	235 L/313	286 L/376		
	30	depth deflection	140 L/325	140 L/205	184 L/323	184 L/227	235 L/320	184 L/467	184 L/298	235 L/426	235 L/302	286 L/365		
	40	depth deflection	140 L/309	184 L/460	184 L/311	235 L/467	235 L/311	184 L/444	184 L/284	235 L/410	235 L/290	286 L/354		
	50	depth deflection	184 L/682	184 L/442	184 L/299	235 L/453	235 L/302	235 L/874	235 L/575	235 L/394	286 L/511	286 L/343		
610	10	depth deflection	140 L/238	184 L/345	184 L/231	235 L/342	286 L/407	184 L/344	235 L/455	235 L/306	286 L/391	N/A N/A		
	20	depth deflection	140 L/223	184 L/328	235 L/466	235 L/329	286 L/395	184 L/323	235 L/433	235 L/292	286 L/375	N/A N/A		
	30	depth deflection	184 L/490	184 L/313	235 L/448	235 L/317	286 L/383	184 L/304	235 L/412	286 L/507	286 L/360	N/A N/A		
	40	depth deflection	184 L/466	184 L/299	235 L/430	235 L/305	286 L/372	286 L/1068	286 L/705	286 L/486	286 L/346	N/A N/A		
	50	depth deflection	235 L/917	235 L/603	235 L/414	286 L/537	286 L/361	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A		

Notes:

- The designer must ensure that the assumptions used to develop the tables are appropriate for the application.
 See Page 3 for stud table assumptions.
- 2. The Canadian Wood Council recommends that both faces of the studs be covered by sheathing or cladding. At least one face of the stud should be sheathed with 9.5 mm or thicker waferboard, plywood or OSB and fastened to meet the requirements of the *National Building Code of Canada*. The other face may be sheathed with cladding, sheathing or drywall meeting the requirements of the *National Building Code of Canada*. The sheathing and fastening must meet the shearwall requirements for the application.
- 3. Maximum spacing of full depth blocking of 2.4 m is recommended.

 The blocking must meet the shearwall requirements for the application.
- Before specifying, the designer should ensure that the studs are available in the size, length and grade specified. Stud tables for additional lengths are available at www.wood-works.org.
- 5. Nominal imperial equivalents for the stud depths are:

depth mm	140	184	235	286
nominal depth inches	6	8	10	12

Table 2.2 (continued) - MSR Lumber Studs

Wind pressure $q_{1/30}$ 0.5 kPa; $q_{1/10}$ 0.4 kPa

Depth required (mm) for 38 mm thick studs

	Factored		Grade 1650f-1.5	δE				Grade 2100f-1.8E					
Stud spacing mm	axial load kN/m		Stud leng 3.66 m (12 ft)	th 4.27 m (14 ft)	4.88 m (16 ft)	5.49 m (18 ft)	6.10 m (20 ft)	Stud leng 3.66 m (12 ft)	th 4.27 m (14 ft)	4.88 m (16 ft)	5.49 m (18 ft)	6.10 m (20 ft)	
305	10	depth deflection	140 L/452	140 L/285	140 L/191	184 L/308	184 L/202	140 L/546	140 L/345	140 L/231	184 L/372	184 L/244	
	20	depth deflection	140 L/431	140 L/272	140 L/182	184 L/297	184 L/195	140 L/522	140 L/331	140 L/221	184 L/360	184 L/237	
	30	depth deflection	140 L/412	140 L/260	184 L/408	184 L/287	184 L/189	140 L/500	140 L/317	140 L/212	184 L/349	184 L/230	
	40	depth deflection	140 L/393	140 L/248	184 L/394	184 L/277	184 L/182	140 L/479	140 L/304	140 L/203	184 L/338	184 L/223	
	50	depth deflection	140 L/376	140 L/237	184 L/380	184 L/268	235 L/382	140 L/459	140 L/292	140 L/194	184 L/327	184 L/216	
406	10	depth deflection	140 L/337	140 L/212	184 L/327	184 L/230	235 L/317	140 L/407	140 L/257	184 L/395	184 L/278	184 L/182	
	20	depth deflection	140 L/320	140 L/201	184 L/314	184 L/221	235 L/308	140 L/388	140 L/245	184 L/380	184 L/268	235 L/372	
	30	depth deflection	140 L/303	140 L/190	184 L/302	184 L/212	235 L/299	140 L/370	140 L/233	184 L/367	184 L/258	235 L/362	
	40	depth deflection	140 L/288	140 L/180	184 L/290	184 L/203	235 L/290	140 L/352	140 L/222	184 L/353	184 L/249	235 L/352	
	50	depth deflection	140 L/273	184 L/412	184 L/278	184 L/195	235 L/281	140 L/336	140 L/211	184 L/341	184 L/240	235 L/343	
610	10	depth deflection	140 L/222	184 L/322	184 L/216	235 L/319	235 L/210	140 L/269	184 L/389	184 L/261	184 L/183	235 L/254	
	20	depth deflection	140 L/208	184 L/307	184 L/206	235 L/307	235 L/202	140 L/254	184 L/372	184 L/250	235 L/372	235 L/245	
	30	depth deflection	140 L/195	184 L/292	184 L/196	235 L/296	235 L/195	140 L/239	184 L/355	184 L/239	235 L/359	235 L/237	
	40	depth deflection	184 L/435	184 L/278	184 L/186	235 L/284	235 L/188	140 L/225	184 L/340	184 L/228	235 L/346	235 L/230	
	50	depth deflection	235 L/856	235 L/563	235 L/386	235 L/274	235 L/181	184 L/504	184 L/325	184 L/218	235 L/334	235 L/222	

- The designer must ensure that the assumptions used to develop the tables are appropriate for the application.
 See Page 3 for stud table assumptions.
- 2. The Canadian Wood Council recommends that both faces of the studs be covered by sheathing or cladding. At least one face of the stud should be sheathed with 9.5 mm or thicker waferboard, plywood or OSB and fastened to meet the requirements of the *National Building Code of Canada*. The other face may be sheathed with cladding, sheathing or drywall meeting the requirements of the *National Building Code of Canada*. The sheathing and fastening must meet the shearwall requirements for the application.
- 3. Maximum spacing of full depth blocking of 2.4 m is recommended.

 The blocking must meet the shearwall requirements for the application.
- 4. All sizes may not be available in both grades. Before specifying, the designer should ensure that the studs are available in the size, length and grade specified. Stud tables for additional grades are available at www.wood-works.org.
- 5. Nominal imperial equivalents for the stud depths are:

depth mm	140	184	235	286
nominal denth inches	6	8	10	12

Table 2.3 - Lumber Studs

Wind pressure $q_{1/30}$ 0.4 kPa; $q_{1/10}$ 0.3 kPa

Depth required (mm) for 38 mm thick studs

	Factored		S-P-F No. 2 Gra	ade (or beti	ter)			D.Fir-L No. 2 Grade (or better)						
Stud spacing mm	axial load kN/m		Stud leng 3.66 m (12 ft)	th 4.27 m (14 ft)	4.88 m (16 ft)	5.49 m (18 ft)	6.10 m (20 ft)	Stud leng 3.66 m (12 ft)	th 4.27 m (14 ft)	4.88 m (16 ft)	5.49 m (18 ft)	6.10 m (20 ft)		
305	10	depth deflection	140 L/550	140 L/347	140 L/233	184 L/376	184 L/247	140 L/638	140 L/404	140 L/271	140 L/189	184 L/287		
	20	depth deflection	140 L/519	140 L/329	140 L/220	184 L/360	184 L/237	140 L/604	140 L/383	140 L/257	184 L/420	184 L/277		
	30	depth deflection	140 L/490	140 L/311	140 L/207	184 L/346	184 L/228	140 L/572	140 L/364	140 L/244	184 L/403	184 L/267		
	40	depth deflection	140 L/463	140 L/295	184 L/469	184 L/332	184 L/219	140 L/542	140 L/346	184 L/547	184 L/388	184 L/257		
	50	depth deflection	140 L/438	140 L/279	184 L/449	184 L/318	235 L/456	140 L/515	140 L/329	184 L/526	184 L/373	235 L/532		
406	10	depth deflection	140 L/410	140 L/258	184 L/399	184 L/280	184 L/184	140 L/476	140 L/301	140 L/201	184 L/326	184 L/214		
	20	depth deflection	140 L/384	140 L/242	184 L/379	184 L/267	235 L/374	140 L/448	140 L/283	140 L/189	184 L/311	235 L/434		
	30	depth deflection	140 L/360	140 L/227	184 L/361	184 L/254	235 L/360	140 L/422	140 L/267	184 L/422	184 L/298	235 L/420		
	40	depth deflection	140 L/338	184 L/507	184 L/344	184 L/242	235 L/348	140 L/398	184 L/592	184 L/403	184 L/285	235 L/406		
	50	depth deflection	140 L/318	184 L/482	184 L/328	235 L/500	235 L/335	140 L/375	184 L/565	184 L/386	235 L/583	235 L/392		
610	10	depth deflection	140 L/270	184 L/392	184 L/263	184 L/185	235 L/257	140 L/314	140 L/197	184 L/306	235 L/452	235 L/298		
	20	depth deflection	140 L/249	184 L/369	184 L/248	235 L/371	235 L/245	140 L/292	184 L/430	184 L/290	235 L/432	235 L/286		
	30	depth deflection	184 L/541	184 L/347	184 L/234	235 L/354	235 L/235	184 L/631	184 L/406	235 L/581	235 L/413	286 L/501		
	40	depth deflection	184 L/508	184 L/328	235 L/475	235 L/338	286 L/414	184 L/594	184 L/384	235 L/554	235 L/395	286 L/483		
	50	depth deflection	235 L/982	235 L/654	235 L/453	235 L/323	286 L/399	184 L/560	235 L/763	235 L/529	235 L/379	286 L/466		

- The designer must ensure that the assumptions used to develop the tables are appropriate for the application.
 See Page 3 for stud table assumptions.
- 2. The Canadian Wood Council recommends that both faces of the studs be covered by sheathing or cladding. At least one face of the stud should be sheathed with 9.5 mm or thicker waferboard, plywood or OSB and fastened to meet the requirements of the *National Building Code of Canada*. The other face may be sheathed with cladding, sheathing or drywall meeting the requirements of the *National Building Code of Canada*. The sheathing and fastening must meet the shearwall requirements for the application.
- 3. Maximum spacing of full depth blocking of 2.4 m is recommended.

 The blocking must meet the shearwall requirements for the application.
- Before specifying, the designer should ensure that the studs are available in the size, length and grade specified. Stud tables for additional lengths are available at www.wood-works.org.
- 5. Nominal imperial equivalents for the stud depths are:

depth mm	140	184	235	286
nominal depth inches	6	8	10	12

Table 2.3 (continued) - Lumber Studs

Wind pressure $q_{1/30}$ 0.4 kPa; $q_{1/10}$ 0.3 kPa

Depth required (mm) for 38 mm thick studs

	Factored		Hem-Fir No. 2 Gra	ade (or beti	ter)			Northern Species No. 2 Grade (or better)				
Stud spacing mm	axial load kN/m		Stud leng 3.66 m (12 ft)	yth 4.27 m (14 ft)	4.88 m (16 ft)	5.49 m (18 ft)	6.10 m (20 ft)	Stud leng 3.66 m (12 ft)	th 4.27 m (14 ft)	4.88 m (16 ft)	5.49 m (18 ft)	6.10 m (20 ft)
305	10	depth deflection	140 L/638	140 L/404	140 L/271	140 L/189	184 L/287	140 L/402	140 L/254	184 L/391	184 L/275	184 L/181
	20	depth deflection	140 L/604	140 L/383	140 L/257	184 L/420	184 L/277	140 L/377	140 L/238	184 L/373	184 L/262	235 L/367
	30	depth deflection	140 L/572	140 L/364	140 L/244	184 L/403	184 L/267	140 L/354	140 L/223	184 L/355	184 L/250	235 L/354
	40	depth deflection	140 L/542	140 L/346	184 L/547	184 L/388	184 L/257	140 L/332	184 L/498	184 L/338	235 L/510	235 L/341
	50	depth deflection	140 L/515	140 L/329	184 L/526	184 L/373	184 L/247	184 L/724	184 L/473	184 L/322	235 L/490	235 L/329
406	10	depth deflection	140 L/476	140 L/301	140 L/201	184 L/326	184 L/214	140 L/299	140 L/188	184 L/292	184 L/205	235 L/284
	20	depth deflection	140 L/448	140 L/283	140 L/189	184 L/311	184 L/205	140 L/278	184 L/409	184 L/276	235 L/412	235 L/272
	30	depth deflection	140 L/422	140 L/267	184 L/422	184 L/298	235 L/420	140 L/258	184 L/387	184 L/261	235 L/394	235 L/261
	40	depth deflection	140 L/398	184 L/592	184 L/403	184 L/285	235 L/406	184 L/565	184 L/365	235 L/528	235 L/376	286 L/460
	50	depth deflection	184 L/860	184 L/565	184 L/386	235 L/583	235 L/392	235 L/1089	235 L/727	235 L/504	235 L/360	286 L/444
610	10	depth deflection	140 L/314	140 L/197	184 L/306	184 L/215	235 L/298	140 L/196	184 L/286	235 L/405	235 L/285	286 L/341
	20	depth deflection	140 L/292	184 L/430	184 L/290	235 L/432	235 L/286	184 L/420	184 L/267	235 L/383	235 L/270	286 L/327
	30	depth deflection	140 L/272	184 L/406	184 L/274	235 L/413	235 L/274	184 L/391	235 L/531	235 L/362	286 L/468	N/A N/A
	40	depth deflection	184 L/594	184 L/384	235 L/554	235 L/395	286 L/483	286 L/1334	286 L/893	286 L/622	286 L/447	N/A N/A
	50	depth deflection	235 L/1143	235 L/763	235 L/529	235 L/379	286 L/466	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A

- The designer must ensure that the assumptions used to develop the tables are appropriate for the application.
 See Page 3 for stud table assumptions.
- 2. The Canadian Wood Council recommends that both faces of the studs be covered by sheathing or cladding. At least one face of the stud should be sheathed with 9.5 mm or thicker waferboard, plywood or OSB and fastened to meet the requirements of the *National Building Code of Canada*. The other face may be sheathed with cladding, sheathing or drywall meeting the requirements of the *National Building Code of Canada*. The sheathing and fastening must meet the shearwall requirements for the application.
- 3. Maximum spacing of full depth blocking of 2.4 m is recommended.

