RESISTANCE OF GROUND ROD:

- One ground rod:

$$
\mathrm{R}_{1}(\mathrm{~L}, \mathrm{a}, \rho):=\frac{\rho}{2 \pi \cdot \mathrm{~L}} \cdot\left(\ln \left(\frac{4 \mathrm{~L}}{\mathrm{a}}\right)-1\right)
$$

Where:

$$
\begin{array}{lll}
R=\text { resistance in } \Omega & d=\text { distances }- \text { in } \mathrm{cm} & a=\text { rod radius (cm) } \\
\rho=\text { resistivity in } \Omega . c m & S=\text { space between rods }(\mathrm{cm}) & L=\text { Rod length (cm) }
\end{array}
$$

- Two ground rods:
a) For $\mathrm{S}>\mathrm{L}: \quad \mathrm{R}_{2}(\mathrm{~L}, \mathrm{~S}, \mathrm{a}, \rho):=\frac{\rho}{4 \pi \cdot \mathrm{~L}} \cdot\left(\ln \left(\frac{4 \mathrm{~L}}{\mathrm{a}}\right)-1\right)+\frac{\rho}{4 \pi \cdot \mathrm{~S}} \cdot\left(1-\frac{\mathrm{L}^{2}}{3 \mathrm{~S}^{2}}+\frac{2 \mathrm{~L}^{4}}{5 S^{4}}\right)$
b) For $\mathrm{S}<\mathrm{L}: \quad \mathrm{R}_{3}(\mathrm{~L}, \mathrm{~S}, \mathrm{a}, \rho):=\frac{\rho}{4 \pi \cdot \mathrm{~L}} \cdot\left[\ln \left(\frac{4 \mathrm{~L}}{\mathrm{a}}\right)+\ln \left(\frac{4 \mathrm{~L}}{\mathrm{~S}}\right)-2+\frac{\mathrm{S}}{2 \mathrm{~L}}-\left(\frac{\mathrm{S}^{2}}{16 \mathrm{~L}^{2}}\right)+\frac{\mathrm{S}^{4}}{256 \mathrm{~L}^{4}}\right]$

Example:

- Rod lengt: $\mathrm{L}:=10 \mathrm{ft}$
- Rod diameter: $\mathrm{d}:=\frac{5}{8}$ in ; Radius $\quad \mathrm{a}:=\frac{\mathrm{d}}{2}$
- Soil resistivity: $\rho:=150 \Omega \cdot \mathrm{~m}$
- Number of rods.n
- Rod Spacing: S , Burried depth: h := 24in
- One ground rod: $R_{1}(L, a, \rho)=49.634 \Omega$

Ground Rods in a Uniform Soil

区	Hemisphere radius a	$R=\frac{\rho}{2 \pi a}$
\bullet	One ground rod length L, radius a	$R=\frac{\rho}{2 \pi L}\left(\ln \frac{4 L}{a}-1\right)$
- $*$	Two ground rods $s>$ Lispacing s	$R=\frac{\rho}{4 v L}\left(\ln \frac{4 L}{a}-1\right)+\frac{\rho}{4 * s}\left(1-\frac{L^{2}}{3 s^{2}}+\frac{2 L^{4}}{5 s^{4}},\right)$
- *	Two ground rods $s<L$; spacing s	$R=\frac{\rho}{4 \pi L}\left(\ln \frac{4 L}{a}+\ln \frac{4 L}{s}-2+\frac{s}{2 L}-\frac{s^{2}}{16 L^{2}}+\frac{s^{4}}{512 L^{4}}-\cdots\right)$
	Buried horizontal wire length $2 L$, depth $\mathbf{s} / 2$	$R=\frac{\rho}{4 \pi L}\left(\operatorname{In} \frac{4 L}{a}+\ln \frac{4 L}{s}=-2+\frac{s}{2 L}-\frac{s^{2}}{16 L^{2}}+\frac{s^{4}}{512 L^{4}}+\right)$
L	Right-angle turn of wire length of arm L. depth $s / 2$	$R=\frac{p}{4 v L}\left(\ln \frac{2 L}{o} \cdot \ln \frac{2 L}{s}-0.2373 \cdot 0.2146 \frac{s}{L}+0.1035 \frac{s^{2}}{L^{2}}-0.0424 \frac{s^{4}}{L^{4}}\right)$
	Three point star length of arm L, depth s/2	$R=\frac{\rho}{68 L}\left(\ln \frac{2 L}{a}+\ln \frac{2 L}{s}+1.071-0.209 \frac{s}{L}+0.238 \frac{s^{2}}{L^{2}}-0.054 \frac{s^{4}}{L^{4}}-\cdots\right)$
\ddagger	Four-point star length of arm L. depth s/2	$R=\frac{b}{8 n L}\left(\operatorname{in} \frac{2 L}{a}+\ln \frac{2 L}{s}+2.912-1.071 \frac{s}{L}+0.645 \frac{s^{2}}{L^{2}}-0.145 \frac{s^{4}}{L^{4}}\right)$
*	Six-point star length of arm L, depth s/2	$R=\frac{\theta}{12 \sim L}\left(\ln \frac{2 L}{a}+\ln \frac{2 L}{s}+6.851-3.128 \frac{s}{L}+1.758 \frac{s^{2}}{L^{2}}-0.490 \frac{s^{4}}{L^{4}}\right)$
米	Eight-point star length of arm L. depth s/2	$R=\frac{\theta}{16=L}\left(\ln \frac{2 L}{a}+\ln \frac{2 L}{s}+10.98-5.51 \frac{s}{L}+3.26 \frac{s^{2}}{L^{2}}-1.17 \frac{s^{4}}{L^{4}} \cdots\right)$
\bigcirc	Ring of wire diameter of ring D, diameter of wire d. depth s/2	$R=\frac{D}{2 \pi^{2} D}\left(\ln \frac{8 D}{d}+\ln \frac{4 D}{s}\right)$
	Buried horizontal strip length $2 L$, section a by b. depth $s / 2, b<a / 8$	$R=\frac{b}{4 \pi L}\left(\ln \frac{4 L}{a}+\frac{a^{2}-\pi a b}{2(a+b)^{2}}+\ln \frac{4 L}{8}-1+\frac{s}{2 L}-\frac{s^{2}}{16 L^{2}}+\frac{s^{4}}{512 L^{4}} \cdots\right)$
	Buried horizontal round plate radius a, depth s/2	$R=\frac{\rho}{80}+\frac{\rho}{4 * s}\left(1-\frac{7}{12} \frac{a^{2}}{s^{2}}+\frac{33}{40} \frac{a^{4}}{s^{4}} \cdots\right)$
	Buried vertical round plate radius a, depth s/2	$R=\frac{p}{8 a}+\frac{\rho}{4 m s}\left(1+\frac{7}{24} \frac{a^{2}}{s^{2}}+\frac{99}{320} \frac{a^{4}}{s^{4}} \cdots\right)$

IEEE Std 142

