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3 Calculation of Short-Circuit Currents
in Three-Phase Systems

3.1 Terms and definitions

3.1.1 Terms as per DIN VDE 0102 / IEC 909

Short circuit:  the accidental or deliberate connection across a comparatively low
resistance or impedance between two or more points of a circuit which usually have
differing voltage.
Short-circuit current: the current in an electrical circuit in which a short circuit occurs.
Prospective (available) short-circuit current: the short-circuit current which would arise
if the short circuit were replaced by an ideal connection having negligible impedance
without alteration of the incoming supply.
Symmetrical short-circuit current: root-mean-square (r.m.s.) value of the symmetrical
alternating-current (a.c.) component of a prospective short-circuit current, taking no
account of the direct-current (d.c.) component, if any.
Initial symmetrical short-circuit current I k": the r.m.s. value of the symmetrical a.c.
component of a prospective short-circuit current at the instant the short circuit occurs if
the short-circuit impedance retains its value at time zero.
Initial symmetrical (apparent) short-circuit power Sk": a fictitious quantity calculated as
the product of initial symmetrical short-circuit current I k", nominal system voltage Un and
the factor ��3.
D.C. (aperiodic) component iDC of short-circuit current: the mean value between the upper
and lower envelope curve of a short-circuit current decaying from an initial value to zero. 
Peak short-circuit current i p: the maximum possible instantaneous value of a
prospective short-circuit current.
Symmetrical short-circuit breaking current Ia: the r.m.s. value of the symmetrical a.c.
component of a prospective short-circuit current at the instant of contact separation by
the first phase to clear of a switching device.
Steady-state short-circuit current Ik: the r.m.s. value of the symmetrical a.c. component of
a prospective short-circuit current persisting after all transient phenomena have died away.
(Independent) Voltage source: an active element which can be simulated by an ideal
voltage source in series with a passive element independently of currents and other
voltages in the network.
Nominal system voltage Un: the (line-to-line) voltage by which a system is specified
and to which certain operating characteristics are referred.
Equivalent voltage source cUn / ��3: the voltage of an ideal source applied at the
short-circuit location in the positive-sequence system as the network’s only effective
voltage in order to calculate the short-circuit currents by the equivalent voltage source
method.
Voltage factor c: the relationship between the voltage of the equivalent voltage source
and Un / ��3.
Subtransient voltage E" of a synchronous machine: the r.m.s. value of the symmetrical
interior voltages of a synchronous machine which is effective behind the subtransient
reactance Xd" at the instant the short circuit occurs.
Far-from-generator short circuit: a short circuit whereupon the magnitude of the
symmetrical component of the prospective short-circuit current remains essentially
constant.
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Near-to-generator short circuit: a short circuit whereupon at least one synchronous machi-
ne delivers an initial symmetrical short-circuit current greater than twice the synchronous
machine’s rated current, or a short circuit where synchronous or induction motors con-
tribute more than 5 % of the initial symmetrical short-circuit current Ik" without motors.
Positive-sequence short-circuit impedance Z(1) of a three-phase a.c. system: the
impedance in the positive-phase-sequence system as viewed from the fault location.
Negative-sequence short-circuit impedance Z(2) of a three-phase a.c. system: the
impedance in the negative-phase-sequence system as viewed from the fault location.
Zero-sequence short-circuit impedance Z (0) of a three-phase a.c. system: the
impedance in the zero-phase-sequence system as viewed from the fault location. It
includes the threefold value of the neutral-to-earth impedance.
Subtransient reactance X"d of a synchronous machine: the reactance effective at the
instant of the short circuit. For calculating short-circuit currents, use the saturated value
X"d.
Minimum time delay tmin of a circuit-breaker: the shortest possible time from
commencement of the short-circuit current until the first contacts separate in one pole
of a switching device. 

3.1.2  Symmetrical components of asymmetrical three-phase systems

In three-phase networks a distinction is made between the following kinds of fault:
a) three-phase fault (I "k 3) 
b) phase-to-phase fault clear of ground (I "k 2) 
c) two-phase-to-earth fault (I "k 2 E; I "k E 2 E) 
d) phase-to-earth fault (I "k 1) 
e) double earth fault (I "k E E)
A 3-phase fault affects the three-phase network symmetrically. All three conductors are
equally involved and carry the same rms short-circuit current. Calculation need
therefore be for only one conductor.
All other short-circuit conditions, on the other hand, incur asymmetrical loadings. A
suitable method for investigating such events is to split the asymmetrical system into its
symmetrical components.
With a symmetrical voltage system the currents produced by an asymmetrical loading
(I1, I2 and I3) can be determined with the aid of the symmetrical components (positive-,
negative- and zero-sequence system).
The symmetrical components can be found with the aid of complex calculation or by
graphical means.