 The blocking must meet the shearwall requirements for the application.
- Before specifying, the designer should ensure that the studs are available in the size, length and grade specified. Stud tables for additional lengths are available at www.wood-works.org.
- 5. Nominal imperial equivalents for the stud depths are:

depth mm	140	184	235	286
nominal depth inches	6	8	10	12

Table 2.3 (continued) - MSR Lumber Studs

Wind pressure $q_{1/30}$ 0.4 kPa; $q_{1/10}$ 0.3 kPa

Depth required (mm) for 38 mm thick studs

	Factored		Grade 1650f-1.5	5E				Grade 2100f-1.8	BE			
Stud spacing mm	axial load kN/m		Stud leng 3.66 m (12 ft)	yth 4.27 m (14 ft)	4.88 m (16 ft)	5.49 m (18 ft)	6.10 m (20 ft)	Stud leng 3.66 m (12 ft)	th 4.27 m (14 ft)	4.88 m (16 ft)	5.49 m (18 ft)	6.10 m (20 ft)
305	10	depth deflection	140 L/597	140 L/377	140 L/253	184 L/408	184 L/269	89 L/180	140 L/456	140 L/306	140 L/214	184 L/324
	20	depth deflection	140 L/564	140 L/358	140 L/240	184 L/392	184 L/258	140 L/683	140 L/434	140 L/291	140 L/204	184 L/313
	30	depth deflection	140 L/534	140 L/340	140 L/227	184 L/376	184 L/249	140 L/648	140 L/414	140 L/278	140 L/194	184 L/303
	40	depth deflection	140 L/505	140 L/322	140 L/215	184 L/362	184 L/239	140 L/616	140 L/394	140 L/264	140 L/184	184 L/292
	50	depth deflection	140 L/479	140 L/306	140 L/203	184 L/347	184 L/230	140 L/586	140 L/376	140 L/252	184 L/425	184 L/282
406	10	depth deflection	140 L/445	140 L/281	140 L/188	184 L/304	184 L/200	140 L/538	140 L/340	140 L/228	184 L/368	184 L/242
	20	depth deflection	140 L/418	140 L/264	184 L/413	184 L/291	184 L/191	140 L/507	140 L/322	140 L/215	184 L/353	184 L/232
	30	depth deflection	140 L/393	140 L/248	184 L/394	184 L/277	184 L/182	140 L/479	140 L/304	140 L/203	184 L/338	184 L/223
	40	depth deflection	140 L/370	140 L/234	184 L/376	184 L/265	235 L/379	140 L/453	140 L/288	140 L/191	184 L/324	184 L/214
	50	depth deflection	140 L/348	140 L/219	184 L/359	184 L/253	235 L/366	140 L/428	140 L/272	184 L/439	184 L/311	184 L/205
610	10	depth deflection	140 L/293	140 L/184	184 L/286	184 L/201	235 L/279	140 L/355	140 L/224	184 L/346	184 L/243	235 L/337
	20	depth deflection	140 L/272	184 L/401	184 L/270	184 L/189	235 L/267	140 L/332	140 L/209	184 L/328	184 L/231	235 L/324
	30	depth deflection	140 L/253	184 L/379	184 L/255	235 L/386	235 L/256	140 L/310	140 L/194	184 L/312	184 L/219	235 L/311
	40	depth deflection	184 L/554	184 L/358	184 L/241	235 L/369	235 L/245	140 L/290	184 L/437	184 L/296	184 L/207	235 L/300
	50	depth deflection	235 L/1068	235 L/713	235 L/494	235 L/353	235 L/235	184 L/636	184 L/415	184 L/281	184 L/197	235 L/288

Notes:

- The designer must ensure that the assumptions used to develop the tables are appropriate for the application.
 See Page 3 for stud table assumptions.
- 2. The Canadian Wood Council recommends that both faces of the studs be covered by sheathing or cladding. At least one face of the stud should be sheathed with 9.5 mm or thicker waferboard, plywood or OSB and fastened to meet the requirements of the *National Building Code of Canada*. The other face may be sheathed with cladding, sheathing or drywall meeting the requirements of the *National Building Code of Canada*. The sheathing and fastening must meet the shearwall requirements for the application.
- 3. Maximum spacing of full depth blocking of 2.4 m is recommended.

 The blocking must meet the shearwall requirements for the application.
- 4. All sizes may not be available in both grades. Before specifying, the designer should ensure that the studs are available in the size, length and grade specified. Stud tables for additional grades are available at www.wood-works.org.
- 5. Nominal imperial equivalents for the stud depths are:

depth mm	140	184	235	286
nominal denth inches	6	8	10	12

13

Table 2.4 - SelecTem™ Studs by Tember

Wind pressure $q_{1/30}$ 0.6 kPa; $q_{1/10}$ 0.5 kPa

Depth required (mm) for 44 mm (1-3/4") thick studs

	Factored		1.8 E SelecTer	n™								
Stud spacing mm	axial load kN/m		Stud leng 5.18 m (17 ft)	oth 5.79 m (19 ft)	6.40 m (21 ft)	7.01 m (23 ft)	7.62 m (25 ft)	8.23 m (27 ft)	8.84 m (29 ft)	9.45 m (31 ft)	10.06 m (33 ft)	10.67 m (35 ft)
305	10	depth deflection	184 L/411	184 L/295	184 L/197	235 L/314	235 L/244	235 L/194	286 L/283	286 L/232	286 L/192	302 L/190
	20	depth deflection	184 L/400	184 L/287	184 L/191	235 L/308	235 L/239	235 L/190	286 L/279	286 L/228	286 L/189	302 L/187
	30	depth deflection	184 L/390	184 L/280	184 L/187	235 L/302	235 L/235	235 L/186	286 L/274	286 L/224	286 L/186	302 L/184
	40	depth deflection	184 L/380	184 L/272	184 L/182	235 L/296	235 L/230	235 L/182	286 L/270	286 L/221	286 L/182	302 L/181
	50	depth deflection	184 L/370	184 L/265	235 L/380	235 L/290	235 L/226	241 L/193	286 L/265	286 L/217	292 L/191	318 L/209
406	10	depth deflection	184 L/307	184 L/220	235 L/308	235 L/235	235 L/182	286 L/262	286 L/212	292 L/184	318 L/198	356 L/233
	20	depth deflection	184 L/298	184 L/213	235 L/301	235 L/229	241 L/193	286 L/258	286 L/208	292 L/181	318 L/194	356 L/230
	30	depth deflection	184 L/289	184 L/207	235 L/294	235 L/224	241 L/188	286 L/253	286 L/204	302 L/197	318 L/191	356 L/226
	40	depth deflection	184 L/281	184 L/200	235 L/288	235 L/219	241 L/184	286 L/248	286 L/200	302 L/193	318 L/188	356 L/223
	50	depth deflection	184 L/272	184 L/194	235 L/281	235 L/214	286 L/307	286 L/244	286 L/196	302 L/190	318 L/185	356 L/219
610	10	depth deflection	184 L/203	235 L/306	235 L/204	286 L/282	286 L/219	292 L/185	318 L/194	356 L/223	356 L/185	406 L/230
	20	depth deflection	184 L/196	235 L/297	235 L/199	286 L/275	286 L/214	292 L/181	318 L/190	356 L/219	356 L/181	406 L/227
	30	depth deflection	184 L/189	235 L/289	235 L/193	286 L/269	286 L/210	302 L/197	318 L/186	356 L/215	406 L/266	406 L/223
	40	depth deflection	184 L/181	235 L/280	235 L/188	286 L/263	286 L/205	302 L/192	318 L/182	356 L/211	406 L/262	406 L/219
	50	depth deflection	235 L/378	235 L/272	235 L/183	286 L/257	286 L/200	302 L/188	356 L/253	356 L/207	406 L/258	406 L/216

Notes:

- The designer must ensure that the assumptions used to develop the tables are appropriate for the application.
 See Page 3 for stud table assumptions. For additional design information, contact Tembec at 1-800-463-0456.
- 2. Tembec recommends that both faces of the studs be covered by sheathing or cladding. At least one face of the stud should be sheathed with 9.5 mm or thicker waferboard, plywood or OSB and fastened to meet the requirements of the National Building Code of Canada. The other face may be sheathed with cladding, sheathing or drywall meeting the requirements of the National Building Code of Canada. The sheathing and fastening must meet the shearwall requirements for the application.
- 3. Maximum spacing of full depth blocking of 2.4 m is recommended.

 The blocking must meet the shearwall requirements for the application.
- 4. Stud tables for 2.0 E SelecTem™ are available at www.wood-works.org.
- 5. Imperial equivalents for the stud depths are:

aeptn mm	184	235	241	286	292	302	318	356	406
depth inches	7-1/4	9-1/4	9-1/2	11-1/4	11-1/2	11-7/8	12-1/2	14	16

Table 2.5 - SelecTem™ Studs by Tember

Wind pressure $q_{1/30}$ 0.5 kPa; $q_{1/10}$ 0.4 kPa

Depth required (mm) for 44 mm (1-3/4") thick studs

	Factored		1.8 E SelecTen	ı™								
Stud spacing mm	axial load kN/m		Stud leng 5.18 m (17 ft)	th 5.79 m (19 ft)	6.40 m (21 ft)	7.01 m (23 ft)	7.62 m (25 ft)	8.23 m (27 ft)	8.84 m (29 ft)	9.45 m (31 ft)	10.06 m (33 ft)	10.67 m (35 ft)
305	10	depth deflection	184 L/512	184 L/367	184 L/245	184 L/186	235 L/305	235 L/242	235 L/195	286 L/289	286 L/240	286 L/201
	20	depth deflection	184 L/497	184 L/357	184 L/238	184 L/181	235 L/298	235 L/236	235 L/190	286 L/284	286 L/235	286 L/197
	30	depth deflection	184 L/482	184 L/346	184 L/232	235 L/374	235 L/292	235 L/231	235 L/186	286 L/279	286 L/231	286 L/193
	40	depth deflection	184 L/467	184 L/336	184 L/225	235 L/366	235 L/285	235 L/226	235 L/182	286 L/274	286 L/227	286 L/190
	50	depth deflection	184 L/454	184 L/326	184 L/219	235 L/358	235 L/279	235 L/221	241 L/192	286 L/269	286 L/223	286 L/186
406	10	depth deflection	184 L/383	184 L/274	184 L/183	235 L/292	235 L/228	235 L/181	286 L/264	286 L/216	292 L/191	318 L/207
	20	depth deflection	184 L/370	184 L/265	235 L/374	235 L/285	235 L/222	241 L/190	286 L/259	286 L/212	292 L/187	318 L/203
	30	depth deflection	184 L/357	184 L/256	235 L/365	235 L/278	235 L/216	241 L/185	286 L/253	286 L/207	292 L/183	318 L/199
	40	depth deflection	184 L/345	184 L/247	235 L/356	235 L/271	235 L/211	241 L/180	286 L/248	286 L/203	302 L/199	318 L/195
	50	depth deflection	184 L/334	184 L/239	235 L/347	235 L/264	235 L/205	286 L/301	286 L/243	286 L/198	302 L/195	318 L/191
610	10	depth deflection	184 L/253	184 L/181	235 L/255	235 L/194	286 L/274	286 L/217	292 L/187	318 L/198	356 L/231	356 L/193
	20	depth deflection	184 L/243	235 L/369	235 L/247	235 L/188	286 L/267	286 L/212	292 L/182	318 L/193	356 L/226	356 L/189
	30	depth deflection	184 L/233	235 L/357	235 L/239	235 L/182	286 L/260	286 L/206	302 L/197	318 L/189	356 L/221	356 L/185
	40	depth deflection	184 L/223	235 L/345	235 L/232	241 L/191	286 L/253	286 L/201	302 L/192	318 L/184	356 L/217	356 L/181
	50	depth deflection	184 L/214	235 L/334	235 L/225	241 L/185	286 L/247	286 L/196	302 L/187	356 L/256	356 L/212	406 L/267

Notes:

- The designer must ensure that the assumptions used to develop the tables are appropriate for the application.
 See Page 3 for stud table assumptions. For additional design information, contact Tembec at 1-800-463-0456.
- 2. Tembec recommends that both faces of the studs be covered by sheathing or cladding. At least one face of the stud should be sheathed with 9.5 mm or thicker waferboard, plywood or OSB and fastened to meet the requirements of the *National Building Code of Canada*. The other face may be sheathed with cladding, sheathing or drywall meeting the requirements of the *National Building Code of Canada*. The sheathing and fastening must meet the shearwall requirements for the application.
- 3. Maximum spacing of full depth blocking of 2.4 m is recommended.

