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. Let us assume now that the plate buckles into two half-waves and that
the deflection surface is represented by the expression
L ) o
w = A9 sm%xsm%y

We have an inflection line dividing the plate in halves, and each half is in
exactly the same condition as a simply supported plate of length a/2.
For calculating the critical load we can again use Eq. (g) by substltutlng
in'it a/2 mstead of a. Then

D 2b- a . ~ .
(mn=’ (Z+35) ®

The second factor in this expression, depending on the ratio a/b, is
represented in Fig. 9-2 by the curve m = 2. It can be seen that the curve
m = 2 is readily obtained from the curve m = 1 by keeping the ordinates
unchanged and doubling the abscissas. Proceeding further in the same
way and assummg m=3,m=4, and s s0 on, we obtain the series of curves
shown in Fig. 9-2.. Having these eirves,' we can easily determine the
critical load and the number of half-waves for any value of the ratio a/b.
It is only necessary to take the corresponding point on the axis of abscissas
and to choose the curve having the smallest ordinate for that point. In
Fig. 9-2 the portions of the curves defining the critical values of the load
. are shown by full lines. It is seen that for very short plates the curve
m = 1 gives the smallest ordinates, i.e., the smallest values of k in Eq.
(9-6). Beginning with the point of intersection of the curves m = 1 and
m = 2, the second curve has the smallest ordinates; i.e., the plate buckles
into two half-waves, and this holds up to the point of intersection of the
curves m = 2 and m = 3. Beginning from this point, the plate buckles
in three half-waves, and so on. The transition from m to m + 1 half-
waves evidently occurs when the ‘two corresponding curves in Fig. 9-2
have equal ordinates, i.e., when

mb,a _(mtlb, a

e b et (m +. ,l)b'
From this equation we obtain
= Vmm +1) @
Substituting m = 1, we obtain
a
3= 2 =141

At this ratio we have transition from one to two half-waves. By taking
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m = 2 we find that transition from two tothree half-waves occﬁrs when

e _
It is seen that the number of half-waves increases with the ratio a/b, and
for very long plates m is a large number. Then, from (j), we obtain

6 =245

a ‘~
. . p=m™
i.e., a very long plate buckles in half-waves, the lengths of which approach
the width of the plate. Thus a buckled pla.te subdivides approximately
into squares.

- After the number of half-waves m in which a plate buckles has been
determined from Fig.9-2 or from Eq. (j), the cntlcal load is calculated from

"Eq. (g). Itis only necessary to substltuté in Eq (9) the length a/m of

one half-wave, instead of a.

To simplify this calculation, Table 9-1 can be used; the values of the
factor k in Eq. (9-6) are given for various values of the ratio a/b.

From Eq. (9:6) the critical value of the compressive stress is '

— (Nz’)er . kx*E Z'«_z
T TR T 120 - A5

For a given ratio a/b the coefficient k is constant, and o, is proportional
to the modulus of the material and to the square of the ratio A/b. In the

9-7)

TaBLE 9-1. VALUEs oF Facror .k IN Eq. (9-6) For UNIFORMLY CO_MPRESSED,
SiMpLY SUPPORTED RECTANGULAR PLATES AND o IN PSI FOR
E = 30- 108 »si, b/h = 100, » = 0.3

a/b 0.2 0.3 04 | 05 | 06 0.7 0.8

k 27.0 | 132 | 841 | 625 | 514 | 453 | 420
e | 73,200 | 35,800 | 22,800 J 16,900 | 13,900 | 12,300 | 11,400

a/b 0.9 1.0 1.1 1.2 1.3 1.4 1.41

k 4.04 4.00 4.04 4.13 .4.28 4.47 4.49
oor 11,000 | 10,800 | 11,000 | 11,200 | 11,600 | 12,100 | 12,200

third line of Table 9-1 the critical stresses are given for steel plates, assum-
ing E = 30 - 10° psi, » = 0.3, and 2/b = 0.01. For any other material
with a modulus E; and any other value of the ratio h/b, the critical stress
is obtained by multiplying the values in the table by the factor!