We have: 
1

Current in pos.-sequence system I m =  – (I1 + a I 2 + a2 I 3)
3
1

Current in neg.-sequence system I g =  – (I1 + a2 I 2 + a I 3)
3
1

Current in zero-sequence system I o =  – (I1 + I 2 + I 3)
3

For the rotational operators of value 1:

a =  ej120˚; a2 =  ej240˚; 1 + a + a2 =  0

The above formulae for the symmetrical components also provide information for a
graphical solution.
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If the current vector leading the current in the reference conductor is rotated 120°
backwards, and the lagging current vector 120 ° forwards, the resultant is equal to three
times the vector Im in the reference conductor. The negative-sequence components are
apparent.

If one turns in the other direction, the positive-sequence system is evident and the
resultant is three times the vector I g in the reference conductor.

Geometrical addition of all three current vectors (I1, I 2 and I 3) yields three times the
vector I 0 in the reference conductor.

If the neutral conductor is unaffected, there is no zero-sequence system.

3.2  Fundamentals of calculation according to DIN VDE 0102 / IEC 909

In order to select and determine the characteristics of equipment for electrical networks
it is necessary to know the magnitudes of the short-circuit currents and short-circuit
powers which may occur.

The short-circuit current at first runs asymmetrically to the zero line, Fig. 3-1. It contains
an alternating-current component and a direct-current component.

Fig. 3-1

Curve of short-circuit current: a) near-to-generator fault, b) far-from-generator fault 
I "k initial symmetrical short-circuit current, i p peak short-circuit current, I k steady state
short-circuit current, A initial value of direct current, 1 upper envelope, 2 lower
envelope, 3 decaying direct current.

i p
i p
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Calculatlon of initial symmetrical short-circuit current I "k

The calculation of short-circuit currents is always based on the assumption of a dead
short circuit. Other influences, especially arc resistances, contact resistances, conduc-
tor temperatures, inductances of current transformers and the like, can have the effect
of lowering the short-circuit currents. Since they are not amenable to calculation, they
are accounted for in Table 3-1 by the factor c.

Initial symmetrical short-circuit currents are calculated with the equations in Table 3-2.

Table 3-1

Voltage factor c

Nominal voltage Voltage factor c for calculating
the greatest the smallest
short-circuit current short-circuit current

c max c min

Low voltage
100 V to 1000 V
(see IEC 38, Table I)
a) 230 V / 400 V 1.00 0.95
b) other voltages 1.05 1.00

Medium voltage
>1 kV to 35 kV 1.10 1.00
(see IEC 38, Table III)

High-voltage
> 35 kV to 230 kV 1.10 1.00
(see IEC 38, Table IV)
380 kV 1.10 1.00

Note: cUn should not exceed the highest voltage Um for power system equipment. 
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Table 3-2

Formulae for calculating initial short-circuit current and short-circuit powers

Kind of fault Dimension equations Numerical equations
(IEC 909) of the % / MVA systems

Three-phase fault
with or
without earth fault

Phase-to-phase
fault clear
of ground

Two-phase-to-
earth fault

Phase-to-
earth fault

In the right-hand column of the Table, I "k is in kA, S"k in MVA, Un in kV and Z in % / MVA.
The directions of the arrows shown here are chosen arbitrarily.

1.1 · UnI "k 3 =  ———–
��3 Z1

��3 · 1.1 · UnI "k 1 =  ——————–
Z1 + Z 2 + Z 0

1.1 · UnI "k 2 =  ——–—–
Z1 + Z 2

1.1 · 100 % 1
I "k 3 =  ————––  ·  —

��3 Z1 Un

1.1 ·100 % 1
I "k 2 =  ————–  ·  —

Z1 + Z 2 Un

��3 · 1.1 · 100 % 1
I "k 1 =  ————–——–  ·  —

Z1 + Z 2 + Z 0 Un

��3 · 1.1 UnI"kE2E=  ———————– 
Z1Z1 + Z 0 + Z 0 —Z 2

��3 · 1.1 · 100 % 1
I"kE2E=  ———————–  ·  —

Z1Z1 + Z 0 + Z 0 —
Un

Z 2

1.1 · 100 %
S"k =  ————––

z1

S"k =  ��3 Un I "k 3



74

Calculation of peak short-circuit current ip

When calculating the peak short-circuit current ip, sequential faults are disregarded.
Three-phase short circuits are treated as though the short circuit occurs in all three
conductors simultaneously. We have:

ip = κ · ��2 · I "k .

The factor κ takes into account the decay of the d. c. component. It can be calculated
as

κ = 1.02 + 0.98 e–3 R/X or taken from Fig. 3-2.

Exact calculation of ip with factor κ is possible only in networks with branches having
the same ratios R/X. If a network includes parallel branches with widely different ratios
R/X, the following methods of approximation can be applied:

a) Factor κ is determined uniformly for the smallest ratio R/X. One need only consider
the branches which are contained in the faulted network and carry partial
short-circuit currents.

b) The factor is found for the ratio R/X from the resulting system impedance 
Zk = Rk + jXk at the fault location, using 1.15 · κk for calculating ip. In low-voltage
networks the product 1.15 · κ is limited to 1.8, and in high-voltage networks to 2.0.

c) Factor κ can also be calculated by the method of the equivalent frequency as in 
IEC 909 para. 9.1.3.2.

