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1.11 STUDY OF SDF SYSTEMS: ORGANIZATION

We will study the dynamic response of linearly elastic SDF systems in free vibration
(Chapter 2), to harmonic and periodic excitations (Chapter 3), to step and pulse excita-
tions (Chapter 4), and to earthquake ground motion (Chapter 6). Because most structurss
are designed with the expectation that they will deform beyond the linearly elastic limi:
during major, infrequent earthquakes, the inelastic response of SDF systems is studied in
Chapter 7. The time variation of response (¢) to these various excitations will be of inter-
est. For structural design purposes, the maximum value (over time) of response r contain:
the crucial information, for it is related to the maximum forces and deformations that a
structure must be able to withstand. We will be especially interested in the peak value of
response, or for brevity, peak response, defined as the maximum of the absolute value of
the response quantity:
r,,Emtaxlr('t)l (1113

By definition the peak response is positive; the algebraic sign is dropped because it is
usually irrelevant for design. Note that the subscript o attached to a response quantits
denotes its peak value.

FURTHER READING

Clough, R. W., and Penzien, I., Dynamics of Structures, McGraw-Hill, New York, 1993, Sections 4-3.
6-2, 6-3, and 12-6.

Humar, J. L., Dynamics of Structures, Prentice Hall, Englewood Cliffs, N.J., 1990, Chapter 9 and
Gunnison River, ; Section 13.5.
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) APPENDIX 1: STIFFNESS COEFFICIENTS FOR A FLEXURAL
ELEMENT
plex 'structure—solil anc! To compute bending moments and shears in a flexural structural element—beam or
hensive presentation of column—the stiffness coefficients for the element are required. These are presented in
However, an introduc- Fig. Al.1 for a uniform element of length L, second moment of area I, and elastic
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Z Rotations. If a positive rotation dy, is imposed while all other

possible displacements are prevented, the required shear forces and l(
moments necessary for the deformation are shown in Fig. 15-64.
In particular, the moment results have been developed in Sec. 11.2 as :
Egs. 11-1 and 11-2. Likewise, when dj,. is imposed, the resultant }C]
loadings are shown in Fig. 15-6b.

By superposition, if the above results in Figs. 15-5 and 15-6 are added. .

the resulting four load-displacement relations for the member can be i
expressed in matrix form as (r;
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These equations can also be written in abbreviated form as

5 q=kd (15-2) He
The symmetric matrix k in Eq. 15-1 is referred to as the member stiffness unk
matrix. The 16 influence coefficients k; that comprise it account for the the

shear-force and bending-moment displacements of the member. Physically

these coefficients represent the load on the member when the member

undergoes a specified unit displacement. For example, if dy,. = 1, Fig. 15-5q.

while all other displacements are zero, the member will be subjected only hi

to the four loadings indicated in the first column of the k matrix. In a Tl
similar manner, the other columns of the k matrix are the member loadings

for unit displacements identified by the degree-of-freedom code numbers

listed above the columns, From the development, both equilibrium and

compatibility of displacements have been satisfied. Also, it should be noted

that this matrix is the same in both the local and global coordinates since the The 1

x', ', 2" axes are parallel to %, ¥, z and, therefore, transformation matrices €quai
are not needed between the coordinates, the s
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matrix equation, we can then proceed to determine the unknown - P
displacements at the nodes and from this determine the reactions on ~ B
the beam and the internal shear and moment at the nodes. g

In this section we will develop the stiffness matrix for a beam element
or member having a constant cross-sectional area and referenced from
the local x’, y', z’ coordinate system, Fig. 15-4. The origin of the
coordinates is placed at the “near” end N, and the positive x’ axis
extends toward the “far” end F. There are two reactions at each end of
the element, consisting of shear forces gny and gp, and bending moments
gn. and gg. These loadings all act in the positive coordinate directions.
In particular, the moments gy, and g are positive counterclockwise,
since by the right-hand rule the moment vectors are then directed along
the positive 7’ axis, which is out of the page.

Linear and angular displacements associated with these loadings also
follow this same positive sign convention. We will now impose each of
these displacements separately and then determine the loadings acting
on the member caused by each displacement.
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positive sign convention
Fig. 15-4

Displacements. When a positive displacement dy, is imposed
while other possible displacements are prevented, the resulting shear
forces and bending moments that are created are shown in Fig. 15-5a.
In particular, the moment has been developed in Sec. 11.2 as Eq. 11-5.
Likewise, when dp, is imposed, the required shear forces and bending
moments are given in Fig, 15-5b.
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