E D3.1

s for Connections 1 Members

Ohnau Lau Fasta:: 11	Evenuela
Shear Lag Factor, U	Example
<i>U</i> = 1.0	
$U=1-\frac{\overline{x}}{l}$	\overline{x} \overline{x}
$U = 1.0$ and $A_n =$ area of the directly connected elements	-
$U = \frac{3l^2}{3l^2 + w^2} \left(1 - \frac{\overline{x}}{l} \right)$	W T Plate or connected element
$l \ge 1.3D, U = 1.0$ $D \le l < 1.3D, U = 1 - \frac{\overline{x}}{l}$ $\overline{x} = \frac{D}{\pi}$	
$l \ge H$, $U = 1 - \frac{\overline{x}}{l}$ $\overline{x} = \frac{B^2 + 2BH}{4(B+H)}$	H
$l \ge H, \ U = 1 - \frac{\overline{x}}{l}$ $\overline{x} = \frac{B^2}{4(B+H)}$	H B
$b_f \ge \frac{2}{3} d$, $U = 0.90$ $b_f < \frac{2}{3} d$, $U = 0.85$	_
<i>U</i> = 0.70	_
<i>U</i> = 0.80	
<i>U</i> = 0.60	

to the plane of the connection, in. (mm); D = outside diameter of3 member, measured in the plane of the connection, in. (mm); on from which the tee was cut, in. (mm); l = length of connectionnection, in. (mm)

mes the weld size.

l Steel Buildings, July 7, 2016 OF STEEL CONSTRUCTION

(a) For tensile rupture on the net effective area

$$P_n = F_u(2tb_e) \tag{D5-1}$$

 $\phi_t = 0.75 \text{ (LRFD)} \quad \Omega_t = 2.00 \text{ (ASD)}$

(b) For shear rupture on the effective area

$$P_n = 0.6F_u A_{sf} \tag{D5-2}$$

$$\phi_{sf} = 0.75 \text{ (LRFD)} \qquad \Omega_{sf} = 2.00 \text{ (ASD)}$$

where

 $A_{sf} = 2t(a + d/2)$

= area on the shear failure path, in.² (mm²)

a = shortest distance from edge of the pin hole to the edge of the member measured parallel to the direction of the force, in. (mm)

 $b_e = 2t + 0.63$, in. (= 2t + 16, mm), but not more than the actual distance from the edge of the hole to the edge of the part measured in the direction normal to the applied force, in. (mm)

d = diameter of pin, in. (mm)

= thickness of plate, in. (mm)

- (c) For bearing on the projected area of the pin, use Section J7.
- (d) For yielding on the gross section, use Section D2(a).

2. **Dimensional Requirements**

Pin-connected members shall meet the following requirements:

- (a) The pin hole shall be located midway between the edges of the member in the direction normal to the applied force.
- (b) When the pin is expected to provide for relative movement between connected parts while under full load, the diameter of the pin hole shall not be more than ¹/₃₂ in. (1 mm) greater than the diameter of the pin.
- (c) The width of the plate at the pin hole shall not be less than $2b_e + d$ and the minimum extension, a, beyond the bearing end of the pin hole, parallel to the axis of the member, shall not be less than $1.33b_e$.
- (d) The corners beyond the pin hole are permitted to be cut at 45° to the axis of the member, provided the net area beyond the pin hole, on a plane perpendicular to the cut, is not less than that required beyond the pin hole parallel to the axis of the member.

D6. **EYEBARS**

1. **Tensile Strength**

The available tensile strength of eyebars shall be determined in accordance with Section D2, with A_g taken as the cross-sectional area of the body.

For calculation purposes, the width of the body of the eyebars shall not exceed eight times its thickness.

> Specification for Structural Steel Buildings, July 7, 2016 AMERICAN INSTITUTE OF STEEL CONSTRUCTION