The maximum value of κ = 2 is attained only in the theoretical limiting case with an
active resistance of R = 0 in the short-circuit path. Experience shows that with a
short-circuit at the generator terminals a value of κ = 1.8 is not exceeded with machines
< 100 MVA.

With a unit-connected generator and high-power transformer, however, a value of 
κ = 1.9 can be reached in unfavourable circumstances in the event of a short circuit
near the transformer on its high-voltage side, owing to the transformer’s very small ratio
R/X. The same applies to networks with a high fault power if a short circuit occurs after
a reactor.
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Calculation of steady-state short-circuit current Ik

Three-phase fault with single supply

Ik =  I"kQ network

Ik =  λ · IrG synchronous machine

Three-phase fault with single supply from more than one side

Ik =  IbkW + I"kQ

Ibkw symmetrical short-circuit breaking current of a power plant

I"kQ initial symmetrical short-circuit current of network

Three-phase fault in a meshed network

Ik =  I"koM

I"koM initial symmetrical short-circuit current without motors

Ik depends on the excitation of the generators, on saturation effects and on changes in
switching conditions in the network during the short circuit. An adequate approximation
for the upper and lower limit values can be obtained with the factors λmax and λmin,
Fig. 3-3 and 3-4. IrG is the rated current of the synchronous machine.

For Xdsat one uses the reciprocal of the no-load/short-circuit ratio Ik0/IrG(VDE 0530 
Part 1).

The 1st series of curves of λmax applies when the maximum excitation voltage reaches
1.3 times the excitation voltage for rated load operation and rated power factor in the
case of turbogenerators, or 1.6 times the excitation for rated load operation in the case
of salient-pole machines.

The 2nd series of curves of λmax applies when the maximum excitation voltage reaches
1.6 times the excitation for rated load operation in the case of turbogenerators, or 2.0
times the excitation for rated load operation in the case of salient-pole machines.

Fig. 3-2

Factor κ
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Fig. 3-4

Factors λ for turbogenerators in relation to ratio I "kG / IrG and saturated synchronous
reactance Xd of 1.2 to 2.2, —— λmax, – · – λmin;
a) Series 1 Ufmax / Ufr = 1.3;  b) Series 2 Ufmax / Ufr =  1.6.

Three-phase short circuit I"kG /IrG Three-phase short circuit I"kG /IrG

Fig. 3-3

Factors λ for salient-pole machines in relation to ratio I"kG /IrG and saturated
synchronous reactance Xd of 0.6 to 2.0, —— λmax, – · – λmin;
a) Series 1 U fmax / U fr  = 1.6;  b) Series 2 Ufmax / U fr =  2.0.

Three-phase short circuit I"kG /IrG Three-phase short circuit I"kG /IrG
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Calculation of symmetrical breaking current Ia

Three-phase fault with single supply 

I a = µ · I"kG synchronous machine

I a = µ · q · I"kM induction machine

I a = I"kQ network

Three-phase fault with single supply from more than one side

I a = I aKW + I"kQ + I aM

I aKW symmetrical short-circuit breaking current of a power plant

I kQ initial symmetrical short-circuit current of a network

I aM symmetrical short-circuit breaking current of an induction 
machine

Three-phase fault in a meshed network

I a = I"k

A more exact result for the symmetrical short-circuit breaking current is obtained with
IEC 909 section 12.2.4.3, equation (60).

The factor µ denotes the decay of the symmetrical short-circuit current during the
switching delay time. It can be taken from Fig. 3-5 or the equations.

µ = 0.84 + 0.26 e–0.26 I"kG/ IrG for tmin = 0.02 s

µ = 0.71 + 0.51 e–0.30 I"kG/ IrG for tmin = 0.05 s

µ = 0.62 + 0.72 e–0.32 I"kG/ IrG for tmin = 0.10 s

µ = 0.56 + 0.94 e–0.38 I"kG/ IrG for tmin = 0.25 s

µmax = 1

Fig. 3-5

Factor µ for calculating the symmetrical short-circuit breaking current Ia as a function of
ratio I"kG /IrG or I"kM / IrM, and of switching delay time tmin of 0.02 to 0.25 s.

I"kG / I rG or I "kM / I rM
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If the short circuit is fed by a number of independent voltage sources, the symmetrical
breaking currents may be added.

With compound excitation or converter excitation one can put µ = 1 if the exact value is
not known. With converter excitation Fig. 3-5 applies only if tv ≤ 0.25 s and the
maximum excitation voltage does not exceed 1.6 times the value at nominal excitation.
In all other cases put µ = 1.

The factor q applies to induction motors and takes account of the rapid decay of the
motor’s short-circuit current owing to the absence of an excitation field. It can be taken
from Fig. 3-6 or the equations.

q = 1.03 + 0.12 ln m for tmin = 0.02 s

q = 0.79 + 0.12 ln m for tmin = 0.05 s

q = 0.57 + 0.12 ln m for tmin = 0.10 s

q = 0.26 + 0.12 ln m for tmin = 0.25 s

qmax = 1

Fig. 3-6

Factor q for calculating the symmetrical short-circuit breaking current of induction
motors as a function of the ratio motor power / pole pair and of switching delay time tmin

of 0.02 to 0.25 s.