 The blocking must meet the shearwall requirements for the application.
- 4. Stud tables for 2.0 E SelecTem™ are available at www.wood-works.org.
- 5. Imperial equivalents for the stud depths are:

depth mm	184	235	241	286	292	302	318	356	406
depth inches	7-1/4	9-1/4	9-1/2	11-1/4	11-1/2	11-7/8	12-1/2	14	16

Table 2.6 - SelecTem™ Studs by Tember

Wind pressure $q_{1/30}$ 0.4 kPa; $q_{1/10}$ 0.3 kPa

Depth required (mm) for 44 mm (1-3/4") thick studs

	Factored		1.8 E SelecTen	ı™								
Stud spacing mm	axial load kN/m		Stud leng 5.18 m (17 ft)	th 5.79 m (19 ft)	6.40 m (21 ft)	7.01 m (23 ft)	7.62 m (25 ft)	8.23 m (27 ft)	8.84 m (29 ft)	9.45 m (31 ft)	10.06 m (33 ft)	10.67 m (35 ft)
305	10	depth deflection	184 L/678	184 L/487	184 L/326	184 L/248	184 L/193	235 L/321	235 L/259	235 L/212	241 L/190	286 L/267
	20	depth deflection	184 L/654	184 L/470	184 L/315	184 L/240	184 L/186	235 L/313	235 L/253	235 L/206	241 L/185	286 L/261
	30	depth deflection	184 L/630	184 L/455	184 L/305	184 L/232	235 L/385	235 L/305	235 L/246	235 L/201	286 L/306	286 L/256
	40	depth deflection	184 L/608	184 L/439	184 L/295	184 L/224	235 L/375	235 L/298	235 L/240	235 L/196	286 L/299	286 L/251
	50	depth deflection	184 L/587	184 L/424	184 L/286	184 L/216	235 L/366	235 L/290	235 L/234	235 L/190	286 L/293	286 L/245
406	10	depth deflection	184 L/507	184 L/364	184 L/243	184 L/184	235 L/302	235 L/240	235 L/193	286 L/287	286 L/238	286 L/199
	20	depth deflection	184 L/487	184 L/350	184 L/234	235 L/377	235 L/294	235 L/233	235 L/188	286 L/281	286 L/232	286 L/195
	30	depth deflection	184 L/467	184 L/336	184 L/225	235 L/366	235 L/285	235 L/226	235 L/182	286 L/274	286 L/227	286 L/190
	40	depth deflection	184 L/449	184 L/323	184 L/216	235 L/356	235 L/277	235 L/219	241 L/191	286 L/267	286 L/221	286 L/185
	50	depth deflection	184 L/432	184 L/311	184 L/208	235 L/345	235 L/269	235 L/213	241 L/185	286 L/261	286 L/216	286 L/180
610	10	depth deflection	184 L/335	184 L/240	235 L/338	235 L/257	235 L/200	286 L/288	286 L/233	286 L/190	302 L/186	318 L/182
	20	depth deflection	184 L/320	184 L/229	235 L/326	235 L/248	235 L/193	286 L/280	286 L/226	286 L/185	302 L/181	356 L/251
	30	depth deflection	184 L/305	184 L/218	235 L/314	235 L/239	235 L/186	286 L/272	286 L/219	292 L/191	318 L/206	356 L/245
	40	depth deflection	184 L/290	184 L/207	235 L/303	235 L/231	241 L/194	286 L/264	286 L/213	292 L/185	318 L/201	356 L/239
	50	depth deflection	184 L/277	184 L/197	235 L/293	235 L/223	241 L/187	286 L/256	286 L/206	302 L/200	318 L/195	356 L/234

Notes:

- The designer must ensure that the assumptions used to develop the tables are appropriate for the application.
 See Page 3 for stud table assumptions. For additional design information, contact Tembec at 1-800-463-0456.
- 2. Tembec recommends that both faces of the studs be covered by sheathing or cladding. At least one face of the stud should be sheathed with 9.5 mm or thicker waferboard, plywood or OSB and fastened to meet the requirements of the *National Building Code of Canada*. The other face may be sheathed with cladding, sheathing or drywall meeting the requirements of the *National Building Code of Canada*. The sheathing and fastening must meet the shearwall requirements for the application.
- 3. Maximum spacing of full depth blocking of 2.4 m is recommended.

 The blocking must meet the shearwall requirements for the application.
- 4. Stud tables for 2.0 E SelecTem™ are available at www.wood-works.org.
- 5. Imperial equivalents for the stud depths are:

depth mm	184	235	241	286	292	302	318	356	406
depth inches	7-1/4	9-1/4	9-1/2	11-1/4	11-1/2	11-7/8	12-1/2	14	16

Table 2.7 - Timberstrand® Studs - Trus Joist

Wind pressure $q_{1/30}$ 0.6 kPa; $q_{1/10}$ 0.5 kPa

Depth required (mm) for 38 mm thick studs

	Factored		Timbers 1.5E Gra	trand [®] ide Studs								
Stud spacing mm	axial load kN/m		Stud leng 5.2 m (17 ft)	gth 5.8 m (19 ft)	6.4 m (21 ft)	7.0 m (23 ft)	7.6 m (25 ft)	8.2 m (27 ft)	8.8 m (29 ft)	9.4 m (31 ft)	10.1 m (33 ft)	10.7 m (35 ft)
305	10	depth deflection	184 L/287	184 L/207	235 L/290	235 L/222	286 L/313	286 L/250	286 L/203	337 L/272	337 L/220	337 L/185
	20	depth deflection	184 L/278	184 L/201	235 L/284	235 L/217	286 L/307	286 L/245	286 L/199	337 L/268	337 L/216	337 L/182
	30	depth deflection	184 L/269	184 L/194	235 L/277	235 L/212	286 L/302	286 L/241	286 L/195	337 L/264	337 L/213	N/A N/A
	40	depth deflection	184 L/261	184 L/188	235 L/271	235 L/207	286 L/296	286 L/236	286 L/191	337 L/259	337 L/209	N/A N/A
	50	depth deflection	184 L/253	184 L/182	235 L/265	235 L/203	286 L/290	286 L/232	286 L/188	337 L/255	337 L/206	N/A N/A
406	10	depth deflection	184 L/214	235 L/322	235 L/217	286 L/299	286 L/235	286 L/187	337 L/248	337 L/204	N/A N/A	N/A N/A
	20	depth deflection	184 L/207	235 L/313	235 L/211	286 L/293	286 L/230	286 L/183	337 L/243	337 L/200	N/A N/A	N/A N/A
	30	depth deflection	184 L/199	235 L/305	235 L/206	286 L/286	286 L/225	337 L/294	337 L/239	337 L/196	N/A N/A	N/A N/A
	40	depth deflection	184 L/192	235 L/296	235 L/200	286 L/280	286 L/220	337 L/289	337 L/235	337 L/193	N/A N/A	N/A N/A
	50	depth deflection	184 L/185	235 L/288	235 L/195	286 L/274	286 L/215	337 L/284	337 L/230	337 L/189	N/A N/A	N/A N/A
610	10	depth deflection	235 L/294	235 L/213	286 L/258	286 L/198	337 L/253	337 L/202	N/A N/A	N/A N/A	N/A N/A	N/A N/A
	20	depth deflection	235 L/284	235 L/206	286 L/251	286 L/193	337 L/248	337 L/198	N/A N/A	N/A N/A	N/A N/A	N/A N/A
	30	depth deflection	235 L/275	235 L/199	286 L/245	286 L/188	337 L/242	337 L/193	N/A N/A	N/A N/A	N/A N/A	N/A N/A
	40	depth deflection	235 L/265	235 L/192	286 L/238	286 L/183	337 L/237	337 L/189	N/A N/A	N/A N/A	N/A N/A	N/A N/A
	50	depth deflection	235 L/257	235 L/186	286 L/232	337 L/294	337 L/231	337 L/185	N/A N/A	N/A N/A	N/A N/A	N/A N/A

Notes:

- 1. **THIS TABLE IS FOR PRELIMINARY SIZING ONLY** and should not be used for designing or specifying final stud sizes. For project specific design, contact your Trus Joist representative at 1-800-661-6240.
- 2. The assumptions on page 3, along with the following assumptions were all used to develop this table.
- 3. Studs are assumed to have adequate support on each side to prevent buckling, (K_L=1). Trus Joist recommends full-width blocking installed at a maximum 2.4 m (8 ft) on-center vertically with wood structural panel wall sheathing fastened per the code to one edge and either wood structural panel wall sheathing or gypsum wallboard fastened per the code to the other edge.
- 4. Maximum moment for Load Case 1 is assumed to occur at the top of the stud, $M_f = P_f \times eccentricity$.
- 5. Maximum moment for Load Cases 2 and 3 is assumed to occur at the mid height of the stud, $M_f = W_{f(wind)}L^2/8 + P_f \times 0.5 \times eccentricity$.
- 6. A system factor = 1.04 was considered for moment only, based on Clause 13.4.4.4 of CSA 086.1S1-98 Supplement No. 1 to CSA 086.1-94.
- 7. Resistance values were calculated based on CSA 086.1S1-98 using the values from the CCMC Evaluation Report # 12627-R

For longer stud sizes, please contact your Trus Joist Representative at 1-800-661-6240 to discuss the possibilities.

Table 2.8 - Timberstrand® Studs - Trus Joist

Wind pressure $q_{1/30}$ 0.5 kPa; $q_{1/10}$ 0.4 kPa

Depth required (mm) for 38 mm thick studs

	Factored		Timbers 1.5E Gra	trand [®] ide Studs								
Stud spacing mm	axial load kN/m		Stud leng 5.2 m (17 ft)	gth 5.8 m (19 ft)	6.4 m (21 ft)	7.0 m (23 ft)	7.6 m (25 ft)	8.2 m (27 ft)	8.8 m (29 ft)	9.4 m (31 ft)	10.1 m (33 ft)	10.7 m (35 ft)
305	10	depth deflection	184 L/357	184 L/258	235 L/362	235 L/277	235 L/217	286 L/312	286 L/253	286 L/208	337 L/274	337 L/231
	20	depth deflection	184 L/345	184 L/249	235 L/352	235 L/270	235 L/212	286 L/305	286 L/248	286 L/203	337 L/270	337 L/227
	30	depth deflection	184 L/333	184 L/241	235 L/343	235 L/263	235 L/206	286 L/299	286 L/242	286 L/199	337 L/265	337 L/223
	40	depth deflection	184 L/322	184 L/232	235 L/335	235 L/257	235 L/201	286 L/293	286 L/237	286 L/195	337 L/260	337 L/219
	50	depth deflection	184 L/311	184 L/224	235 L/326	235 L/250	235 L/195	286 L/287	286 L/232	286 L/190	337 L/255	337 L/215
406	10	depth deflection	184 L/267	184 L/193	235 L/271	235 L/207	286 L/293	286 L/234	286 L/189	337 L/254	337 L/206	N/A N/A
	20	depth deflection	184 L/256	184 L/185	235 L/263	235 L/201	286 L/286	286 L/228	286 L/185	337 L/249	337 L/201	N/A N/A
	30	depth deflection	184 L/246	235 L/376	235 L/255	235 L/195	286 L/279	286 L/222	286 L/180	337 L/244	337 L/197	N/A N/A
	40	depth deflection	184 L/237	235 L/365	235 L/248	235 L/189	286 L/272	286 L/217	337 L/291	337 L/239	337 L/193	N/A N/A
	50	depth deflection	184 L/227	235 L/354	235 L/240	235 L/184	286 L/265	286 L/212	337 L/285	337 L/234	337 L/189	N/A N/A
610	10	depth deflection	235 L/366	235 L/265	286 L/321	286 L/247	286 L/194	337 L/252	337 L/205	N/A N/A	N/A N/A	N/A N/A
	20	depth deflection	235 L/352	235 L/255	286 L/312	286 L/240	286 L/188	337 L/246	337 L/200	N/A N/A	N/A N/A	N/A N/A
	30	depth deflection	235 L/338	235 L/246	286 L/303	286 L/233	286 L/182	337 L/240	337 L/195	N/A N/A	N/A N/A	N/A N/A
	40	depth deflection	235 L/326	235 L/337	286 L/294	286 L/226	337 L/292	337 L/234	337 L/190	N/A N/A	N/A N/A	N/A N/A
	50	depth deflection	235 L/314	235 L/228	286 L/285	286 L/219	337 L/285	337 L/228	337 L/185	N/A N/A	N/A N/A	N/A N/A

Notes:

- 1. **THIS TABLE IS FOR PRELIMINARY SIZING ONLY** and should not be used for designing or specifying final stud sizes. For project specific design, contact your Trus Joist representative at 1-800-661-6240.
- 2. The assumptions on page 3, along with the following assumptions were all used to develop this table.
- 3. Studs are assumed to have adequate support on each side to prevent buckling, (K_L=1). Trus Joist recommends full-width blocking installed at a maximum 2.4 m (8 ft) on-center vertically with wood structural panel wall sheathing fastened per the code to one edge and either wood structural panel wall sheathing or gypsum wallboard fastened per the code to the other edge.
- 4. Maximum moment for Load Case 1 is assumed to occur at the top of the stud, $M_f = P_f \times \text{eccentricity}$.
- 5. Maximum moment for Load Cases 2 and 3 is assumed to occur at the mid height of the stud, $M_f = W_{f(wind)}L^2/8 + P_f \times 0.5 \times eccentricity$.
- 6. A system factor = 1.04 was considered for moment only, based on Clause 13.4.4.4 of CSA 086.1S1-98 Supplement No. 1 to CSA 086.1-94.
- 7. Resistance values were calculated based on CSA 086.1S1-98 using the values from the CCMC Evaluation Report # 12627-R

For longer stud sizes, please contact your Trus Joist Representative at 1-800-661-6240 to discuss the possibilities.

