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SUMMARY 
 
A previously proposed model for uniaxial loading of confined high strength concrete (HSC) is extended in 
this paper to include cyclic loading. Parameters such as, compressive strength, volumetric ratio of 
transverse reinforcement, yield strength of ties, tie spacing, and tie pattern, dissipation of energy through 
the hysteresis loops, stiffness degradation as damage progresses, degree of confinement, and ductility are 
all taken into account. Comparison of the results from finite element analysis using ADAPTIC, in which 
the proposed material model is implemented, against experimental results demonstrated good agreement, 
thus paving the way for much needed parametric studies on the behavior of structures made of HSC. 
 

INTRODUCTION 
 
Reinforced Concrete (RC) has been widely used as a construction material in earthquake prone areas 
because of its low cost, excellent durability and ease of maintenance. In recent years development of 
mineral and chemical admixtures have made it possible to produce high strength concrete (HSC), while 
steel manufacturers have developed high yield steel (HYS) to be used as longitudinal and transverse 
reinforcement for RC structures in seismic zones. These developments were the results of forecasts that 
high strength materials (HSM) will provide exceptional benefits for high-rise buildings, long-span 
bridges, tunnels, tanks and off shore platforms.  
 
In the design of earthquake resistant of RC structures, ductility is a fundamental requirement, which is 
determined either as the ability of structural members to undergo large inelastic deformations without 
significant loss in strength, or as the ability of members to dissipate the imposed seismic energy. It is the 
confinement that influences the behavior of structural elements, particularly in plastic hinge regions, 
consequently affecting the overall behavior of the structural system to a considerable extent. The ability of 
the members to withstand forces after spalling of the concrete cover relies on the confinement stresses 
induced in the core. The effectiveness of confinement depends on the compressive strength of concrete, 
the amount of transverse reinforcement, the yield strength of transverse reinforcement, the spacing of the 
ties, the tie pattern, the longitudinal reinforcement, the rate of loading and the strain gradient. Therefore, 
an accurate mathematical model of the stress-strain response of RC members under load reversals should 
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account for all these parameters. Such a model for confined and unconfined HSC under cyclic loading is 
presented and validated in this paper.  
 

REVIEW OF ANALYTICAL MODELS FOR CYCLIC LOADING 
 
For the development of an analytical model for concrete under cyclic loading, it has been shown that it is 
more important to accurately describe the envelope curve rather than the shape of the unloading and 
reloading branches (Penelis and Kappos [1]). This is verified by Figure 1, which illustrates the stress-
strain diagram of a square specimen with 57 MPa concrete strength subjected to repeated uniaxial 
compression as reported by Muguruma et al. [2], as well as the stress-strain curve of the same specimen 
tested under monotonically increasing compressive loading. It can be seen from the figure that the stress-
strain curve of HSC under cyclic loading practically coincides with the curve resulting from monotonic 
application of the loading. Similar results for normal strength concrete were reported by Karsan and Jirsa 
[3]. Other parameters that ought to be accounted for include the degradation of stiffness and strength, the 
increase in concrete plastic strain εpl, as well as the effect of confinement provided by transverse 
reinforcement. 
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Figure 1. Stress-strain diagram for HSC specimen subjected to repeated uniaxial compression 
 
Aoyama and Noguchi [4], summarized a number of models that have been developed to predict the 
response of concrete under cyclic loading. Neither these analytical models nor the more recent ones by 
Yankelevsky and Reinhardt [5], Mander et al. [6], Otter and Naaman [7], Martinez-Rueda [8] have been 
developed for HSC. 
 
In Figure 2, the stress-strain diagrams of five well-known models for the cyclic behavior of normal 
strength concrete are illustrated, while Table 1 presents the main parameters of six models developed for 
NSC. As can be seen from Table 1, the Yankelevsky and Reinhardt [5], as well as the Otter and Naaman 
[7] models can be tailored to any stress-strain curve for the description of the monotonic behavior of 
concrete, as they are independent of the envelope curve. 
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Figure 2. Analytical stress-strain curves for cyclic behaviour of concrete



Following tests on short rectangular columns, Karsan and Jirsa [3] observed that in the stress-strain 
diagram there is a locus of common points which is defined by the intersection of the loading and 
reloading branches (εnew, σnew). All models considered herein, except those of Blakeley and Park [9] and 
Otter and Naaman [7] acknowledge this observation. In the model shown in Figure 2a, which did not take 
into account the confinement effect, the relationship for the unloading branch is a second degree parabola 
passing through the point where unloading commences (εun, σun), also called the strain reversal point, the 
common point (εnew, σnew), and the full reversal point (εpl, 0). The expression for reloading is a second 
degree parabola passing through the full reversal point (εpl, 0), the common point (εnew, σnew), and the 
returning point (εre, σre). 
 
