Chapter 13

Flat Plates
13.1 Introduction
A Flat plate

I A structural member whose middle surface lies in a plane
T Thickness is normal to the mid-surface plane

T Thickness relatively small to length and width

i May be constant or variable thickness

Fig. 13.1 Flat plate coordinates

A Small deflection theory

T The lateral displacement w of the plate in the z direction is less than
half of the plate thickness, i.e. w < h/2

T If w> h/2,then 2" order effects become significant
A In-plane membrane forces can be developed

Fig. 13.1 Flat plate coordinates
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13.2 Stress Resultants in a Flat Plate

A Special notation for
i In-plane forces (tractions), N,, Ny, N,, [force per unit length]
i Bending moments, M,, M,, [moment per unit length]
i Twisting moments, M,,, [moment per unit length]
i Shears, Q, Q, [force per unit length]

a d ) M, Middle surface

-~ of plate
- N

Middle surface
— of plate

dx, dy, dz denote
infinitesimals;
h s finite

| Fig. 13.3 Resultant tractions on a reference surf

3
h/2 h/2 h/2
No= | o, Ny= [ o,d N,,=N, = j o, d:
h/2 -h/2 h/2
h/2 h/2
0,= [ o.d. 0, = [ o.a (13.2)
—h/2 » -h/2 '
h7?2 h/2 h/2
My = [ z0.d M=M= [ :0,d

Middle surface
— of plate

Fig. 13.4 Resultant moments and shears on a reference surfaces
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13.3  Kinematics:
Strain-Displacement Equations of Plates

A LetU, V and W be the components of the displacement
vector

A The purpose of plate theory is to reduce the 3D problem to a
more tractable 2D problem

A Kirchhoff assumed straight-line normals to the undeformed

middle surface (reference plane) remain

I Straight

T Inextensible

T Normal to the midsurface

C Plane strain

A Kirchhoff assumption

T Not limited to small displacements

I Material independent

I OK for both elastic and inelastic conditions

A By Kirchhoff approximation, W-w is a second order effect, so
let W=w

A U, Vand W vary through the thickness of the plate

W v
< dx, dv denote U = -7 .
infinitesimals;
\ h is finite
w. o (13.7)
),
"\T V =yv—-=z F
% W =u

Fig. 13.5 Displacement components in a plate element
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where we recall that (x, y) subscripts on (u, v, w) denote partial differentiation.

13.4  Equilibrium Equations for Small-Displacement
Theory of Flat Plates

JN N,
Xy X+ P +hB_ =0
ox dy g X
r7N“ dN‘
5 %
ox dy
2 d
&¢ .g‘.+/’,+h3_ =0
ox Jy 2 S
oM, M,
i -Q_+R =0
ox dy Q.+ R,
aM M.
"y 2_-0 -R =0
a,\' a‘. (‘\ X
Ny = N,

Y+ P +hB =0

(13.23)

a*!w“ al{wx‘.‘ JZM'\
—= 422+ L 4hB +Pz = (13.25)
I ax dv Ay?

13.5.1 Stress Components in Terms of Tractions and
Moments

A Stresses vary linearly through the thickness of the plate

o _ !VLY+ 12:1\4{.\

A h

_ h*_ lZ:.’VIU_ (13.35)
yy ll h}

13.6  Strain Energy of a Plate

U=U,+U,+U, (13.38)




13.7 Boundary Conditions for Plates

M = -Diw, +vw,) g
! - E\amped
M, =-Dw, +vw ) ] _OO} -
My = = =nDw,, ) il
' (13.54) Clamped
V.\ = _D[W\.\.r+(2—V)Ww,\'] 0 E:o]l
' .l
V= Dlw,, +2-vw, ]
; Fig. 13.6 Boundary conditions
p= _E*k at a reference surface
2
12(1 - v") edge

A Substituting for M,,, M,, and My, in terms of Eq. 13.25 with
B,~=0and P,=p gives

VVw=Vws= (13.56)

I
D

22 o4, — ) :
where ‘V_ V<u = v WE W ¥ 2_11_‘}._‘,}_, Wy

13.8.1 Solution of B?D2w=p/D for Rectangular Plates
A Consider '

T simply supported rectangular plate } ’
T thickness h ‘
T in-plane dimensions a and b

A The function (Levy, 1899)

¥

w(x,y) = X”(,x)sin”Tm (13.57a) _é:_ ' :

Fig. 13.7 Simply supported

Where n is an integer satisfies
rectangular plate

the simple support BC @ y=0
and y=b

0 1
0? aty = 0,6 (13.57h)

2
1l

M.

