1. DEFINITIONS

Net Positive Suction Head (NPSE	 1) The pressure exerted on the liquid at the pump suction minus the liquid vapor pressure. The NPSH is the result of the following arithmetic: The pressure above the source liquid level plus the elevation of the liquid level above the pump's suction inlet nozzle minus the elevation of the pump's suction inlet nozzle minus the fluid's friction loss in the suction line minus the vapor pressure of the liquid fluid. All the previous values should be consistent in absolute pressure units.
Bubble Point Liquid	A liquid at its boiling point (B.P.).
Sub-cooled Liquid	A liquid at a temperature less than its boiling point.
Vapor Pressure (V.P.)	The pressure exerted by a liquid's molecules at the surface. It is a function of the liquid's temperature. When the V.P. equals the environmental pressure, the liquid is at its boiling point.
Specific Gravity	The specific gravity of a liquid is the ratio of its weight density at a specified temperature to that of water at the standard temperature of 60 $^{\circ}$ F (62.371 lb/ft ³).
2. <u>CONVERSIONS</u>	
	si) (144 sq. in./sq. ft.) (cu. Ft./62.371 lb) (1/Specific Gravity) si) (2.308/ Specific Gravity)
= (lt	p/hr) (hr/60 min) (gal/8.3378 lb)(1/Specific Gravity) p/hr) / (500.268 * Specific Gravity) p/hr) / (500 * Specific Gravity)

3. <u>CALCULATING THE NPSH</u>

- a) Do <u>not</u> take credit for liquid levels in tanks, vessels, etc. Pump must be able to work even when the level in the source vessel approaches zero height;
- b) Use specific gravities obtained at the pumping temperature. (The specific gravity is a function of temperature);
- c) Most pump suctions are 2 3 feet above grade if the pump base is at grade;
- d) Suction lines are usually sized for 0.1 0.2 psi/100 ft. In calculating the NPSH, one can *usually* assume 0.2 psi for a suction line pressure drop; and,
- e) <u>Very few</u> pumps require more than 12 15 ft of available NPSH (NPSH_a); rarely is more than 20 feet needed. (<u>Exceptions</u> are: multi-stage boiler feed water pumps pumping boiling water over a pressure drop of 200 600 psi)

A boiling liquid (or "Bubble Point" liquid) pumped out of an open tank:

Pressure existing @ the pump suction is

Pressure above liquid Tank bottom elevation Pump suction elevation Suction friction loss	= = =	14.7 psia 0.2 psia	= = =	34 ft +10 ft - 3 ft -0.5 ft
Press. @ pump suction	=	14.7 psia	=	40.5 ft
Fluid Vapor Pressure	=		=	-34 ft
Available NPSH	=		=	6.5 ft

If the pump size or the liquid flow rate requires more available NPSHa, the source tank should be raised until the total NPSHa is in excess of the minimum required.

EXAMPLE 2:

A non-boiling liquid (or "subcooled liquid") pumped out of an open tank:

Pressure existing @ the pump suction is

Pressure above liquid	=	14.7 psia	=	34 ft
Tank bottom elevation	=		=	+10 ft
Pump suction elevation	=		=	- 3 ft
Suction friction loss	=	0.2 psia	=	-0.5 ft
Press. @ pump suction	=		=	40.5 ft
Fluid Vapor Pressure	=	1.0 psia	=	-2.3 ft
Available NPSH	=		=	38.2 ft

Specify the NPSHa as 20 ft

NOTE: Very few pumps need more than 20 ft of NPSHa.

The source tank can be lowered, if desired. A cooler can be installed on the pump's suction line to lower the suction temperature and, subsequently, the suction Vapor Pressure.

EXAMPLE 3:

A non-boiling liquid (or "subcooled liquid") pumped out of a vented tank:

The vapor pressure of gasoline @ $100 \text{ }^{\circ}\text{F} = 7.0 \text{ psia}$ The Specific Gravity of gasoline @ $100 \text{ }^{\circ}\text{F} = 0.7$

Pressure existing @ the pump suction is

Pressure above liquid	=	14.7 psia	=	49 ft
Tank bottom elevation	=		=	+3 ft
Pump suction elevation	=		=	- 3 ft
Suction friction loss	=	0.2 psia	=	-0.7 ft
Press. @ pump suction	=		=	48.3 ft
Fluid Vapor Pressure	=	7.0 psia	=	-23.0 ft

Specify the NPSHa as <u>20 ft</u> and state "Flooded Suction".

EXAMPLE 4:

Sub-cooled liquid in a pit or a sump Pressure existing @ the pump suction is

Design for one of the following conditions:

- 1. $NPSH_A > NPSH_R + 5$ feet of head
- 2. $NPSH_A > (NPSH_R) (1.35)$

.... whichever of the two yields the larger answer.