Taking account of transformers

The impedances of equipment in the higher- or lower-voltage networks have to be re-
calculated with the square of the rated transformer ratio ür (main tap).

The influence of motors

Synchronous motors and synchronous condensers are treated as synchronous
generators.

Induction motors contribute values to I"k, ip and I a and in the case of a two-phase short
circuit, to Ik as well.

Motor power / pole pair
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The heaviest short-circuit currents I"k, ip, Ia and Ik in the event of three-phase and two-
phase short circuits are calculated as shown in Table 3-3.

For calculating the peak short-circuit current:
κm = 1.65 for HV motors, motor power per pole pair < 1MW
κm = 1.75 for HV motors, motor power per pole pair ≥ 1MW
κm = 1.3 for LV motors

Table 3-3

To calculate short-circuit currents of induction motors with terminal short circuit

three-phase two-phase

Initial symmetrical
short-circuit current

Peak short-
circuit current

Symmetrical short-circuit
breaking current

Steady-state
short-circuit current

The influence of induction motors connected to the faulty network by way of
transformers can be disregarded if

c · UnI"k3M =  ———
��3 · ZM

��3
I"k2M =  —  I "k3M

2

��3
I "p2M =  —  ip3M2

I"p3M = κm ��2 I "k3M

��3
I "a2M ~  —  I "k3M2

Ia3M = I "k3M

1
I k2M ~  —  I "k3M2

I"k3M = 0

Σ PrM 0.8
——–  � ———————
Σ S rT 100 Σ S rT—–———  – 0.3.

S"k

Here,

Σ PrM is the sum of the ratings of all high-voltage and such low-voltage motors as need
to be considered,

Σ SrT is the sum of the ratings of all transformers feeding these motors and

S"k is the initial fault power of the network (without the contribution represented by
the motors).

To simplify calculation, the rated current IrM of the low-voltage motor group can be taken
as the transformer current on the low-voltage side.

%/MVA system

The %/MVA system is particularly useful for calculating short-circuit currents in high-
voltage networks. The impedances of individual items of electrical equipment 
in %/MVA can be determined easily from the characteristics, see Table 3-4.
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Table 3-4

Formulae for calculating impedances or reactances in %/MVA

Network component Impedance z or reactance x

Synchronous x"d x"d = Subtransient reactance in %
machine Sr

Sr = Rated apparent power in MVA

Transformer u k u k = Impedance voltage drop in %
Sr

Sr = Rated apparent power in MVA

Current-limiting ur ur = Rated voltage drop in %
reactor SD

SD = Throughput capacity in MVA

Induction motor Ir/Istart · 100 %
I r = Rated current

Sr
Istart = Starting current (with rated voltage

and rotor short-circuited)

Sr = Rated apparent power in MVA

Line Z´ · l · 100 % Z´ = Impedance per conductor in Ω /km
U 2

n Un = Nominal system voltage in kV
l = Length of line in km

Series – Xc · 100 % Xc = Reactance per phase in Ω
capacitor U 2

n
Un = Nominal system voltage in kV

100 %Shunt capacitor –  ——— Sr = Rated apparent power in MVA
Sr

Network 1.1 · 100 % S"kQ = Three-phase initial symmetrical—————
short-circuit power at point ofS"kQ
connection Q in MVA

Table 3-5

Reference values for Z 2 /Z1 and Z 2 /Z 0

Z 2 /Z1 Z 2 /Z 0

to calculate
I"k near to generator 1 –

far from generator 1 –
Ik near to generator 0.05…0.25 –

far from generator 0.25…1 –

Networks with isolated neutral – 0
with earth compensation – 0
with neutral earthed via impedances – 0…0.25

Networks with effectively earthed neutral – > 0.25

Calculating short-circuit currents by the %/MVA system generally yields sufficiently
accurate results. This assumes that the ratios of the transformers are the same as the
ratios of the rated system voltages, and also that the nominal voltage of the network
components is equal to the nominal system voltage at their locations.
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Short-circuit currents with asymmetrical faults

The equations for calculating initial short-circuit currents I"k are given in Table 3-2.

The kind of fault which produces the highest short-circuit currents at the fault site can
be determined with Fig. 3-7. The double earth fault is not included in Fig. 3-7; it results
in smaller currents than a two-phase short-circuit. For the case of a two-phase-to-earth
fault, the short-circuit current flowing via earth and earthed conductors I"kE2E is not
considered in Fig. 3-7.

Fig. 3-7

Diagram for determining the
fault with the highest short-
circuit current 

Example:  Z2 /Z1 = 0.5; Z2 /Z0 = 0.65, the greatest short-circuit current occurs with a
phase – to-earth fault.