Table 2.9 - Timberstrand® Studs - Trus Joist

Wind pressure $q_{1/30}$ 0.4 kPa; $q_{1/10}$ 0.3 kPa

Depth required (mm) for 38 mm thick studs

	Factored		Timbers 1.5E Gra	trand® de Studs								
Stud spacing mm	axial load kN/m		Stud leng 5.2 m (17 ft)	gth 5.8 m (19 ft)	6.4 m (21 ft)	7.0 m (23 ft)	7.6 m (25 ft)	8.2 m (27 ft)	8.8 m (29 ft)	9.4 m (31 ft)	10.1 m (33 ft)	10.7 m (35 ft)
305	10	depth deflection	N/A N/A	184 L/342	184 L/230	235 L/368	235 L/288	235 L/230	235 L/186	286 L/276	286 L/223	286 L/188
	20	depth deflection	N/A N/A	184 L/329	184 L/221	235 L/357	235 L/280	235 L/223	235 L/180	286 L/270	286 L/218	286 L/183
	30	depth deflection	N/A N/A	184 L/316	184 L/213	235 L/347	235 L/272	235 L/216	286 L/320	286 L/263	286 L/212	337 L/295
	40	depth deflection	184 L/419	184 L/304	184 L/205	235 L/337	235 L/264	235 L/210	286 L/313	286 L/257	286 L/207	337 L/289
	50	depth deflection	184 L/402	184 L/292	184 L/197	235 L/327	235 L/256	235 L/203	286 L/305	286 L/251	286 L/202	337 L/283
406	10	depth deflection	184 L/353	184 L/256	235 L/359	235 L/275	235 L/216	286 L/310	286 L/252	286 L/207	337 L/273	337 L/230
	20	depth deflection	184 L/337	184 L/244	235 L/347	235 L/266	235 L/208	286 L/302	286 L/245	286 L/201	337 L/267	337 L/225
	30	depth deflection	184 L/322	184 L/233	235 L/335	235 L/257	235 L/201	286 L/293	286 L/238	286 L/195	337 L/261	337 L/219
	40	depth deflection	184 L/308	184 L/222	235 L/324	235 L/248	235 L/194	286 L/285	286 L/231	286 L/189	337 L/254	337 L/214
	50	depth deflection	184 L/294	184 L/212	235 L/313	235 L/240	235 L/187	286 L/277	286 L/225	286 L/184	337 L/248	337 L/209
610	10	depth deflection	184 L/233	235 L/352	235 L/237	235 L/182	286 L/257	286 L/205	337 L/272	337 L/224	337 L/181	N/A N/A
	20	depth deflection	184 L/220	235 L/336	235 L/227	286 L/316	286 L/248	286 L/198	337 L/264	337 L/217	N/A N/A	N/A N/A
	30	depth deflection	184 L/208	235 L/322	235 L/218	286 L/306	286 L/240	286 L/191	337 L/257	337 L/211	N/A N/A	N/A N/A
	40	depth deflection	184 L/196	235 L/308	235 L/209	286 L/295	286 L/232	286 L/185	337 L/249	337 L/205	N/A N/A	N/A N/A
	50	depth deflection	235 L/403	235 L/295	235 L/200	286 L/286	286 L/224	337 L/298	337 L/242	337 L/199	N/A N/A	N/A N/A

Notes:

- 1. **THIS TABLE IS FOR PRELIMINARY SIZING ONLY** and should not be used for designing or specifying final stud sizes. For project specific design, contact your Trus Joist representative at 1-800-661-6240.
- 2. The assumptions on page 3, along with the following assumptions were all used to develop this table.
- 3. Studs are assumed to have adequate support on each side to prevent buckling, (K_L=1). Trus Joist recommends full-width blocking installed at a maximum 2.4 m (8 ft) on-center vertically with wood structural panel wall sheathing fastened per the code to one edge and either wood structural panel wall sheathing or gypsum wallboard fastened per the code to the other edge.
- 4. Maximum moment for Load Case 1 is assumed to occur at the top of the stud, $M_f = P_f \times eccentricity$.
- 5. Maximum moment for Load Cases 2 and 3 is assumed to occur at the mid height of the stud, $M_f = W_{f(wind)}L^2/8 + P_f \times 0.5 \times eccentricity$.
- 6. A system factor = 1.04 was considered for moment only, based on Clause 13.4.4.4 of CSA 086.1S1-98 Supplement No. 1 to CSA 086.1-94.
- 7. Resistance values were calculated based on CSA 086.1S1-98 using the values from the CCMC Evaluation Report # 12627-R

For longer stud sizes, please contact your Trus Joist Representative at 1-800-661-6240 to discuss the possibilities.

Table 2.10 - Westlam® Structural Lumber (WSL) Wall Studs

Wind pressure $q_{1/30}$ 0.6 kPa; $q_{1/10}$ 0.5 kPa

Depth required (mm) for 40 mm thick studs

			Westlam (WSL)	® Structura	l Lumber							
Stud spacing mm	Factored axial load kN/m		Stud leng 5.18 m (17 ft)	th 5.79 m (19 ft)	6.40 m (21 ft)	7.01 m (23 ft)	7.62 m (25 ft)	8.23 m (27 ft)	8.84 m (29 ft)	9.45 m (31 ft)	10.06 m (33 ft)	10.67 m (35 ft)
305	10	depth deflection	190 L/340	190 L/244	241 L/334	241 L/254	241 L/198	292 L/281	292 L/227	292 L/185	356 L/280	356 L/234
	20	depth deflection	190 L/330	190 L/236	241 L/327	241 L/249	241 L/193	292 L/275	292 L/222	292 L/182	356 L/275	356 L/231
	30	depth deflection	190 L/320	190 L/229	241 L/319	241 L/243	241 L/189	292 L/270	292 L/218	301 L/196	356 L/271	356 L/227
	40	depth deflection	190 L/311	190 L/222	241 L/312	241 L/237	241 L/184	292 L/265	292 L/214	301 L/192	356 L/267	356 L/224
	50	depth deflection	190 L/301	190 L/215	241 L/305	241 L/232	292 L/328	292 L/260	292 L/210	301 L/188	356 L/263	356 L/220
406	10	depth deflection	190 L/254	190 L/182	241 L/250	241 L/190	292 L/265	292 L/210	301 L/186	356 L/253	356 L/210	N/A N/A
	20	depth deflection	190 L/246	241 L/364	241 L/244	241 L/185	292 L/259	292 L/206	301 L/182	356 L/248	356 L/206	N/A N/A
	30	depth deflection	190 L/237	241 L/354	241 L/237	241 L/180	292 L/254	292 L/201	356 L/298	356 L/244	356 L/202	N/A N/A
	40	depth deflection	190 L/229	241 L/344	241 L/231	292 L/319	292 L/248	292 L/197	356 L/293	356 L/240	356 L/198	N/A N/A
	50	depth deflection	190 L/221	241 L/335	241 L/225	292 L/312	292 L/243	292 L/192	356 L/288	356 L/235	356 L/195	N/A N/A
610	10	depth deflection	241 L/346	241 L/248	292 L/296	292 L/225	301 L/192	356 L/254	356 L/205	N/A N/A	N/A N/A	N/A N/A
	20	depth deflection	241 L/334	241 L/240	292 L/288	292 L/219	301 L/187	356 L/248	356 L/200	N/A N/A	N/A N/A	N/A N/A
	30	depth deflection	241 L/323	241 L/232	292 L/281	292 L/214	301 L/182	356 L/243	356 L/196	N/A N/A	N/A N/A	N/A N/A
	40	depth deflection	241 L/312	241 L/224	292 L/273	292 L/208	356 L/299	356 L/238	356 L/192	N/A N/A	N/A N/A	N/A N/A
	50	depth deflection	241 L/302	241 L/216	292 L/266	292 L/203	356 L/293	356 L/232	356 L/187	N/A N/A	N/A N/A	N/A N/A

Notes:

- ${\bf 1.} \quad {\bf Sizes \ shown \ in \ the \ table \ are \ based \ on \ Dry \ Service \ conditions.}$
- 2. The designer must ensure that the design assumptions used to develop the table are appropriate for the application. See Page 3 for stud table design assumptions.
- 3. Both faces of the stud must be laterally supported by sheathing. At least one face of the stud must be sheathed with plywood, waferboard, or OSB of minimum 9.5 mm thickness, and fastened to meet the requirements of the *National Building Code of Canada* and the shear wall requirements for the application. The other face must be sheathed with either structural sheathing or drywall meeting the requirements of the *National Building Code of Canada*.
- 4. Maximum spacing of full depth blocking is 2.4 m. The blocking must meet the shearwall requirements for the application.
- Stud tables for additional lengths and spacings are available at www.wood-works.org. For additional design information, contact Western Archrib at 1-780-465-9771.

Table 2.11 - Westlam® Structural Lumber (WSL) Wall Studs

Wind pressure $q_{1/30}$ 0.5 kPa; $q_{1/10}$ 0.4 kPa

Depth required (mm) for 40 mm thick studs

			Westlam (WSL)	® Structura	l Lumber							
Stud spacing mm	Factored axial load kN/m		Stud leng 5.18 m (17 ft)	th 5.79 m (19 ft)	6.40 m (21 ft)	7.01 m (23 ft)	7.62 m (25 ft)	8.23 m (27 ft)	8.84 m (29 ft)	9.45 m (31 ft)	10.06 m (33 ft)	10.67 m (35 ft)
305	10	depth deflection	190 L/423	190 L/304	190 L/202	241 L/317	241 L/247	241 L/196	292 L/283	292 L/231	292 L/192	356 L/292
	20	depth deflection	190 L/409	190 L/294	190 L/196	241 L/309	241 L/241	241 L/191	292 L/277	292 L/226	292 L/187	356 L/287
	30	depth deflection	190 L/395	190 L/284	190 L/189	241 L/301	241 L/234	241 L/186	292 L/271	292 L/222	292 L/183	356 L/283
	40	depth deflection	190 L/382	190 L/274	190 L/183	241 L/294	241 L/228	241 L/181	292 L/265	292 L/217	301 L/197	356 L/278
	50	depth deflection	190 L/369	190 L/265	241 L/376	241 L/287	24I L/223	292 L/322	292 L/260	292 L/212	301 L/193	356 L/273
406	10	depth deflection	190 L/317	190 L/227	241 L/312	241 L/237	241 L/185	292 L/262	292 L/212	301 L/190	356 L/261	356 L/219
	20	depth deflection	190 L/305	190 L/218	241 L/303	241 L/230	292 L/322	292 L/256	292 L/206	301 L/185	356 L/256	356 L/215
	30	depth deflection	190 L/293	190 L/209	241 L/294	241 L/224	292 L/315	292 L/250	292 L/201	301 L/181	356 L/251	356 L/210
	40	depth deflection	190 L/282	190 L/201	241 L/285	241 L/217	292 L/307	292 L/244	292 L/196	356 L/297	356 L/246	356 L/206
	50	depth deflection	190 L/271	190 L/193	241 L/277	241 L/211	292 L/300	292 L/238	292 L/191	356 L/291	356 L/241	356 L/202
610	10	depth deflection	190 L/209	241 L/309	241 L/206	292 L/281	292 L/219	301 L/190	356 L/255	356 L/209	N/A N/A	N/A N/A
	20	depth deflection	190 L/199	241 L/297	241 L/199	292 L/273	292 L/212	301 L/185	356 L/249	356 L/204	N/A N/A	N/A N/A
	30	depth deflection	190 L/189	241 L/286	241 L/191	292 L/265	292 L/206	356 L/301	356 L/243	356 L/199	N/A N/A	N/A N/A
	40	depth deflection	241 L/382	241 L/275	241 L/185	292 L/257	292 L/200	356 L/294	356 L/237	356 L/194	N/A N/A	N/A N/A
	50	depth deflection	241 L/368	241 L/265	292 L/327	292 L/249	292 L/194	356 L/287	356 L/232	356 L/189	N/A N/A	N/A N/A

Notes:

- ${\bf 1.} \quad {\bf Sizes \ shown \ in \ the \ table \ are \ based \ on \ Dry \ Service \ conditions.}$
- 2. The designer must ensure that the design assumptions used to develop the table are appropriate for the application. See Page 3 for stud table design assumptions.
- 3. Both faces of the stud must be laterally supported by sheathing. At least one face of the stud must be sheathed with plywood, waferboard, or OSB of minimum 9.5 mm thickness, and fastened to meet the requirements of the *National Building Code of Canada* and the shear wall requirements for the application. The other face must be sheathed with either structural sheathing or drywall meeting the requirements of the *National Building Code of Canada*.
- 4. Maximum spacing of full depth blocking is 2.4 m. The blocking must meet the shearwall requirements for the application.
- Stud tables for additional lengths and spacings are available at www.wood-works.org. For additional design information, contact Western Archrib at 1-780-465-9771.