E. (R}
30- 102 \b

11t is assumed that Poisson’s ratio » can be considered as a constant.
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‘.Comp'aring steel and duralumin plates of the same dimensions a and b,
it is interesting to note that for the same weight the duralumin plate will
be about three times thicker than the- steel plate; since the modulus of
elasticity of duralumin is about one-third that of steel, it can be concluded
from Eq. (9-7) that the critical stress for the duralumin plate will be about
three times larger and the critical load about nine times larger than for'a
steel plate of the same weight., From this comparison it can be seen how
important is the use of light aluminum alloy sheets in such structures as
airplanes where the weight of the structure is of primary importance.

The critical values of o, calculated by the use of Table 9-1, represent
the true critical stresses provided they are below the proportional limit of
the material. Above this limit formula (9-7) gives an exaggerated value
for o,,, and the true value of this stress can be obtained only by, taking i mt.o
consideration the plastic deforma.tlon of the material ‘(see Art. 9.12).
each particular case, assuming that formula (9-7) is agcurate enough up to

g l‘—"—’fﬁ ) '4m¢‘1_mn L
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Fie. 9-3 Fia. 9-4

the yield point of the material, the limiting value of the ratio k/b, up to
which formula (9-7) ¢an be applied, is obtained by substituting in it
a,, = gyp. Taking, for instance, steel for which ovr = 40,000 psi,

= 30 - 10° psi, and » = 0.3 and assuming that the plate is long enough
S0 that k ~ 4, we find from Eq. (9-7) that.b/h ~ 52. Below this value
of the ratio b/h the material begins to yield before the critical stress given
by formula (9-7) is obtained.

The edge conditions assumed-in the problem discussed above are
realized in the case of uniform compression of a thin tube of square cross
section (Fig. 9-3). When compressive stresses become equal to ‘their

*critical value (9-7), buckling begins and the cross sections of the tube

become curved as shown in-Fig. 9-3b. There will be no bending moments
acting between the sidés of the buckled tube along the corners, and each

side is in the condition of & compressed rectangular plate with sxmply
supported edges. '

9.3. Buckling of Simply Supported Rectangular Plates Compressed in Two Per-
pendicular Directions. If a rectangular plate (Fig. 9-4) with simply supported edges
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is submitted to the action of uniformly.distributed compresswe forces N, and N,,
the same expression for the deflection w can be used as in the previous article, and ‘i
can be proved again that only one term in the double series for w should be considered

in calculating the critical values of N,.and N,. Applying the energy method, we find
that Eq. (9-2) then becomes

vy, mit | pipr\s -
A L ] +_b,-) @

in which m determines the number of half-waves in the z direction aﬁd 7 the number

in the y direction. Dividing Eq. (a) by the thickness of the plate and introducing
the notation '

2D s
@h = )
we obtain ozm? + ayn? % =g, (m: + n? ::)’ ©

Taking any integer for m and n, the corresponding deflection surface of the buckled
plate is given by the equation

mnx o
Wmn = Gmn Sln-—' sm%y

and the corresponding values of ¢, and o, are such as t)o sa.tisfy Eq. (¢). Takiﬁg o, and
oy a8 rectangular coordinates, Eq. (c) will be represented by a straight line. Several
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lines of this kind for various values of m and n and for the case of a square plate (@ = b)
are shown in Fig. 9-5. The values of m and n are indicated on these lines and positive
values of o, and o, indicate compressive stresses. Since we seek the smallest values of
0. and o, at which bucklmg may occur, we need to; consider only the portions of the
straight lines shown in the figure by full lines and formmg the polygon ABCD. By
preparing & figure analogous te Fig. 9-5 for any given ratio a/b, we can obtain the
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