The data in Fig. 3-7 are true provided that the impedance angles of Z 2 /Z1 and Z 0 do not
differ from each other by more than 15 °. Reference values for Z 2 /Z1 and Z 2 /Z 0 are
given in Table 3-5.

i p and I k are:

for phase-to-phase fault clear of ground: i p2 = κ · ��2 · I"k2,
I k2 = Ia2 = I"k2;

for two-phase-to-earth fault: no calculation necessary;

for phase-to-earth fault: i p1 = κ · ��2 · I"k1,
I k1 = Ia1 = I"k1.

Fig. 3-8 shows the size of the current with asymmetrical earth faults.

Minimum short-circuit currents

When calculating minimum short-circuit currents one has to make the following
changes:

– Reduced voltage factor c
– The network’s topology must be chosen so as to yield the minimum short-circuit

currents.

k1

k2E

k2

k3
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– Motors are to be disregarded
– The resistances RL of the lines must be determined for the conductor temperature te

at the end of the short circuit (RL20 conductor temperature at 20 °C).

RL = [1 + 0.004 (te – 20 °C) / °C] · R L20

For lines in low-voltage networks it is sufficient to put te = 80°C.

Fig. 3-8

Initial short-circuit current I"k at the fault location with asymmetrical earth faults in
networks with earthed neutral:

S"k = ��3 · Ul"k3 = Initial symmetrical short-circuit power,
I"kE2E Initial short-circuit current via earth for two-phase-to-earth fault,
I"k1 Initial short-circuit current with phase-to-earth fault,
X1, X 0 Reactances of complete short-circuit path in positive- and zero-phase sequence

system (X2 = X1)
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3.3  Impedances of electrical equipment

The impedances of electrical equipment are generally stated by the manufacturer. The
values given here are for guidance only.

3.3.1  System infeed

The effective impedance of the system infeed, of which one knows only the initial
symmetrical fault power S"kQ or the initial symmetrical short-circuit current I"kQ at junction
point Q, is calculated as:

c · U2
nQ c · UnQZQ =  ———–  =  ——–—

S"kQ ��3 · I"kQ

c · U 2
nQ 1 c · UnQ 1

ZQ =  ———–  ·  —  =  ——––—  ·  — .
S"kQ ü 2

r ��3 · I"kQ ü 2
r

3.3.2 Electrical machines

Synchronous generators with direct system connection

For calculating short-circuit currents the positive- and negative-sequence impedances
of the generators are taken as 

ZGK =  KG · ZG =  KG (RG + jX"d)

with the correction factor

Un cmaxKG =  —  ·  —————–—
Urg 1 + X"d · sin ϕrg

Here:

cmax Voltage factor

Un Nominal system voltage

Here UnQ Nominal system voltage

S"kQ Initial symmetrical short-circuit power

I "kQ Initial symmetrical short-circuit current

ZQ = RQ + jXQ, effective impedance of system infeed for short-circuit current
calculation

XQ = ��������Z 2
Q – R 2

Q.

If no precise value is known for the equivalent active resistance RQ of the system
infeed, one can put RQ = 0.1 XQ with XQ = 0.995 ZQ. The effect of temperature can be
disregarded.

If the impedance is referred to the low-voltage side of the transformer, we have
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UrG Rated voltage of generator

ZGK Corrected impedance of generator

ZG Impedance of generator (ZG = RG + jX"d)

X"d Subtransient reactance of generator referred to impedance

x"d =  X"d / ZrG ZrG =  U 2
rG /SrG

It is sufficiently accurate to put:

RG = 0.05 · X"d for rated powers � 100 MVA with high-voltage

RG =  0.07 · X"d for rated powers < 100 MVA generators

RG  =  0.15 · X"d for low-voltage generators.

The factors 0.05, 0.07 and 0.15 also take account of the decay of the symmetrical
short-circuit current during the first half-cycle.
Guide values for reactances are shown in Table 3-6.





Table 3-6

Reactances of synchronous machines 

Generator type Turbogenerators Salient-pole generators
with damper without damper
winding1) winding

Subtransient 9…222) 12…303) 20…403)

reactance (saturated)
x"d in %

Transient reactance 14…354) 20…45 20…40
(saturated)
x"d in %

Synchronous reactance 140…300 80…180 80…180
(unsaturated) 5)

x"d in %

Negative-sequence 9…22 10…25 30…50
reactance6)

x2 in %

Zero-sequence 3…10 5…20 5…25
reactance7)

x0 in %

1) Valid for laminated pole shoes and complete damper winding and also for solid pole shoes with
strap connections. 

2) Values increase with machine rating. Low values for low-voltage generators. 
3) The higher values are for low-speed rotors (n < 375 min–1). 
4) For very large machines (above 1000 MVA) as much as 40 to 45 %. 
5) Saturated values are 5 to 20 % lower. 
6) In general x2 = 0.5 (x"d + x"q). Also valid for transients. 
7) Depending on winding pitch.
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Generators and unit-connected transformers of power plant units

For the impedance, use 

ZG, KW =  KG, KW ZG

with the correction factor
cmaxKG, KW =  —————–—

1 + X"d · sin ϕrG

ZT, KW =  KT, KW ZTUS

with the correction factor

KT, KW =  cmax.