Blakeley and Park [9] developed a more simplified concrete model shown in Figure 2b, which provided 
equations for an envelope that also ignored the effect of confinement. This model assumes that unloading 
and reloading take place along a line without energy dissipation or stiffness deterioration for strains 
smaller or equal to the strain corresponding to peak stress (εc≤εc1). Beyond this point, stiffness degradation 
is considered by the introduction of the reduction function Fc given in Table 1. Along the first branch of 
unloading, stress is reduced to 50 percent without any reduction in strain (point H on line GH). The 
second branch is a straight line with slope equal to 0.50FcEc passing through points H mentioned above 
and K, which is the intersection point with the strain axis (i.e. zero stress). If cracking has not occurred 
tensile stresses can develop (line KL), otherwise strain decreases with zero stress. Reloading is assumed to 
take place along the straight line KG with slope equal to FcEc until the envelope is reached. If reloading 
starts prior to reaching zero stress, then the first line to be followed is parallel to the initial unloading 
branch (line IJ).  
 
The phenomenological model proposed by Yankelevsky and Reinhardt [5], shown in Figure 2c, focuses 
on describing the unloading and reloading branches, which are presented as piece-wise linear, while the 
envelope is assumed to be given. The concept of the model is based on the observation that unloading 
from the envelope curve exhibits rather high stiffness at low strain reversals, which then softens sharply 
with further unloading. As the model laws are formulated using the equations given in Table 1 for plastic 
strain, the common and reloading point can vary for different envelope curves. The equations presented in 
Table 1 are set up assuming linear relationships for the envelope. 
 
The model presented by Mander et al. [6] shown in Figure 2d is a simplified version of the Karsan and 
Jirsa [3] model that also models the capability of concrete to carry some tensile stresses. The envelope 
curve is assumed to be given by the Popovic equation [10], which also accounts for the effect of 
confinement. The unloading curves adopted are second degrees parabolas joining the strain reversal point 
(εun, σun) with the current full reversal point (εpl, 0) with zero slope. Reloading takes place along two 
branches. For strains smaller than the maximum strain experienced (εun) a straight line was fitted between 
the reloading point (εro, σro) and the degrading strength point (εnew, σnew). For strains larger than εun, a 
parabolic curve connects the descending strength point (εnew, σnew) and the returning point (εre, σre) lying 
on the envelope. The equation for the inelastic strain εpl is given in Table 1 and is updated every time the 
maximum strain experienced εun is altered. Therefore this updating procedure may take place either along 
the envelope or along the second reloading branch. 
 
Martinez-Rueda [8] modified Mander's et al. [6] model based on the observed lack of numerical stability 
of Mander's model particularly under large displacements, which caused convergence problems when 
implemented into a non-linear program following a fiber element approach. Among the modifications 
made was the introduction of three different definitions of plastic strain εpl corresponding to low, 
intermediate and high strain range and accounting for the softening of concrete with progression of strains 
(Figure 2e). 



Table 1. Summary of models for cyclic behavior of concrete 
Model Envelope Curve Plastic strain, Common & Reloading Point Unloading & Reloading curves 
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εpl is defined graphically 
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kr=0.1 for plain and fibre-reinforced concrete 
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The second reloading branch (i.e. for strains larger than εun) was also transformed to a straight line 
between the reduced strength point (εnew, σnew) and the returning point (εre, σre). To compensate for the 
lack of a smooth transition between the reloading branches and the envelope, the returning strain εre was 
set to the average value between εnew and the returning strain ε′re (see Table 1), which is obtained using the 
empirical equations of Karsan and Jirsa [3]. 
 
The Otter and Naaman [7] model was originally developed for plain and fiber-reinforced concrete, but can 
also be applied to confined concrete with little modification. The model uses the unloading strain, the 
plastic strain and the reloading point as end-points of the unloading and reloading curves. The unloading 
curve is described by a polynomial equation, where functions p and nuc (see Table 1) were derived by 
fitting experimental results. A simpler equation is proposed for the reloading branch consisting of one 
linear expression. Finally, in the equation for plastic strain εpl the parameters ku and kr (see Table 1) were 
derived for fiber-reinforced concrete, while no suggestion was made for reinforced concrete. 
 