—D\n-w +vw ) =

10
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Hence, X, (x) must be chosen to satisfy the boundary conditions at x = 0 and x = a. Simi-
larly, we may also write w(x, y) in the form

wix,y) = Yn(y}sinnaﬂ( (13.58a)

which, in turn, satisfies the simple support boundary conditions at x = 0 and x = &; that is,

w=1~0

tx = 0, 13.58b
M = __D(w.\,\'+ VW}‘)') - OJ at x a ( 8b)

Ry

and ¥, (x) satisfies the boundary conditions at y =0 and y = .

‘One advantage of this single-series method (the Levy method) is that the subsequent series solution (see Eq.
13.63) converges quite rapidly compared to a double-series representation for w (the Navier method), that 15, a
solution form of the type

= =

w = z z A sinfTX gin NIy
mn

@ h

m=1n=1

11

A Substitution of Eq. 13.57a into Eq. 13.56 yields an ordinary
4t order DE for X, (X,y)

A Solution gives four constants of integration that satisfy the
remaining BCs
T No shear at x=0and x=a
I No Moment at x=0 and x=a
A The lateral pressure p must be expressed in an appropriate
form .
p(x,y) = py Y, f,,(.t)sm”_;ﬂ.' (13.59)

n=1

12
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In many practical cases, p may be written in the product form
plx.y) = pof(x)gly) (13.60)

Then, Egs. 13.59 and 13.60 yield

p(x,y) = f(x) z p,,sin"%.y (13.6])

n=1

where
b

2pg } . nTy
», :Tjg(y)smT- dy (13.62)
0
Consequently, to satisfy Eq. 13.56, we must generalize w(x, y) to

T Y sin Y
w(x, y) v;[ X”(x)sm—-h- (13.63)
Then substitution of Eqs. 13.61 and 13.63 into Eq. 13.56 yields the set of ordinary differ-

ential equations

s _ o BB ym (AT, ] .
D(X" _2(.7) b +(-b~/‘_ X, =pfx), n=12,.. (13.64) ”

In the treatment of Eq. 13.64, for simplicity, we take f(x) = 1. Then, Eq. 13.64 yields

2 4
x’n"'(x)_z['%‘) x;,'(x)+("7") X, (x) = % (13.65)

By the theory of ordinary differential equations, the general solution of Eq. 13.65 is

A
X, (x) = gf(—b—) |1+ (A +.xA,n)cosh'-Iﬂ(
D\ﬂn’ | £ 2= b (]3.66)
+ (B, +xB,y )sioh %X n = 1,2, ...

The constants Ay, A,,, B,,, and B,, are selected to satisfy the four boundary conditions

w=20

~D(w, . + vw).y) = O} ate =g (136D

X
I

14




Substitution of Egs. 13.66 into Eq. 13.63 and then substitution of the results into Eq. 13.67
yield, after considerable algebra (Marguerre and Woernle, 1969),

4 . %
X (x)="n (ij 1 = cosh/EX | ARX oy RIEX
n D \nm 5 B B

1 (. . nma nﬂa] nrmx

i e CEHE%)
- @sinhwcosh"_m
b b b

With X, (x) and hence w(x, y) known, Egs. 13.54 may be used to compute M, M_yy, M_,y,
Vi,and V.