Here:

ZG, KW ZT, KW Corrected impedances of generators (G) and unit-connected transformers
(T) of power plant units

ZG Impedance of generator

ZTUS Impedance of unit transformer, referred to low-voltage side

If necessary, the impedances are converted to the high-voltage side with the fictitious
transformation ratio üf = Un/UrG

Power plant units

For the impedances, use 

ZKW =  KKW (ü 2
r ZG + ZTOS)

with the correction factor

U 2
nQ U 2

rTUS cmaxKKW = ——  ·  —–—  ·  —————————
U 2

rG U 2
rTOS 1 + (X"d – X"T)sin ϕrG

Here:

ZKW Corrected impedance of power plant unit, referred to high-voltage side

ZG Impedance of generator

ZTOS Impedance of unit transformer, referred to high-voltage side

UnQ Nominal system voltage

UrG Rated voltage of generator

XT Referred reactance of unit transformer

UrT Rated voltage of transformer

Synchronous motors 

The values for synchronous generators are also valid for synchronous motors and
synchronous condensers.
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Induction motors

The short-circuit reactance ZM of induction motors is calculated from the ratio Ian/IrM: 

1 U rM U 2
rMZM =  ———  ·  ——–—  =  —————

Istart /IrM ��3 · IrM Istart/IrM· SrM

where Istart Motor starting current, the rms value of the highest current the motor
draws with the rotor locked at rated voltage and rated frequency after
transients have decayed,

U rM Rated voltage of motor

I rM Rated current of motor

SrM Apparent power of motor (��3 · UrM · IrM).

3.3.3  Transformers and reactors

Transformers

Table 3-7

Typical values of impedance voltage drop u k of three-phase transformers

Rated primary
voltage 5…20 30 60 110 220 400
in kV

u k in % 3.5…8 6…9 7…10 9…12 10…14 10…16

Table 3-8

Typical values for ohmic voltage drop uR of three-phase transformers

Power
rating 0.25 0.63 2.5 6.3 12.5 31.5
in MVA

uR in % 1.4…1.7 1.2…1.5 0.9…1.1 0.7… 0.85 0.6…0.7 0.5…0.6

For transformers with ratings over 31.5 MVA, uR < 0 5 %.

The positive- and negative-sequence transformer impedances are equal. The zero-
sequence impedance may differ from this.

The positive-sequence impedances of the transformers Z 1 = ZT = RT + jXT are cal-
culated as follows:

Ukr U 2
rT uRr U 2

rTZT =  ——— —– RT =  ——— —– XT =  ����Z 2
T – R 2

T100 % S rT 100 % S rT
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U2
rTZ12

 = Z1
 + Z2

 =  ukr12 ——
SrT12

U2
rTZ13

 = Z1
 + Z2

 =  ukr13 ——
SrT13

U2
rTZ23

 = Z2
 + Z3

 =  ukr23 ——
SrT23

and the impedances of each winding are

1
Z1 = – (Z12 + Z13 – Z23)2

1
Z2 = – (Z12 + Z23 – Z13)2

1
Z3 = – (Z13 + Z23 – Z12)2

With three-winding transformers, the positive-sequence impedances for the corres-
ponding rated throughput capacities referred to voltage UrT are:

Fig. 3-9

Equivalent diagram a) and winding impedance b) of a three-winding transformer
ukr12 short-circuit voltage referred to SrT12

ukr13 short-circuit voltage referred to SrT13

ukr23 short-circuit voltage referred to SrT23

S rT12, S rT13, S rT23 rated throughput capacities of transformer

Three-winding transformers are mostly high-power transformers in which the
reactances are much greater than the ohmic resistances. As an approximation,
therefore, the impedances can be put equal to the reactances.

The zero-sequence impedance varies according to the construction of the core, the
kind of connection and the other windings.

Fig. 3-10 shows examples for measuring the zero-sequence impedances of
transformers.

Fig. 3-10

Measurement of the zero-sequence impedances of transformers for purposes of short-
circuit current calculation:  a) connection Yd,  b) connection Yz

a)

b)
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Three-limb core 0.7…1 3…10 3…10 ∞ 1…2.4
∞ ∞ ∞ 0.1…0.15 ∞

Five-limb core 1 10…100 10…100 ∞ 1…2.4
∞ ∞ ∞ 0,1…0.15 ∞

3 single-phase 1 10…100 10…100 ∞ 1…2.4
transformers ∞ ∞ ∞ 0,1…0.15 ∞

Values in the upper line when zero voltage applied to upper winding, values in lower line
when zero voltage applied to lower winding (see Fig. 3-10).

For low-voltage transformers one can use:

Connection Dy R 0T ≈ RT X 0T ≈ 0.95 XT

Connection Dz, Yz R 0T ≈ 0.4 RT X 0T ≈ 0.1 XT

Connection Yy1) R 0T ≈ RT X 0T ≈ 7…1002) XT

1) Transformers in Yy are not suitable for multiple-earthing protection. 
2) HV star point not earthed.