MODEL FOR UNCONFINED AND CONFINED HSC UNDER CYCLIC LOADING 
 
The proposed model for unconfined and confined HSC under cyclic loading is essentially an extension of 
the analytical model proposed by Kappos and Konstantinidis [11] for uniaxial loading, which incorporates 
essential phenomenological parameters and enhances the accuracy in predicting the monotonic stress-
strain behavior of HSC, having been tailored to a modified version of the cyclic rules proposed by Mander 
et al. [6] as revised by Martinez-Rueda [8]. This advanced analytical model takes into account dissipation 
of energy through the hysteresis loops, stiffness degradation as damage progresses, the confinement effect 
on strength as well as ductility, and is used in parametric analyses of the performance of HSC members, 
subassemblies and assessment of structures under simulated seismic loads. 
 
Envelope Curve 
Previous experimental investigations by Karsan and Jirsa [3] concluded that the stress-strain envelope 
curve of NSC under repeated or cyclic compressive loading nearly coincides with the stress-strain 
response under uniaxial loading. A similar observation has also been made for HSC columns confined 
with HYS by Bing et al. [12].  
 
In line with these observations, the three-branch stress-strain curve (equations 1 and 2) proposed by 
Kappos and Konstantinidis [11] to model the response of HSC under uniaxial loading, forms the envelope 
curve to the cyclic loading stress-strain response, both for confined and unconfined HSC.  
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The modulus of elasticity of concrete is assumed to be given by the relationship suggested by the CEB 
Working Group on HSC/HPC [13]. 
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In the case of confined HSC members the peak stress is given by equation 5, which assumes that the 
compressive strength in a member of usual slenderness is 15 percent lower than the corresponding 
strength of a shorter test cylinder. This assumption is a result of the difference in size and shape, less 
effective compaction, water segregation etc., which occur in a full size member (Martinez, Nilson and 
Slate [14], Cusson and Paultre [15]). The maximum strength for unconfined HSC is assumed to be that 
corresponding to the strength specified in standard cylinders, i.e. 150 x 300 mm.  
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α  is the modified Sheikh and Uzumeri [16] factor for calculating the effectiveness of confinement given 
by the following formula. 
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where bi is the center-to-center distance between laterally supported longitudinal bars, bc and dc the center-
to-center width and height of the perimeter tie respectively and s the spacing between the ties. 
 
The strain at peak stress of confined HSC (εcc1) is assumed to be given by equation 7,  
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while the strain at peak stress for the unconfined HSC (εc1) is that given by equation 9.  
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The strain corresponding to a drop in maximum stress by fifty percent, which determines the slope of the 
descending branch, is given by equation 10 for confined HSC,  
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while for the unconfined concrete equation 11 proposed in the CEB Model Code 1990 [17] is adopted.  
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Figure 3 illustrates the envelope curves for confined and unconfined HSC. 
 
Plastic Strain  
The ‘plastic’ strain εpl, better referred to (in the case of concrete) as the non-recoverable strain, is the strain 
corresponding to zero stress on the compressive unloading or reloading curves reflecting the accumulation 



of damage in a member and defining the strength and stiffness degradation due to cyclic loading. Mander 
et al. [6] used the same relationship for plastic strain throughout the cyclic history (see also Table 1), 
while Martinez-Rueda [8] proposed three different equations reflecting the level of damage of the member 
corresponding to low, intermediate and high strain range and depending on the reversal point from the 
envelope (εun, σun). It is pointed out that the value of plastic strain (εpl) is recalculated whenever the 
reversal point is updated.  
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Figure 3. Envelope curves for unconfined and confined HSC 

 
 (a) Low Strain Range 
The response of concrete is essentially elastic when unloading occurs within the range of strains from the 
origin up to the strain corresponding to a stress equal to 35% of maximum strength (ε0.35fcc) along the 
ascending branch (Figure 4). Therefore, plastic strains can be obtained from:  

c

un
unpl0.35fccun E

σ

εεεε0 −=≤≤      (12) 

(ε0.35fcc,0.35fcc)
(εun,σun)

σc

(εpl,0)

ε c

 

Figure 4. Plastic strain in the low strain range 



(b) Intermediate and High Strain Range 
Figure 5 shows the proposal of Mander et al. [6] for the determination of plastic strain, which was adopted 
by Martinez-Rueda [8] for the intermediate strain range i.e. for ε0.35fcc<εun≤2.5εcc1. It is seen from the 
figure that point (εpl, 0) lies on the line determined by the reversal point from the envelope (εun, σun) and 
the focal point (εa, σf), which in turn lies on the line passing through the origin with slope equal to the 
tangent modulus (Ec). By combining the equations for the two lines, plastic strain can be specified as 
follows: 
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where εa is given by the following equation, 

cc1una εεa=ε       (14) 

and a is the maximum value of the two ratios written below, proposed by Mander et al. [6], which, in the 
absence of more refined values, are also adopted for HSC: 
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Figure 5. Plastic strain in the intermediate and high strain range 
 
The third equation for plastic strain (εpl) proposed by Martinez-Rueda [8] for unloading from the envelope 
when strains are greater than 2.5 times εcc1 was also examined. However, it is not included in the present 
model due to the analytical problems resulting from the use of two different equations to describe the 
descending branch of the envelope curve instead of using only one as was the case in the Martinez-Rueda 
proposal.  
 