Table 2.12 - Westlam® Structural Lumber (WSL) Wall Studs

Wind pressure $q_{1/30}$ 0.4 kPa; $q_{1/10}$ 0.3 kPa

Depth required (mm) for 40 mm thick studs

	Factored		Westlam (WSL)	® Structura	l Lumber							
Stud spacing mm	axial load kN/m		Stud leng 5.18 m (17 ft)	th 5.79 m (19 ft)	6.40 m (21 ft)	7.01 m (23 ft)	7.62 m (25 ft)	8.23 m (27 ft)	8.84 m (29 ft)	9.45 m (31 ft)	10.06 m (33 ft)	10.67 m (35 ft)
305	10	depth deflection	190 L/561	190 L/403	190 L/269	190 L/204	241 L/328	241 L/260	241 L/210	292 L/307	292 L/255	292 L/213
	20	depth deflection	190 L/538	190 L/387	190 L/259	190 L/196	241 L/318	241 L/253	241 L/203	292 L/300	292 L/249	292 L/208
	30	depth deflection	190 L/517	190 L/372	190 L/249	190 L/189	241 L/309	241 L/245	241 L/197	292 L/293	292 L/243	292 L/203
	40	depth deflection	190 L/497	190 L/358	190 L/240	190 L/181	241 L/300	241 L/238	241 L/191	292 L/286	292 L/237	292 L/198
	50	depth deflection	190 L/477	190 L/344	190 L/231	241 L/374	241 L/292	241 L/231	241 L/185	292 L/279	292 L/231	292 L/193
406 10	10	depth deflection	190 L/419	190 L/301	190 L/201	241 L/315	241 L/245	241 L/194	292 L/281	292 L/230	292 L/191	356 L/291
	20	depth deflection	190 L/401	190 L/287	190 L/192	241 L/304	241 L/237	241 L/188	292 L/273	292 L/224	292 L/185	356 L/285
	30	depth deflection	190 L/383	190 L/275	190 L/183	241 L/294	241 L/229	241 L/181	292 L/266	292 L/217	301 L/198	356 L/278
	40	depth deflection	190 L/366	190 L/262	241 L/373	241 L/285	241 L/221	292 L/320	292 L/258	292 L/211	301 L/192	356 L/272
	50	depth deflection	190 L/350	190 L/251	241 L/361	241 L/275	241 L213	292 L/311	292 L/251	292 L/205	301 L/186	356 L/266
610	10	depth deflection	190 L/277	190 L/198	241 L/273	241 L/208	292 L/290	292 L/230	292 L/186	356 L/278	356 L/230	356 L/193
	20	depth deflection	190 L/262	190 L/187	241 L/262	241 L/199	292 L/280	292 L/222	301 L/197	356 L/270	356 L/224	356 L/187
	30	depth deflection	190 L/247	241 L/374	241 L/251	241 L/191	292 L/271	292 L/215	301 L/190	356 L/262	356 L/217	356 L/182
	40	depth deflection	190 L/234	241 L/358	241 L/241	241 L/183	292 L/262	292 L/207	301 L/184	356 L/255	356 L/211	N/A N/A
	50	depth deflection	190 L/221	241 L/343	241 L/231	292 L/325	292 L/253	292 L/200	356 L/303	356 L/248	356 L/205	N/A N/A

Notes:

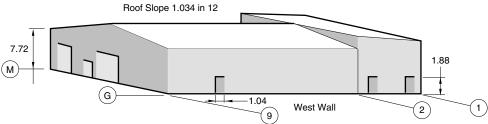
- ${\bf 1.} \quad {\bf Sizes \ shown \ in \ the \ table \ are \ based \ on \ Dry \ Service \ conditions.}$
- 2. The designer must ensure that the design assumptions used to develop the table are appropriate for the application. See Page 3 for stud table design assumptions.
- 3. Both faces of the stud must be laterally supported by sheathing. At least one face of the stud must be sheathed with plywood, waferboard, or OSB of minimum 9.5 mm thickness, and fastened to meet the requirements of the *National Building Code of Canada* and the shear wall requirements for the application. The other face must be sheathed with either structural sheathing or drywall meeting the requirements of the *National Building Code of Canada*.
- 4. Maximum spacing of full depth blocking is 2.4 m. The blocking must meet the shearwall requirements for the application.
- Stud tables for additional lengths and spacings are available at www.wood-works.org. For additional design information, contact Western Archrib at 1-780-465-9771.

3. Example

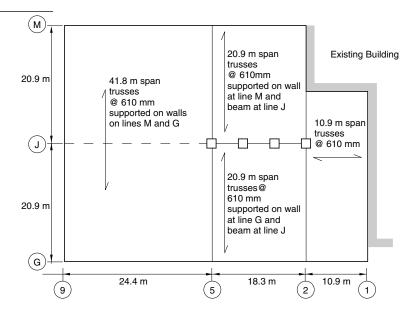
There are many aspects of wall construction that must be considered in a Tall Wall design. As a minimum, the following must be accounted for:

- · Design of the studs
- · Design of the stud connections
- Shearwall design including; overturning/holddown design, shear panel design, shearwall chord design, base plate anchorage and drag strut design
- Design of the members around wall openings including; lintel design; jack post stud design, king post stud design and the design of the connections.
- Non-structural aspects of wall design including fire and thermal resistance.

This design example is based on the Crestbrook Value Added Centre built in 1999/2000. The example uses design assumptions outlined in the *National Building Code of Canada, CSA 086.1-94*Engineering Design in Wood (Limit States Design) and Tembec's proprietary design information for Selectem™ 2.0E laminated veneer lumber.


Details in the design example are not necessarily the same as the final details used in the building construction. The details shown here have been adapted for more general building assumptions.

3.1 Overview of Building


Crestbrook Forest Industries is a lumber manufacturing facility in Cranbrook British Columbia. Additional space was required for their lumber remanufacturing and finger-joining operations. The facilities required large open areas without columns. As well, the North wall could not be load-bearing so that future plant expansion could be accommodated. Originally, a steel structure was specified but Tembec Forest Products, Crestbrook's parent company had recently adopted a policy which required wood to be considered for all their construction and used where cost effective. Analysis indicated a wood building could be constructed for the same cost as the pre-engineered steel building originally specified.

The building is a 2100 m² (22,300 ft²) one storey wood frame with a concrete slab on grade floor and foundation. Figure 3.1 gives an overview of the building.

A roof framing plan is illustrated in Figure 3.2. The west wall, "Wall G" will be used for this example. The wall is 7.72 m (25 ft 4 in) tall and at the north end supports trusses spanning 41.8 m (137 ft).

Cranbrook has the following design data:

- Specified ground snow load, S_s, 2.7 kPa
- · Associated rain load, Sr, 0.2 kPa
- 1/30 hourly wind pressure, q_{1/30}, 0.29 kPa
- 1/10 hourly wind pressure, q_{1/10}, 0.22 kPa
- · Seismic design loads are minimal and did not affect the design of this structure.

3.2 Stud Design

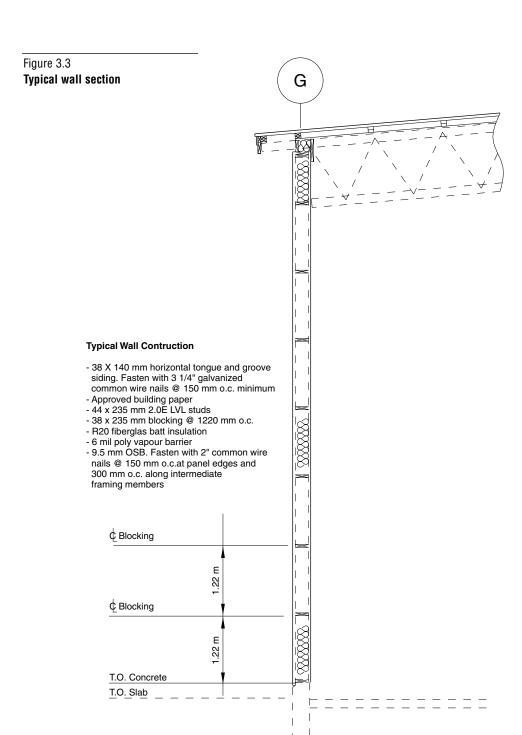
Studs used in this project were 44 x 235 mm (1-3/4 x 9-1/4 in) SelecTem $^{\rm TM}$ 2.0E studs manufactured by Tembec. Studs were spaced at 610 mm o/c and blocked at 1220 mm. Figure 3.3 shows a typical wall section. The stud length is the height of the wall minus the thickness of the top and bottom plates -7.59 m. This stud design example will be for studs supporting the 41.8 m span trusses.

Load information

Stud axial loads

Roof dead load

Specified roof dead load = 0.718 kPa


Roof load tributary width = truss span/2 = 20.9 m

Specified roof dead load on wall $= 0.718 \times 20.9$

= 15.0 kN/m

Factored roof dead load on wall $= 1.25 \times 15.0$

= 18.8 kN/m

Wall dead load

Specified wall dead load = 0.40 kPa

The critical section for combined bending and axial loads on a stud is generally the mid-height of the stud. Therefore, consider half of the wall dead weight in the stud design.

Tributary height of wall dead load = 7.72/2 = 3.86 m

Specified wall dead load = 0.40×3.86

= 1.54 kN/m

Factored wall dead load = 1.25×1.54

= 1.93 kN/m

Roof snow load, S

$$S = S_s(C_hC_wC_sC_a) + S_r$$

NBCC 4.1.7.1 (1)

Ground snow load $S_s = 2.7 \text{ kPa}$

NECC Appendix C

Associated rain load $S_r = 0.2 \text{ kPa}$

NBCC Appendix C

Basic roof snow factor $C_b = 0.8$

NBCC 4.1.7.1 (1)

All other factors

 $C_{w}, C_{s}, C_{a} = 1.0$

$$S = 2.7 \times (0.8 \times 1 \times 1 \times 1) + 0.2$$

= 2.36 kPa

Specified snow load on wall = 2.36 x 20.9

= 49.3 kN/m

Factored snow load on wall = 1.5×49.3

= 74.0 kN/m

Table 3.1 **Summary of axial loads**

	Specified Load	Factored Load
Wall + Roof Dead Load	16.5 kN/m	20.7 kN/m
Snow Load	49.3 kN/m	74.0 kN/m
Total Load	65.8 kN/m	94.7 kN/m
Stud Dead Load	10.1 kN	12.6 kN
Stud Snow Load	30.1 kN	45.1 kN
Total Stud Load	40.2 kN	57.7 kN

Stud wind loads

$$p = qC_eC_oC_o \pm qC_eC_{oi}C_{oi}$$
 (4.1.8)

Wind load for strength $q_{1/30} = 0.29 \text{ kPa}$ NBCC Appendix C Wind load for deflection $q_{1/10} = 0.22 \text{ kPa}$ NBCC Appendix C

Exposure factor $C_e = 1.0$ **NECC** 4.1.8.1

External pressure coefficient

and gust factor $C_pC_q = -2.0$ Rigger Figure B8

Internal gust factor $C_{gi} = 1.0$ NBCC Commentary B

Internal pressure coefficient $C_{pi} = \pm 0.7$ Rec Commentary B

Table 3.2 **Summary of wind loads**

	Specified Load	Factored Load
Strength area load	0.783 kPa	1.17 kPa
Deflection area load	0.594 kPa	N/A
Strength stud load	0.478 kN/m	0.717 kN/m
Deflection stud load	0.362 kN/m	N/A

Stud resistance

Product design information for SelecTem™ 2.0E – Available from Tembec

Specified bending strength $f_h = 42.7 \text{ MPa}$

Specified shear strength $f_v = 3.65 \text{ MPa}$

Specified compression

parallel to grain strength $f_c = 29.7 \text{ MPa}$

Specified compression

perpendicular to grain strength $f_{cp} = 6.21 \text{ MPa}$ Specified tension strength $f_{t} = 29.0 \text{ MPa}$

Size factor for tension $K_{zt} = 1$

Mean Modulus of Elasticity $E_{50} = 13800 \text{ MPa}$

5th percentile

Modulus of Elasticity (0.87 E_{50}) $E_{05} = 12000 \text{ MPa}$

Size factor in bending $K_{zb} = (305/d)0.15$

= 1.04

Modification factors

Bending resistance factor
$$\phi=0.9$$
 Supplement, 13.4.5 Shear resistance factor $\phi=0.9$ Supplement, 13.4.5 Compression parallel to grain resistance factor $\phi=0.8$ Supplement, 13.4.5 Compression perpendicular to grain resistance factor $\phi=0.8$ Supplement, 13.4.5 Tension resistance factor $\phi=0.9$ Supplement, 13.4.5 Load duration factor: Load combinations with wind $K_D=1.15$ Supplement, 13.4.4 All other load combinations $K_D=1.00$ System factor for bending $K_H=1.05$ Supplement, 13.4.4 Length of bearing factor $K_{ZCD}=1.15$ Sander Supplement, 13.4.4 Sander Supplement, 13.4.5 Sander Sup

Resistance of 44 x 235 mm stud of length 7.62 m Supplement, 13.4.5

With wind loads:

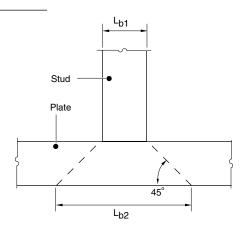
$$M_r = \phi F_b S K_{zb} K_L$$

= 19.5 kN•m
 $V_r = \phi F_v^2/_3 A$
= 26.0 kN
 $P_r = \phi F_c A K_{zc} K_c$
= 75.4 kN
 $T_r = \phi F_t A_n K_{zt}$
= 290 kN (for a member with a 1/2 in dia. bolt)

Without wind loads:

$$\begin{aligned} \mathbf{M_r} &= \phi \mathbf{F_b S K_{zb} K_L} \\ &= 17.0 \text{ kN} \bullet \text{m} \\ \mathbf{P_r} &= \phi \mathbf{F_c A K_{Zc} K_c} \\ &= 72.5 \text{ kN} \\ \mathbf{Q'_r} &= \binom{2}{3} \phi \mathbf{F_{cp} A'_b K_B K_{Zcp}} \\ &= 59.8 \text{ kN} \end{aligned}$$

Note: At the top plate, a 16000 mm² steel bearing plate is provided at the truss support.


$$A'_b = \frac{\left(16000 + 44 \times 235\right)}{2}$$
 but $\leq 1.5 \times 44 \times 235$
= 13200 mm²

At the bottom plate, axial load from the stud is assumed to be distributed through the sill plate at a 45° angle as shown in Figure 3.4.

$$A_b' = b \left[\frac{L_{b1} + L_{b2}}{2} \right], \ but \ \leq \ 1.5 \ L_{b1}$$

= 15500 mm² > 13200 Therefore, bearing of the top plate will govern

Figure 3.4 **Bearing of stud on sill plate**

Load Case 1 - axial loads alone (1.25 D +1.5 L)

$$P_f = 57.7 \text{ kN}$$
 per stud

Combined Loading:

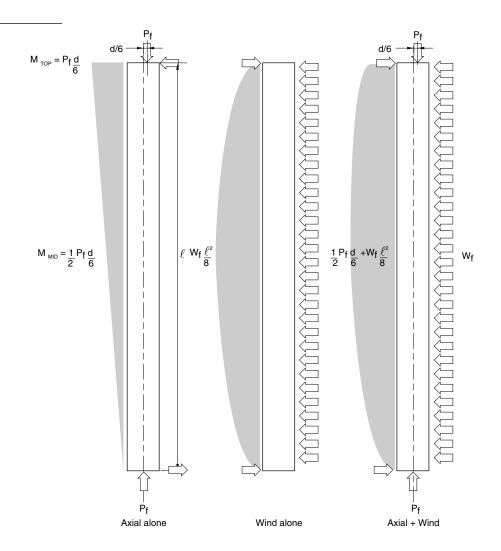
Axial load may not be applied concentrically and is conservatively assumed to be applied at 1/6th the depth of the stud from the centre of the stud creating a moment as shown in Figure 3.5

The design should consider the more critical of:

- · the unamplified moment at the top of the stud, and
- · the amplified moment at the middle of the stud

(In the stud tables, the conservative case of amplified moment at the top of the stud was considered)

In this design example, the critical case is the amplified moment at the middle of the stud.


$$M'_f = \frac{1}{2}P_f \times \frac{d}{6}$$

= 1.13 kN•m per stud

The following formula is used for the amplified moment due to eccentric load

$$\frac{P_f}{P_r} + \frac{M_f}{M_r} \ \leq \ 1.0$$

$$M_f = M_f' \left[\frac{1}{1 - \frac{P_f}{P_E}} \right]$$

Figure 3.5
Eccentric load,
lateral load and
moments on
the stud

$$\mathbf{P_E} = \frac{\pi^2 \mathbf{E_s I}}{\left(\mathbf{K_e}\ell\right)^2}$$
= 112 kN per stud

 $E_{s}I = 657 \times 10^{9} \text{ N} \cdot \text{mm}^{2}$

 $M_f = 2.33 \text{ kN} \cdot \text{m}$ per stud

$$\frac{P_f}{P_r} + \frac{M_f}{M_r} \ \le \ 1.0$$

= $0.93 \le 1.0$ (Acceptable)

Bearing on top and bottom plates

$$Q_f = 57.7 \text{ kN} < 59.8 \text{ kN}$$
 (Acceptable)

Load Case 2 - axial dead load plus wind load (1.25 D + 1.5 W)

Factored wind load (w_f) 0.717 kN/m per stud Factored axial load (P_f) 12.6 kN per stud

Maximum moment (M'_f) at centre of stud

$$\mathbf{M'}_{f} = \frac{\mathbf{w}_{f} \ell^{2}}{8} + \frac{1}{2} \mathbf{P}_{f} \times \frac{\mathbf{d}}{6}$$

$$= 5.41 \text{ kN} \cdot \text{m} \quad \text{per stud}$$

$$\mathbf{M}_{f} = 6.10 \text{ kN} \cdot \text{m} \quad \text{per stud}$$

Combined loading:

$$\frac{P_f}{P_r} + \frac{M_f}{M_r} \leq 1.0$$

$$= 0.48 \leq 1.0 \quad \text{(Acceptable)}$$

Shear:

$$V = w_1 \times \frac{\ell}{2}$$

= 2.72 kN \leq 26.0 kN (Acceptable)

Deflection:

Wall finishes, in this case OSB and lumber siding, are not brittle or subject to cracking. Acceptable total load deflection criteria is span/180 = 42 mm. Deflection is calculated at mid-span of the studs. In this Tall Wall example and the stud tables in Section 2, the deflections incorporate the deflections caused by the offset axial loads. The deflections from the wind loads and axial loads are amplified to account for the $P\Delta$ effect. These are conservative assumptions for determining stud deflection.

31

Specified wind load $(w_s) = 0.362 \text{ kN/m}$ per stud Specified axial dead load $(P_s) = 10.1 \text{ kN}$ per stud

$$\begin{array}{ll} \Delta_T &=& \text{deflection from wind + deflection from eccentric load} \\ &=& \frac{5w_s~\ell^4}{384\,\text{EI}} + \frac{P_s~e~\ell^2}{16\,\text{EI}} \\ &=& 26.0~\text{mm} \end{array}$$

 $\Delta_{\mathbf{A}}$ = amplified deflection to account for $\mathbf{P}\Delta$ effect

$$= \Delta_{\mathsf{T}} \left[\frac{1}{1 - \frac{\mathsf{P}_{\mathsf{S}}}{\mathsf{P}_{\mathsf{E}}}} \right]$$

= 28.6 mm < 42 mm (Acceptable)

Load Case 3 - axial dead load + 0.7 axial live load + 0.7 wind load [1.25 D + 0.7 (1.5 L + 1.5 W)]

A load combination factor of 0.7 is used for combined wind load and snow load.

NECC 4.1.3.2

Factored wind load (w_f) 0.7 x 0.717

= 0.502 kN/m per stud

Factored axial load (P_f) 12.6 kN + 0.7 x 45.1 kN = 44.2 kN

per stud

Maximum moment (M'_f) at centre of stud

$$\mathbf{M'}_{f} = \frac{\mathbf{w}_{f} \ell^{2}}{8} + \frac{1}{2} \mathbf{P}_{f} \times \frac{\mathbf{d}}{6}$$

$$= 4.48 \text{ kN} \cdot \text{m} \qquad \text{per stud}$$
 $\mathbf{M}_{f} = 7.40 \text{ kN} \cdot \text{m} \qquad \text{per stud}$

Combined loading:

$$\frac{P_f}{P_r} + \frac{M_f}{M_r} \leq 1.0$$

$$= 0.97 \leq 1.0 \quad \text{(Acceptable)}$$

Deflection:

Specified wind load
$$(w_s) = 0.7 \times 0.362$$
 = 0.253 kN/m per stud
Specified axial dead load $(P_s) = 10.1 + 0.7 \times 30.1 = 31.2$ kN per stud

 Δ_T = deflection from wind + deflection from eccentric load = $\frac{5w_s \ell^4}{384EI} + \frac{P_s e \ell^2}{16EI}$ = 23.3 mm

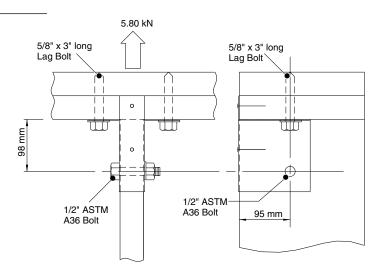
 $\Delta_{\mathbf{A}}$ = amplified deflection to account for $\mathbf{P}\Delta$ effect

$$= \Delta_{\mathsf{T}} \left[\frac{1}{1 - \frac{\mathsf{P}_{\mathsf{S}}}{\mathsf{P}_{\mathsf{E}}}} \right]$$

= 32.4 mm < 42 mm (Acceptable)

Results:

Use 44 x 235 mm (1-3/4 x 9-1/4 in) SelecTem™ 2.0E spaced at 610 mm.


Other considerations:

- Ensure that walls are laterally braced to prevent buckling about the narrow stud axis. The tongue and groove siding on the wall exterior, the OSB sheathing on the wall interior and the full depth blocking at 1.2 m will provide adequate bracing. For additional information on lateral bracing contact the stud manufacturer.
- 2) For wall segments used as shearwalls ensure all edges of sheathing are blocked. Blocking at 1.2 m intervals will provide edge support for all shearwall panels.

3.3 Stud Connection Design

Stud to wall plate connections must be designed to resist the uplift force on the stud and the wind loads resulting from the wind pressures/suctions on the face of the wall. For this project, special stud anchors were designed for the stud to plate connections. The top plate anchor is shown in Figure 3.6. SelecTem™ 2.0E studs have the same specific gravity as Hem-Fir and Tembec recommends using Hem-Fir connection design values for this product.

Load information

Factored uplift load at the eave (wind load - 0.85 roof dead load)

Critical wind uplift will be at the corner of the building

NBCC Figure B7

33

End Zone

 C_pC_g = -2.0 windward side of roof = -1.0 leeward side of roof

 $C_{pi} = 0.7$

$$C_e = 1.0$$

Wind uplift at eave

= 22.3 kN/m

Factored dead load at eave

 $= 15.0 \text{ kN/m} \times 0.85$

= 12.8 kN/m

Net uplift at eave

= 9.5 kN/m

Uplift load/stud

 $= 9.5 \times 0.61$

= 5.80 kN

Wind pressures on stud

= stud shear load (pg 31)

= 2.72 kN

Uplift resistance

Top plate connected to stud anchor with lag screws

Two 5/8 in dia. x 3 in long lag screws

$$P_{rw} = P'_{rw}L_tn_FK'J_E$$

Length of threaded portion, L_t, in top plate

w pg 262

 $L_t = L/2 + 12.7 - tip$ = 50.8 - 9.5 = 41.3 mm

$$n_F = 2$$

$$K_D = 1.15 = K'$$

$$P'_{rw} = 78 \text{ N/mm}$$

₩ pg 262

$$P_{rw} = 7.41 \text{ kN} > 5.80 \text{ kN}$$
 (Acceptable)

Stud anchor connected to stud with single bolt loaded in double shear parallel to the grain

One 1/2 in dia. bolt

$$P_r = P'_r n_s n_F K' J'$$

w рд 250

Member end distance = 98 mm = 7.71 bolt diameters

$$J_{L} = 1.0 @ 10 dia.$$

w pg 239

$$K_D = 1.15 = K'$$

For 38 mm thick member, double shear, steel side plate

$$P'_{r} = 3.42 \text{ kN}$$

w pg 252

$$P_r = 6.37 \text{ kN} > 5.80 \text{ kN}$$
 (Acceptable)

Resistance to wind pressures/suctions on the wall

Top plate connected to stud anchor with lag screws loaded perpendicular to the grain

Two 5/8 in dia. x 3 in long lag screws

Length of penetration, L_p , in top plate

$$L_p = length of lag screw - thickness of washer and steel in anchor - tip = 76 - 9 - 9.5$$

= 57.5 mm

Standard length of penetration = 159 mm pg 262

Strength reduction for reduced penetration

$$= 0.36$$

$$n_{Fe} = 2$$

$$n_R = 1$$

$$K_D = 1.15 = K'$$

$$Q'_r = 5.61 \text{ kN}$$

w рд 264

$$Q_r = Q'_r n_{Fe} n_R K' \times 0.36$$

= 4.65 kN > 2.72 kN (Acceptable)

Stud anchor connected to stud with single bolt loaded in double shear loaded perpendicular to the grain

One 1/2 in dia. bolt

Member edge distance = 95 mm = 7.5 dia. > 4 dia. (Acceptable)

$$Q_r = Q'_r n_s n_F K' J_R$$

w pg 250

 $n_s = 2$

 $n_F = 1$

$$K_D = 1.15 = K'$$

For 38 mm thick member, double shear, steel side plate

$$Q'_r = 1.49 \text{ kN}$$

wвм рд 252

$$Q_r = 3.43 \text{ kN} > 2.72 \text{ kN}$$
 (Acceptable)

Results:

Stud anchor connections are adequate to resist the stud uplift and pressure/suction loads.

Other considerations:

- 1) Steel in stud anchor must be checked to ensure the anchor is capable of transferring the loads.
- 2) Stud to bottom plate anchor must also be checked. In this project, similar anchors were used at the top and bottom of the studs. The weight of the wall is beneficial to the connection at the bottom of the stud.
- 3) The connections between the roof framing and the top plate must be capable of resisting the uplift loads and the wind pressures/suctions. A load path must be detailed to ensure that the wind pressures/suctions, on the face of the wall, are resisted by the roof diaphragm acting in the plane of the roof sheathing.