Current-limiting reactors

The reactor reactance XD is

∆ u r · Un ∆ u r · U 2
nXD =  ——————–  =  —————

100 % · ��3 · I r 100 % · SD

where ∆ u r Rated percent voltage drop of reactor

U n Network voltage

I r Current rating of reactor

SD Throughput capacity of reactor.

Standard values for the rated voltage drop

∆ u r in %:  3, 5, 6, 8, 10.

Table 3-9

Reference values of X 0 /X1 for three-phase transformers

Connection
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Further aids to calculation are given in Sections 12.1 and 12.2. The effective resistance
is negligibly small. The reactances are of equal value in the positive-, negative- and
zero-sequence systems.

3.3.4  Three-phase overhead lines

The usual equivalent circuit of an overhead line for network calculation purposes is the
Π circuit, which generally includes resistance, inductance and capacitance, Fig. 3-11.

In the positive phase-sequence system, the effective resistance R L of high-voltage
overhead lines is usually negligible compared with the inductive reactance. Only at the
low- and medium-voltage level are the two roughly of the same order.

When calculating short-circuit currents, the positive-sequence capacitance is disre-
garded. In the zero-sequence system, account normally has to be taken of the conduc-
tor-earth capacitance. The leakage resistance R a need not be considered.

Fig. 3-11 Fig. 3-12

Equivalent circuit of an overhead line Conductor configurations
a) 4-wire bundle
b) 2-wire bundle

Calculation of positive- and negative-sequence impedance

Symbols used:

aT Conductor strand spacing, 
r Conductor radius, 
re Equivalent radius for bundle conductors (for single strand re =  r ), 
n Number of strands in bundle conductor, 
rT Radius of circle passing through midpoints of strands of a bundle (Fig. 3-12),
d Mean geometric distance between the three wires of a three-phase system, 
d 12, d 23, d 31, see Fig. 3-13,
rS Radius of earth wire,

H
µ0 Space permeability 4π · 10–4 —–,

km

µ S Relative permeability of earth wire, 
µ L Relative permeability of conductor (in general µL = 1),
ω Angular frequency in s–1,
δ Earth current penetration in m, 
ρ Specific earth resistance,
R L Resistance of conductor,
RS Earth wire resistance  (dependent on current for steel wires and wires containing

steel),
L b Inductance per conductor in H/km; L b = L1.
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Calculation

The inductive reactance (XL) for symmetrically twisted single-circuit and double-circuit
lines are:

µ 0 d 1
Single-circuit line: X L = ω · L b =  ω · —– (In – + —–) in Ω /km per conductor,

2 π re 4 n

µ 0 d d´ 1
Double-circuit line: X L = ω · L b =  ω · —– (In —— + —–) in Ω /km per conductor;

2 π red˝ 4 n

Mean geometric distances between conductors (see Fig. 3-13):
3

d = ��������d 12 · d 23 · d 31,
3

d ´ = ��������d 1́2 · d 2́3 · d 3́1,
3

d ˝ = ��������d 1̋1 · d 2̋2 · d 3̋3 .

The equivalent radius re is
n

re = �����n · r · r n
T

–1.

In general, if the strands are arranged at a uniform angle n:
aT

re = ———– ,π2 · sin –n
aT aT

e. g. for a 4-wire bundle re = ———– = —–π ��22 · sin –
4

The positive- and negative-sequence impedance is calculated as

R1Z 1 =  Z 2 =  —  + XL.n

Fig. 3-13

Tower configurations: double-circuit line with one earth wire; a) flat, b) “Donau‘”
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Fig. 3-14 and 3-15 show the positive-sequence (and also negative-sequence)
reactances of three-phase overhead lines.

Calculation of zero-sequence impedance

The following formulae apply:

Single-circuit line without earth wire Z I
0

=  R 0 + jX 0,
Z 2

asSingle-circuit line with earth wire Z Is
0

=  Z I
0

– 3 ——,
Z s

Double-circuit line without earth wire Z II
0

=  Z I
0

+ 3 Z ab,

Z 2
asDouble-circuit line with earth wire Z IIs

0
=  Z II

0
–  6 ——,

Z s

For the zero-sequence resistance and zero-sequence reactance included in the
formulae, we have:

Zero-sequence resistance
µ0R0 =  R L + 3  — ω,
8

Zero-sequence reactance

µ0 δ µL
X0 =  ω –— (3 In 3——  + —–)

2 π ���rd 2 4 n

Fig. 3-14

Reactance X Ĺ (positive phase sequence) of three-phase transmission lines up to
72.5 kV, f = 50 Hz, as a function of conductor cross section A, single-circuit lines with
aluminium / steel wires, d = mean geometric distance between the 3 wires.

3
d = ������d12 d 23 d 31;

1.85
δ =  ————— .