15

13.8.2 Westergaard Approximate Solution for
Rectangular Plates: Uniform Load

A The stress is always greater in the direction of the shorter
span than in the larger span

A Consider two strips EF and GH
i The deflections of the two strips at the center of the plate are equal
i The shorter strip has a smaller radius of curvature

C a greater stress in shorter strip
G

H

Fig. 13.8 LongitudinalEF) and transverse3H) plate strips
16
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A Fig. 13.9 is the Westergaard solution for the bending
moment per unit width across the diagonal at the corner

(denoted by M;,g)
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Fig. 13.9 Ratio of bending moment M

per unit width to pbin
rectangular plates with simply

5 L1
M= g 1+ T supported edges.
0.02 7
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& g2 0% 05 a8 10 assumed to be zero.
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17
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A Other Types of Edge Conditions

i The effect Poissondés ratio
moment per unit width in the plate

i Let M,.,and M, represent the values of the bending
momnets at the center of a rectangular plate when the

materi al has a>Poi ssonods r
Mar'v = Mlac""VMhC‘
. (13.69)
thv = Mb(+va.

19

e

13.8.3 Deflection of a Rectangular Plate: Uniformly
Distributed Load

A The ODE for plates has been solved only for relatively
simple shapes and loads

A For rectangular plate (where b is the short span length)

4>
6 2,| pb
Wax — C(l-v )(;?_11] (13.70)

20
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TABLE 13.1 Formulas Obtained by the Theory of Flexure of Slabs, Giving Approxi Values of
i D i ical Slabs Under U,

per Unit Width and

rm Load (Given by Westergaard)®

Moments in span b Moments in span a Values of C
— = LSS = = - at maximum
At center At center At center Along center & dm_"ct:“’" ':’2') "
of edge -M,,, of slab M, of edge -M,, line of slab M, m.,i‘;h‘lEh’)
" Lo’ 2 )
Rectangular slab, 0 8 0 LY (1 ad) 0.16
four edges simply supported v 48 eI
142« 1+24a
Lyt Lop? )
Rectangular slab, 1" 23" b’ 503 0.032
span b fixed; span a simply supported _ - 0 o (1 +03a) -
1+02c 1 +04a 1+04a
pb ',;/»‘ \
Rectangular slab, 8 8 '1{] 2 2)
3 21+ 0.16
span afixed; span b simply supported 0 —_— — 0.015pb7| 222 ;‘
1+08a" + 6 1.08¢x Liva 1+ +5a
L Low?
Rectangular slab, 12 8 2 ) I |
all edges fixed : Lo 0.009pb(1 + 20 - &) 0032
1+a" i i
- 1 phal ! pniad
Elliptical slab with fixed edges; 7 5 ’
axes aand b, bla= « h, 74 = =
l+Za + 1+ +a
3
*Poisson’s ratio v = 0 (see Eq. 13.69). b = shorter side; a = longer side; b/a = &
21

A square plate is stmply supported on all edges (Figure 13.7)

EXAMPLE 13.1
Square Plate

and 1s loaded by grave! such that

Subject to ply,y) = pnsmﬂsin%, a=h (a)
Sinusoidally a
Distributed (a) Determine the maximum defiection and its location.
Pressure
{b) Determine the maximum values of the moments M, M.,
(¢) Determine the maximum values of the Kirchhoff shear forces V,, V|
Solution | The boundary conditions for simply supported edges are

X

v

3:w/¢9y: = 0 for edges parallel 10 the y axis. Hence, noting t

w=0 M _=0 forx=0.a

(b)

w=0 M =0 fory=20,b

Since w = 0 around the plate boundary, d%w/dx? = 0 for edges parallel to the x axis and likewise

he expressions for M . M,, in Eq.

13.54, we may rewrite the boundary conditions, Egs. (b), in the form (note that b = a)

W =10, (T—tz() forx =0,a
aw
5 ()
w =0, (—9—V:=0 fory = 0.a
ay’
22
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(a) Equations (¢) may be satisfied by taking w in the form

. RX . Ty
w = wy sin*= sin—=
a a

(d)

where w 1s a constant that must be chosen to satisfy the plate equation (Eq. 13.56). namely. with

Eq. (a).

4
Iy g, o
dx ax dy” 9y D a

Substitution of Eq. (d) into Eq. (e) yields

4
_ Poa

ar'D

4 44
a w )W p . TTX ‘
+ 2 2 D0 g Y g I
a

(£

By Eq. (d). we see that the maximum deflection of the plate occurs atx = y = /2. Thus, the maximum

deflection of the plate is

4
Pya
w =Wy = ——— atx =y

max
4 D

R

(g)

23

24
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