3.4 Shearwall Design

The Crestbrook Value Added Centre uses a system of diaphragms and shearwalls to resist the lateral loads. Wind pressures and suctions on the north and south end walls of the buildings are resisted by the end wall studs which transfer half of the wind load into the foundation and the other half to the roof diaphragm. The roof diaphragm acts as a deep beam and transfers the wind loads into east and west walls along Gridlines G and M. The walls on gridlines G and M must be designed as shearwalls to ensure that they are capable of transferring the shear loads at the eave level into the foundation at the base of the wall.

3.4.1 Lateral Load Path and Overturning

The diaphragm load on the roof is assumed to be uniformly distributed along the top of the wall plate. This load is transferred through the effective shearwall segments to the foundation. All of Wall G is sheathed with OSB sheathing with only 3 door openings to reduce the shear capacity – see Figure 3.7. Therefore, most of the wall can be considered capable of transferring lateral loads.

A shearwall segment is defined as a section of a shearwall with uniform construction that forms a structural unit designed to resist lateral forces parallel to the plane of the wall. The wall segments around openings are not considered as part of the shearwall. As well, a wall section where the height of the wall is more than 3.5 times greater than the length of the segment is considered too narrow to carry load. This means there are three potential shearwall segments in Wall G as illustrated in Figure 3.7.

The wall sheathing nailed to the studs transfers the shear load from the top of the wall to the bottom of the wall. The overturning of each shearwall segment is resisted by dead loads on the wall segment and chords at the ends of the segments designed to transfer tension and compression forces into the foundation. Shearwall chords acting in tension require hold-down connections to the foundation. Where possible, wall geometry may be chosen to avoid using hold-down connections.

Load Information

Lateral loads

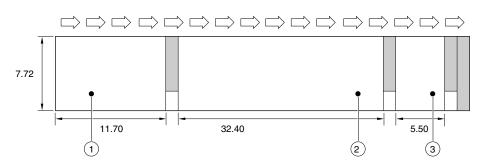
The factored roof diaphragm reaction at Wall G is 85 kN resulting from wind loads on the existing structure and the new Value Added Centre. The wall length is 53.9 m and the distributed diaphragm load along the top of the wall is 1.58 kN/m.

Dead loads

In wind load analysis, 85% of the specified dead load may be used to resist overturning. Since the roof dead load was considered to resist wind uplift, it will not be considered to resist overturning. Only the dead load of the wall will be considered in the overturning calculation.

Specified weight of wall = 0.4 kPa

Wall height = 7.72 m

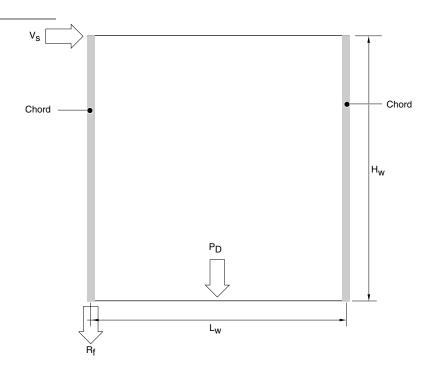

Factored weight of the wall at the base of the wall

- $= 0.85 \times 0.4 \times 7.72$
- = 2.62 kN/m

Figure 3.7

Wall G showing shearwall segments

Diaphragm Force = 85 kN/53.9m = 1.58 kN/m



Load paths

Each shearwall segment must be considered separately. In this analysis, all shearwall segments are constructed in the same manner. Due to the low aspect ratio, shear deformation is dominant and each shearwall segment is assumed to have the same stiffness per unit length and the load in each segment is assumed to be proportional to the length of the segment.

Figure 3.8 shows a free body diagram for a shearwall segment. The sheathed panels above the openings are conservatively ignored in the shearwall design.

From static equilibrium

$$R_f = \frac{M_{overturning} - M_{resisting}}{L_w}$$

Where:

 R_f = Hold-down force (positive is tension, negative is compression)

M_{overturning} is the overturning moment

$$= V_s \times H_w$$

M_{resisting} is the resisting moment

$$= P_D \times L_w/2$$

 L_w = The length of the shearwall segment

 H_w = The height of the shearwall

= 7.72 m

 V_s = Load on the shearwall segment = $V_T \frac{L_w}{\sum L_w}$

 V_T = Total shear load on the shearwall

= 85 kN

 P_D = Total factored dead load on the shearwall segment

 $= 2.62 \text{ kN/m x L}_{w}$

Option 1 – 3 shearwall segments

$$\Sigma L_w = 11.7 + 32.4 + 5.5$$

= 49.6 m

	Length	Overturning Moment		Resisti	ng Moment	
	$L_{\rm w}$	V_s	V_sH_w	P_D	$P_DL_w/2$	R_f
Segment	m	kN	kN•m	kN	kN∙m	kN
1	11.7	20.1	155	30.7	180	-2.14
2	32.4	55.4	428	84.9	1370	-29.1
3	5.5	9.42	72.6	14.4	39.6	6.00

Option 2 – Only consider segments 1 and 2 as resisting lateral load

$$\Sigma L_{W} = 11.7 + 32.35$$

= 44.1 m

	Length	Overturning Moment		Resisti	ng Moment	
	L_{w}	V_s	V_sH_w	P_D	$P_DL_w/2$	R_f
Segment	m	kŇ	kÑ∙m	kN	kN∙m	kN
1	11.7	22.6	174	30.7	180	-0.51
2	32.4	62.4	481	84.9	1370	-27.4

In option 2, hold-downs would not be required. Base shearwall design on Option 2.

Results:

Only consider shearwall segments 1 and 2 in shearwall design.

Other considerations:

1) The top plate of the shearwall must be designed as a drag strut to transfer the diaphragm shear loads into the shearwall segments. See Section 3.4.5.

3.4.2 Shear Panel Design

Shear panels are 9.5 mm thick OSB nailed with 2 in common nails at 150 mm at panel edges and 300 mm at interior framing members. Alternatively, nailed plywood sheathing could be used for shear panels. OSB and plywood sheathing of the same thickness have equivalent shearwall shear capacity when nailed with the same size and number of nails. Panels are applied horizontally and blocking provides a nailing surface for all panel edges.

Shearwall capacity is given for 2 in nails used with 7.5 mm sheathing and 2-1/2 in nails used with 9.5 mm sheathing. The shearwall capacity is a function of the strength of the nail and the strength of the sheathing. Size of nail will govern shearwall capacity. Base shearwall capacity on 7.5 mm panel with 2 in common nails. Use capacity for Hem-Fir framing as recommended by Tembec.

Factored shear resistance of shearwall segments is 3.35 kN/m

w рд 473

Factored shear load

- $= V_T/\Sigma L_w$
- = 85/44.1
- = 1.93 kN/m < 3.35 kN/m (Acceptable)

Results:

The interior sheathing consisting of 9.5 mm thick OSB nailed with 2 in common nails at 150 mm at the panel edges and 300 mm at interior framing members provides adequate shear resistance for lateral loads.

Other considerations:

 Power nails cannot be substituted for common nails in shearwall construction. Power nails generally have smaller diameters and do not have the same capacity as common nails. See the power nail manufacturer for adjustments to shearwall capacity.

3.4.3 Chord Design

Typically, the chords of each shearwall segment will act in compression and tension alternately depending on the direction of the lateral load. Studs are usually doubled at the ends of the shearwall segments to act as the chords. The double member chord must be capable of resisting the chord force, roof gravity loads and wind loads on the face of the stud.

In the example given, there are no tie downs required, therefore there will not be tension in the chord, only compression.

Chord force

When calculating the compression force in the shearwall chord resulting from the shear force, the weight of the wall does not need to be considered. The weight of the wall is resisted by all of the studs in the shearwall segment. The design of the studs acting as chords must also consider the gravity loads and wind pressures/suctions on the stud.

Useful length of wall = L_w -300 mm to allow room for connections

$$R_{fc} = V_s \times H_w/(L_w-300)$$

Segment 1

= 15.3 kN

Seament 2

= 15.0 kN

Stud design

For studs used as a chord, check stud capacity considering extra axial load from chord. Check capacity of a double stud using resistance values from Section 3.2 Load Case 3 (pg 32).

Wind load on the face of the stud:

Since design is considering wind loads on multiple surfaces of the structure, use Figure B-7 of the Structural Commentaries to the NBCC - wind blowing on the end wall.

$$C_p C_q = 0.9$$

Wind plus snow:

$$W_f = 0.424 \times 0.7$$

= 0.297 kN/m

per double stud

$$P_f = 44.2 \text{ kN} + 0.7 \text{ x } 15.3 \text{ kN}$$

= 54.9 kN

per double stud

$$P_r = 2 \times 75.4$$

= 151 kN

per double stud

$$M_r = 2 \times 19.5/1.05$$

= 37.1 kN•m

per double stud

Combined loading:

$$\frac{P_f}{P_r} + \frac{M_f}{M_r} \leq 1.0$$

$$= 0.48 \le 1.0$$

(Acceptable)

Deflection:

$$W_s = 0.150 \text{ kN/m}$$

per double stud

$$P_s = 31.2 + 0.7 \times 15.3/1.5$$

= 38.3 kN

$$= 38.3 \text{ kN}$$

per double stud

$$\Delta_A = 10.9 \text{ mm} < 42 \text{ mm}$$

(Acceptable)

Results:

Two 44 x 235 mm (1-3/4 x 9-1/4 in) SelecTem™ 2.0E studs are acceptable as a shearwall chord.

Other considerations:

1) Studs around openings must be designed to resist the additional loads imposed at the openings - See Section 3.5.3 (pg 48).

3.4.4 Anchor Bolt Design

The anchor bolts which connect the base plate to the foundation, must be designed to resist the wind uplift force on the wall, the wind loads resulting from the wind pressures/suctions on the face of the wall and the wind shearwall shear forces acting parallel to the plane of the wall. For this project, 5/8 in dia. anchor bolts were used with a minimum embedment of 127 mm into the concrete. SelecTem™ 2.0E base plates have the same specific gravity as Hem-Fir and Tembec recommends using Hem-Fir connection design values for this product.

Load information

Factored uplift load at the eave (pg 33)

- = (wind load 0.85 roof dead load)
- = 9.5 kN/m

Wind pressures (pg 33)

- = 2.72/0.61
- = 4.46 kN/m

Lateral shear loads along shearwall (pg 39)

= 1.93 kN/m

Uplift resistance

70 x 70 x 6 mm thick square washers resist wind uplift forces

Check bearing of washers on the wall plate.

Bearing area:

$$Q_r = \phi F_{cp} A_b K_B K_{Zcp}$$

$$A_b = 70 \times 70 - \pi \times 18^2/4$$
$$= 4650 \text{ mm}^2$$

$$K_B = 1.13$$

$$K_{Zcp} = 1.15$$

 $Q_r = 34.5 \text{ kN}$

Anchor bolt spacing for uplift:

- = 34.5/9.5
- = 3.63 m

Resistance to wind pressures/suctions on the wall

44 mm bottom plate; 5/8 in dia. anchor bolt; plate loaded perpendicular to grain

Design connection assuming wood and concrete have the same embedding strength and the concrete is twice as thick as the wood.

CSA 086. 10.4.2.3

41

$$Q_r = \phi Q_u n_s n_F J_R$$

where:

$$\phi = 0.7$$

$$n_c = 1$$

$$n_F = 1$$

$$J_R = 1$$

$$Q_u = q_u(K_DK_{SF}K_T)$$

 $\boldsymbol{q}_{\boldsymbol{u}}$ is calculated in accordance with 10.4.4.2 using

CSA 086. 10.4.4.2

 $I_1 = 44 \text{ mm}$

 $l_2 = 88 \text{ mm}$

 $f_1 = 10.6 \text{ MPa}$

 $f_2 = 10.6 \text{ MPa}$

 $Q_r = 2.9 \text{ kN}$

Anchor bolt spacing for face loads:

= 2.9/4.46

= 0.65 m (Governs)

Resistance to lateral shear loads parallel to the wall

44 mm bottom plate; 5/8 in dia. anchor bolt; plate loaded parallel to grain

Design connection assuming wood and concrete have the same embedding strength and the concrete is twice as thick as the wood.

CSA 086. 10.4.2.3

$$P_r = \phi P_u n_s n_F J_F$$

where:

 $\phi = 0.7$

 $n_s = 1$

 $n_F = 1$

 $J_F = 1$

$$P_{\parallel} = p_{\parallel}(K_DK_{SF}K_T)$$

p_{II} is calculated in accordance with 10.4.4.2 using

CSA 086. 10.4.4.2

 $I_1 = 44 \text{ mm}$

 $I_2 = 88 \text{ mm}$

 $f_1 = 24.4 \text{ MPa}$

 $f_2 = 24.4 \text{ MPa}$

 $P_r = 6.3 \text{ kN}$

Anchor bolt spacing for lateral loads:

= 6.3/1.93

= 3.26 m

Face loads will govern the spacing of the anchor bolts. Use 0.61 m anchor bolt spacing to match stud spacing.

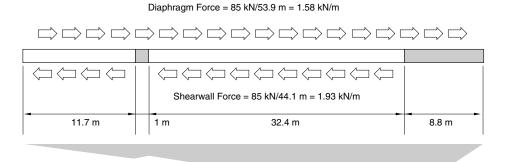
Results

Use 5/8 in dia. anchor bolts with 70×70 mm plate washers spaced at 0.61 m.