Unloading Branches 
The equation describing the unloading branch is a second-degree parabola passing through the reversal 
point from the envelope (εun, σun) and the current plastic strain point (εpl, 0), as shown in Figure 4:  
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Reloading Branches 
Reloading is assumed to occur along a straight line passing through the reloading point from the 
unloading curve (εro, σro) and the returning point (εre, σre), which coincides with the unloading from the 
envelope point (εun, σun). The reader is reminded that Martinez-Rueda [8] used two straight lines to 
describe the reloading branch (see also Figure 2). For strains smaller than the strain εun at which unloading 
from the envelope commences, a straight line was fitted between the reloading point (εro, σro) and the 
degrading strength point (εnew, σnew). For strains larger than εun, a straight line was fitted between the 
reduced strength point (εnew, σnew) and the returning point (εre, σre). The inconvenience of such a 
formulation (i.e. significant increase in computation time when modeling involves a large number of 
elements) and the fact that empirical data used by Martinez-Rueda were not verified for HSC, led to the 
simplification of the reloading branch in the proposed model, as illustrated in Figure 6. 
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Figure 6. Reloading branches 
 
Tensile Unloading Branches 
The relationship for tensile concrete stress (σct), when unloading from a compressive branch is given by 
equation 17.  
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where f′ct is the tensile concrete strength. 
If εpl>εcc1 then σct=0 
If εpl<εcc1 the stress-strain relation becomes: 
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where  
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When the tensile strain at tensile strength is exceeded, i.e. ( )pltc εεε −> , cracks open and the tensile 

strength of concrete for the subsequent loading is assumed to be zero (Figure 7). 
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Figure 7. Deterioration in tensile concrete strength due to prior compression loading 
 

VALIDATION UNDER CYCLIC LOADING 
 
Specimen D60-15-4-2 5/8-0.2P reported by Azizinamini et al. [18] is used to validate the proposed model, 
as implemented for the cubic fiber-type element within ADAPTIC (Izzuddin [19]). The specimen had a 
cross-section of 305 x 305 mm and a height of 2440 mm, representing a two-third scaled model of a 
prototype column. The compressive strength of concrete specified in 100 x 200 mm cylinders was 
reported to be 100.8 MPa, yielding a converted standard cylinder strength of 95.7 MPa (Cook [20]). Ties 
with yield strength of 453 MPa provided confinement to the core of the column, while longitudinal 
reinforcement consisted of eight bars of 473 MPa yield strength. Prior to application of the horizontal load 
reversals, the specimen was subjected first to an axial load (reported value of 0.2 fc Ag). 
 
In terms of finite element modeling, the column is represented with nineteen cubic elasto-plastic elements 
over one half of the specimen. Since the two columns, above and below the stub, had slightly different 
lengths, the modeled length of the column was the mean value. The value of the tensile concrete strength 
(f′ct) is assumed to be 5.1 MPa, which is the suggested value of the CEB Working Group on HSC/HPC 
[13]. The remaining parameters for concrete are estimated using the proposed equations, while the 
longitudinal steel reinforcement is modeled using a bilinear model. Figure 8 shows the comparison 
between the analytical and the experimental results. It is notable that the proposed model for HSC is 
capable of predicting the cyclic response of the column specimen with good accuracy. The observed 



overestimation of strength during the last two cycles can be attributed to bond slip and shear distortion in 
the plastic hinge region, which cannot be predicted by standard fiber-type element models.  
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Figure 8. Comparison of analytical predictions and experimental results for specimen D60-15-4-2 
5/8-0.2P tested by Azizinamini et al. [18] under cyclic loading 
 

CONCLUSIONS  
 
A model for predicting the response to cyclic loading of HSC members (with and without confinement 
reinforcement) was developed and implemented within the nonlinear finite element analysis program 
ADAPTIC. Following verification through a study on the member level, under cyclic loading, it was 
concluded that the proposed model provides a good fit to a wide range of experimental envelope curves 
and hysteresis loops, while at the same enabling the assessment of real structural problems in a 
computationally efficient manner. It appears therefore, that the proposed model can form the basis for 
analytical modeling of the seismic response of HSC members and structural systems, with behavior 
dominated by flexure and axial force, under static and dynamic conditions. 
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