1. DEFINITIONS

Net Positive Suction Head (NPSH)

The pressure exerted on the liquid at the pump suction minus the liquid vapor pressure. The NPSH is the result of the following arithmetic:

- The pressure above the source liquid level
- plus the elevation of the liquid level above the pump's suction inlet nozzle
- minus the elevation of the pump's suction inlet nozzle
- minus the fluid's friction loss in the suction line
- minus the vapor pressure of the liquid fluid.

All the previous values should be consistent in absolute pressure units.

A liquid at its boiling point (B.P.).
A liquid at a temperature less than its boiling point.
The pressure exerted by a liquid's molecules at the surface. It is a function of the liquid's temperature. When the V.P. equals the environmental pressure, the liquid is at its boiling point.

The specific gravity of a liquid is the ratio of its weight density at a specified temperature to that of water at the standard temperature of $60^{\circ} \mathrm{F}\left(62.371 \mathrm{lb} / \mathrm{ft}^{3}\right)$.

2. CONVERSIONS

Pressure, Feet of liquid $=$ (psi) (144 sq. in./sq. ft.) (cu. Ft./62.371 lb) (1/Specific Gravity)
$=\mathbf{(p s i)}(\mathbf{2 . 3 0 8} /$ Specific Gravity)
Flowrate, US gpm $\quad=(\mathrm{lb} / \mathrm{hr})(\mathrm{hr} / 60 \mathrm{~min})(\mathrm{gal} / 8.3378 \mathrm{lb})(1 /$ Specific Gravity $)$
$=(\mathrm{lb} / \mathrm{hr}) /(500.268 *$ Specific Gravity)
$=(\mathbf{l b} / \mathbf{h r}) /(500 *$ Specific Gravity)

3. CALCULATING THE NPSH

a) Do not take credit for liquid levels in tanks, vessels, etc. Pump must be able to work even when the level in the source vessel approaches zero height;
b) Use specific gravities obtained at the pumping temperature. (The specific gravity is a function of temperature);
c) Most pump suctions are 2-3 feet above grade if the pump base is at grade;
d) Suction lines are usually sized for $0.1-0.2 \mathrm{psi} / 100 \mathrm{ft}$. In calculating the NPSH, one can usually assume 0.2 psi for a suction line pressure drop; and,
e) Very few pumps require more than $12-15 \mathrm{ft}$ of available NPSH $\left(\mathrm{NPSH}_{\mathrm{a}}\right)$; rarely is more than 20 feet needed. (Exceptions are: multi-stage boiler feed water pumps pumping boiling water over a pressure drop of 200-600 psi)

A boiling liquid (or "Bubble Point" liquid) pumped out of an open tank:
Pressure existing @ the pump suction is

Pressure above liquid	=	14.7 psia	$=$	34 ft
Tank bottom elevation	=		=	+10 ft
Pump suction elevation	=		$=$	- 3 ft
Suction friction loss	=	0.2 psia	$=$	-0.5 ft
Press. @ pump suction	$=$		=	40.5 ft
Fluid Vapor Pressure		14.7 psia	$=$	-34 ft
Available NPSH	=		=	6.5 ft

If the pump size or the liquid flow rate requires more available NPSHa, the source tank should be raised until the total NPSHa is in excess of the minimum required.

EXAMPLE 2:

A non-boiling liquid (or "subcooled liquid") pumped out of an open tank:

Pressure existing @ the pump suction is

Pressure above liquid	$=14.7 \mathrm{psia}$	$=$	34 ft
Tank bottom elevation	$=$		+10 ft
Pump suction elevation	$=$	$=$	-3 ft
Suction friction loss	$=0.2 \mathrm{psia}$	$=$	$\underline{-0.5 \mathrm{ft}}$
		$=40.5 \mathrm{ft}$	
Press. @ pump suction	$=$	$=$	
Fluid Vapor Pressure	$=1.0 \mathrm{psia}$	$=$	
Available NPSH	$=$	$=$	$\mathbf{3 8 . 2 \mathrm { ft }}$

Specify the NPSHa as $\underline{\mathbf{2 0} \mathbf{f t}}$
NOTE: Very few pumps need more than 20 ft of NPSHa.
The source tank can be lowered, if desired.
A cooler can be installed on the pump's suction line to lower the suction temperature and, subsequently, the suction Vapor Pressure.

EXAMPLE 3:

A non-boiling liquid (or "subcooled liquid") pumped out of a vented tank:
The vapor pressure of gasoline @ $100^{\circ} \mathrm{F}=7.0 \mathrm{psia}$ The Specific Gravity of gasoline @ $100^{\circ} \mathrm{F}=0.7$

Pressure existing @ the pump suction is

Pressure above liquid	$=$	14.7 psia	=	49 ft
Tank bottom elevation	=		$=$	+3 ft
Pump suction elevation	=		$=$	- 3 ft
Suction friction loss	$=$	0.2 psia	=	-0.7 ft
Press. @ pump suction	$=$		$=$	48.3 ft
Fluid Vapor Pressure		7.0 psia	$=$	$-23.0 \mathrm{ft}$
Available NPSH	=		=	25.3 ft

Available NPSH
$=\quad=\quad 25.3 \mathrm{ft}$
Specify the NPSHa as $\underline{\mathbf{2 0} \mathbf{f t}}$ and state "Flooded Suction".

EXAMPLE 4:

Sub-cooled liquid in a pit or a sump Pressure existing @ the pump suction is

Pressure above liquid	$=14.7 \mathrm{psia}$	$=$	34 ft
Tank bottom elevation	$=$	+0 ft	
Pump suction elevation	$=$	-0 ft	
Suction friction loss	$=0.2$ psia	$=\underline{-0.5 \mathrm{ft}}$	
		$=$	
Press. @ pump suction	$=$	33.5 ft	
Fluid Vapor Pressure	$=1.0$ psia	$=\underline{-2.3 \mathrm{ft}}$	
Available NPSH	$=$	$=\underline{\mathbf{3 1 . 2 f t}}$	

Specify the NPSHa as $\underline{\mathbf{2 0} \mathbf{f t}}$ and state "Flooded Suction".

Design for one of the following conditions:

1. $\mathrm{NPSH}_{\mathrm{A}}>\mathrm{NPSH}_{\mathrm{R}}+5$ feet of head
2. $\mathrm{NPSH}_{\mathrm{A}}>\left(\mathrm{NPSH}_{\mathrm{R}}\right)(1.35)$
.... whichever of the two yields the larger answer.