Other considerations:

- 1) The resistance of the concrete to the connection forces needs to be checked.
- 2) When anchor bolts are widely spaced, the bending capacity of the wall plate needs to be checked in both the strong and weak axis.

3.4.5 Drag Strut Design


A drag strut – also known as a collector, tie or diaphragm strut - is a diaphragm or shearwall boundary element parallel to the applied load that collects and transfers diaphragm shear forces to the shearwall segments. Typically the wall top plate acts as the drag strut and the connections in the top plate must be designed to resist the drag strut axial tension or axial compression forces.

The south 8.8 m segment of Wall G was not designed as a shearwall segment. Therefore, the diaphragm shear force at the south end of the wall has to be transferred to the shearwall segments at the north end of the wall. Figure 3.9 is a force diagram which illustrates the drag strut forces along wall G.

The maximum drag strut force is 13.9 kN. Since the shear force can occur from either the north or south direction, this can be either a tension force or a compression force. The maximum tension or compression stress in a single plate is 1.35 MPa. By observation, a single 44 x 235 mm member is capable of resisting this force. The plate members must be connected to provide continuity.

Figure 3.9

Drag strut forces
along wall G

Factored Axial Load (kN) 13.9

Drag strut connection

Stagger the butt joints in each of the top chord members and nail the top plates together. Use 2 rows of 3-1/2 in common nails.

$$\phi n_{_{IJ}} = 0.9 \text{ kN}$$

$$K_D = 1.15$$

Capacity per nail

$$= 1.0 \text{ kN}$$

Number of nails/row

$$= 13.9/(2 x1)$$

= 7

Space nails at 300 mm.

Stagger end joints in the top plate 2.1 m.

Figure 3.10 Top plate designed as drag strut

Results:

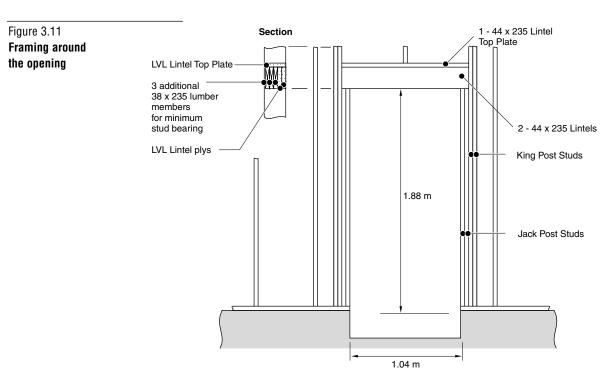
Design the wall top plate to act as a drag strut. Stagger end joints in the wall plate members a minimum of 2.1 m. Nail plates with 2 rows of 3-1/2" nails spaced at 300 mm.

Other considerations:

1) The wall top plate is often used as the diaphragm chord. The splice connections in the top plate should be designed for the most critical of the diaphragm chord force or the drag strut force.

3.5 Design of Members and Connections Around the Wall Opening

Loads must be transferred around the openings in a wall. The members and their connections listed below must be designed for the following load cases:


Member	Load considerations			
Lintel over opening	gravity loads above the opening			
	uplift loads above the opening			
	wind pressures and suctions acting on the face of the wall and door or window			
Jack post stud	gravity reactions from lintel			
King post stud	loads for a typical stud			
	chord forces if the opening is adjacent to a shearwall segment			
	lateral load reactions from the lintel			
	uplift reactions from the lintel			

This design example will focus on the door opening near the north end of Wall G – see Figure 3.1. The opening is 1.04 m wide x 1.88 m high. At this location, the wall supports trusses spanning 41.8 m and there are shearwall segments either side of the opening. The opening is far enough away from the north end of the building to use the reduced wind loads for members away from building corners.

3.5.1 Lintel Member and Connection Design

Figure 3.11 illustrates the opening and the framing around the opening. A portion of the axial loads and wind loads is resisted directly by the studs adjacent to the opening. The lintel has to resist the loads from the stud supported on the lintel.

The lintel is LVL 2-Ply with an LVL lintel top plate – see Figure 3.11. All of the lintel members are 44×235 mm SelecTemTM 2.0E.

2-Ply lintel design to resist gravity loads and uplift loads

From Table 3.1 (pg 26):

Total factored gravity load is 57.7 kN

Specified live snow load is 30.1 kN

For the factored gravity load acting as a point load in the centre of the span:

 $M_f = 15.0 \text{ kN} \cdot \text{m}$

 $K_H = 1$

 $M_r = 16.8/1.05 \times 2$

= 32.0 kN•m > 15.0 kN•m (Acceptable)

 $V_f = 28.9 \text{ kN}$

 $K_D = 1$

 $V_r = 26/1.15 \times 2$

= 45.2 kN > 28.9 kN (Acceptable)

Deflection

 $P_s = 30.1 \text{ kN}$

span = 1.04 m

 Δ < 1 mm (Acceptable)

Check bearing

Bearing reaction = 28.9 kN

$$Q_r = \phi F_{co} A_b K_B K_{zco}$$

CSA 086.1 Supplement, 13.4.5.7.2

Bearing width for 2-ply lintel

 $= 2 \times 44$

= 88 mm

Assume 2 jack post studs

Bearing length

 $= 2 \times 44$

= 88 mm

 $K_B = 1$

 $K_{zco} = 1$

 $Q_r = 38 \text{ kN} > 28.9 \text{ kN}$

(Acceptable)

Factored uplift load away from the corner of the building

 $= 4.0 \text{ kN/m} \times 0.61$

= 2.44 kN

Uplift reaction on the 2-ply beam = 1.22 kN

End-nail the king post stud to the 2-ply lintels using 3-1/2 in. common nails

Use nail design values for Hem-Fir lumber.

Resistance per nail

 $N_r = \phi N_{II} J_F$

CSA 086.1 10.9.4.1

Factor for end-nailing $J_E = 0.67$

Wind load $K_D = 1.15$

$$N_r = 0.69 \text{ kN}$$

Two nails required – better to use two nails per ply.

End nail with two 3-1/2 in nails each ply of lintel

Results:

Use a 2-ply 44 x 235 mm SelecTem TM 2.0E lintel. Support the lintel on two jack post studs at each end. End nail the king post stud to the lintel using two 3-1/2 in nails per ply.

Other considerations:

- 1) Lintel plys should be nailed together in accordance with the manufacturer's recommendations.
- 2) Use filler members to provide full support to the lintel top plate-see Figure 3.11

Lintel top plate designed to resist wind pressures and suctions on the face of the wall

Lateral loads – wind loads away from the corner of the building

$$C_p C_g = -1.75$$

$$C_e = 1.0$$

$$C_{qi} = 1.0$$

$$C_{\text{pi}} = \pm 0.7$$

Factored load for strength calculations = 1.07 kPa

Specified load for deflection calculations = 0.54 kPa

Tributary area for lintel

$$= 7.62/2 \times 0.61$$

$$= 2.32 \text{ m}^2$$

For strength calculations load = 2.48 kN

For deflection calculations load = 1.25 kN

For the wind suction acting as a point load in the centre of the 1.04 m span beam:

$$M_f = 0.64 \text{ kN} \cdot \text{m}$$

$$K_H = 1$$

$$M_r = 19.4/1.05$$

$$V_f = 1.24 \text{ kN}$$

$$K_D = 1.15$$

$$V_r = 26 \text{ kN}$$

(Acceptable)

Deflection

Using conservative assumption of

$$P_s = 1.25 \text{ kN}$$

span =
$$1.04 \text{ m}$$

$$\Delta$$
 < 1 mm

(Acceptable)

Lateral reaction on the lintel top plate = 1.24 kN

End-nail the king post stud to the lintel top plate using 3-1/2 in common nails

Resistance per nail

$$N_r = 0.69 \text{ kN}$$

2 nails required

End nail with two 3-1/2 in common nails

Results:

Use a 44 x 235 mm SelecTemTM 2.0E lintel top plate. End nail the king post stud to the lintel top plate using two 3-1/2 in nails per ply.

3.5.2 Jack Post Stud Design

Factored Axial Load/Stud = 14.5kN

Stud Length = 1.88 m

 P_r for 1.88 m stud = 237 kN

By observation, 2-jack post studs each end of lintel are adequate

3.5.3 King Post Member and Connection Design

Check the capacity of a double king post stud. The king post stud must be designed to resist the combined uplift and lateral loads from the lintel and the combined axial and lateral loads from the wind loads on the face of the wall, the shearwall chords, and the lintel.

The lintel is at 1/4 the height of the stud. Lateral load is 1.24 kN. Additional moment caused by wind load on the face of the studs away from the opening must be considered – See Section 3.4.3 (pg 39)

$$M_f = 1.76 + 0.424 \times 7.59^2/8$$

= 4.81 kN•m per double stud

$$K_H = 1$$

$$M_r = 37.1 \text{ kN} \cdot \text{m}$$
 per double stud

$$T_f = 1.22 + 2.44$$

$$T_r = 2 \times 290$$

$$\frac{T_f}{T_r} + \frac{M_f}{M_r} \leq 1.0$$

$$V_f = 0.75 \times 1.24 + 2.48$$

= 3.41 kN per double stud

$$K_D = 1.15$$

$$V_r = 2 \times 26$$
 per double stud
= 52 kN (Acceptable)

Wind plus snow plus chord force:

$$M_{wind} = 4.81 \times 0.7$$

= 3.37 kN•m per double stud

$$P_f = 44.2 \text{ kN} + 0.7 \text{ x } 15.3 \text{ kN}$$

= 54.9 kN per double stud

$$P_r = 2 \times 75.4$$

= 151 kN per double stud

$$M_r = 2 \times 19.5/1.05$$

= 37.1 kN•m per double stud

Combined loading:

$$\frac{P_f}{P_r} + \frac{M_f}{M_r} \ \leq \ 1.0$$

Connection

A double steel connection was developed similar to the connection shown in Figure 3.6. See Example Section 3.3 (pg 33).

Uplift capacity of connection:

Withdrawal capacity of lag screws = 7.41 kN

Shear capacity of bolt (38 mm thick member) = 6.37 kN

Note: shear capacity would be greater for the double stud

Uplift load =
$$3.66 \text{ kN} < 6.37 \text{ kN}$$
 (Acceptable)

Capacity of connection to resist wind loads on the face of the wall:

Lag screw capacity = 4.65 kN

Shear capacity of bolt (38 mm thick member) = 3.43 kN

Note: shear capacity would be greater for the double stud

Lateral load

$$= 2.48 + 0.93$$

$$= 3.41 \text{ kN} < 3.43 \text{ kN}$$

(Acceptable)

Results:

Double the studs around the opening.

Use a double stud anchor to resist the stud uplift and pressure/suction loads.

3.6 Non-structural Considerations

3.6.1 Fire Resistance

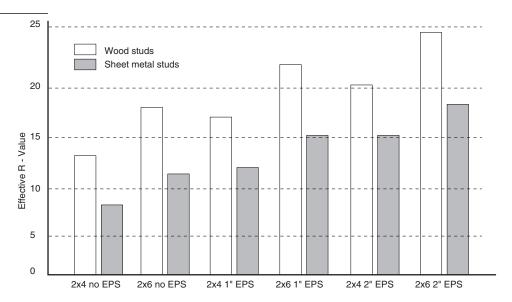
The Crestbrook Facility is classified as a Group F Division 2, industrial medium hazard occupancy. All Group F Division 2 buildings over 1500 m² must be sprinklered regardless of construction.

As per NBCC 3.2.2.70, the building is permitted to be of combustible construction. The roof does not require a fire resistance rating because the building is sprinklered. The walls do not require a fire resistance rating because the roof that they are supporting does not require a fire resistance rating. Fire tests at the National Research Centre in Ottawa have demonstrated that wood stud walls have the same or better fire resistance as sheet metal stud walls with the same wall finishes.

For more information on fire resistance of wood buildings, refer to CWC publication, *Fire Safety Design of Buildings*. Code requirements for buildings can be determined using the CWC's CodeCHEK software, available free of charge by downloading from the web site at www.wood-works.org.

3.6.2 Thermal Resistance

Wood is a good insulator compared to other structural materials. The cellular structure of wood traps air which results in its good insulating properties. Steel framing members conduct heat and cold and


act as a thermal bridge through wall assemblies. This thermal bridging lowers the effective R-value or actual insulation value or the assembly.

As shown in Figure 3.12, sheet metal framing lowers the effective R-value of the cavity insulation by close to 50 percent while wood framing impacts the effective R-value by less than 10 percent. In other words, a 2 x 6 in. sheet metal frame wall would need to add 51 mm (2.0 in.) of foam insulation to achieve the same insulating value as a woodframe wall with cavity insulation. This results in additional costs for the sheet metal system to provide the same thermal performance.

In this case, the R20 batt insulation in the wood stud wall provides an effective R-value of R18. A steel frame building, using non-loadbearing 2x4 sheet metal studs with R12 batt insulation and 2 in of EPS foam would have a lower effective R-value of R15 even though the insulation costs would be greater. The lower effective R-value would result in higher heating costs for the building.

For more information, refer to Canadian Wood Council publication, *The Thermal Performance of Light Frame Assemblies* available at www.cwc.ca.

Figure 3.12
Wood vs. steel
framing – effective
insulation values

Source: National Energy Code for Houses 1995

50 Tall Walls Workbook

NECC 3.2.2.70