1���µ0 – ωρ
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Fig. 3-15

Reactance X Ĺ (positive-sequence) of three-phase transmission lines with alumimium/
steel wires (“Donau” configuration), f = 50 Hz. Calculated for a mean geometric
distance between the three conductors of one system, at 123 kV: d = 4 m, at 245 kV:
d = 6 m, at 420 kV: d = 9.4 m;
E denotes operation with one system; D denotes operation with two systems; 1 single
wire, 2 two-wire bundle, a = 0.4 m, 3 four-wire bundle, a = 0.4 m.

Table 3-10

Earth current penetration δ in relation to specific resistance ρ at f  =  50 Hz

Nature Alluvial Porous Quartz, impervious Granite, gneiss
of soil as per: land Limestone Limestone

DIN VDE Clay
0228 and
CCITT

Marl Sandstone, Clayey
clay schist slate

DIN VDE Moor- — Loam, clay Wet Wet Dry Stony
0141 land and soil sand gravel sand or ground

arable land gravel

ρ Ωm 30 50 100 200 500 1 000 3 000
1σ = – µS/cm 333 200 100 50 20 10 3.33ρ

δ m 510 660 930 1 320 2 080 2 940 5 100

The earth current penetration δ denotes the depth at which the return current dimin-
ishes such that its effect is the same as that of the return current distributed over the
earth cross section.
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Compared with the single-circuit line without earth wire, the double-circuit line without
earth wire also includes the additive term 3 · Z a b, where Z a b is the alternating
impedance of the loops system a/earth and system b/earth:

µ 0 µ 0 δ
Z a b =  — ω + j ω —– In —— ,

8 2 π d a b

d a b = ���d´d˝ 
3

d ´ = ��������d 1́2 · d 2́3 · d 3́1,
3

d ˝ = ��������d 1̋1 · d 2̋2 · d 3̋3 .

For a double-circuit line with earth wires (Fig. 3-16) account must also be taken of:

1. Alternating impedance of the loops conductor/earth and earth wire/earth:

µ 0 µ 0 δ 3
Z as =  —– ω + j ω —– In —— , das =  ������d1s d 2s d 3s;8 2 π d as

for two earth wires:

6
das = ��������������

2. Impedance of the loop earth wire /earth:

µ0 µ0 δ µ sZ s =  R +  —– ω + j ω —– (In – + —–) .
8 2 π r 4 n

The values used are for one earth wire n = 1;    r =  rs;               R = R s;
Rs

for two earth wires n = 2; r =  ����rs d s1s2;    R = —
2

d 1s1 d 2s1 d 3s1 d 1s2 d 2s2 d 3s2

Fig: 3-16

Tower configuration:  Double-circuit line with
two earth wires, system a and b
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Values of the ratio Rs /R– (effective resistance / d. c. resistance) are roughly between
1.4 and 1.6 for steel earth wires, but from 1.05 to 1.0 for well-conducting earth wires of
Al /St, Bz or Cu.

For steel earth wires, one can take an average of µ s ≈ 25, while values of about 
µ s = 5 to 10 should be used for Al /St wires with one layer of aluminium. For Al /St earth
wires with a cross-section ratio of 6:1 or higher and two layers of aluminium, and also
for earth wires or ground connections of Bz or Cu, µ s ≈ 1.

The operating capacitances C b of high-voltage lines of 110 kV to 380 kV lie within a
range of 9 · 10–9 to 14 · 10–9 F /km. The values are higher for higher voltages.

The earth wires must be taken into account when calculating the conductor /earth
capacitance. The following values are for guidance only:

Flat tower: CE = (0.6…0.7) · C b.

“Donau” tower: CE = (0.5…0.55) · C b

The higher values of CE are for lines with earth wire, the lower values for those without
earth wire.

The value of CE for double-circuit lines is lower than for single-circuit lines.

The relationship between conductor /conductor capacitance C g, conductor /earth
capacitance CE and operating capacitance C b is

C b = CE + 3 · C g. 

Technical values for transmission wires are given in Section 13.1.4.
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Table 3-11

Reference values for the impedances of three-phase overhead lines: “Donau” tower, one earth wire, conductor Al /St 240/40, specific earth
resistance ρ = 100 Ω · m, f = 50 Hz

Voltage Impedance Operation with one system Operation with two systems
zero-sequence X 0́ zero-sequence X 0̋

impedance X 1
impedance X 1

d d ab d as Earth wire Z 1 = R 1 + j X 1 Z 1
0 Z 11

0

m m m Ω / km per cond. Ω / km per conductor Ω / km per cond. and system

123 kV 4 10 11 St 50 0.12 + j 0.39 0.31 + j 1.38 3.5 0.50 + j 2.20 5.6
Al/St 44/32 0.32 + j 1.26 3.2 0.52 + j 1.86 4.8
Al/St 240/40 0.22 + j 1.10 2.8 0.33 + j 1.64 4.2

245 kV 6 15.6 16.5 Al/St 44/32 0.12 + j 0.42 0.30 + j 1.19 2.8 0.49 + j 1.78 4.2
Al/St 240/40 0.22 + j 1.10 2.6 0.32 + j 1.61 3.8

245 kV 6 15.6 16.5 Al/St 240/40 0.06 + j 0.30 0.16 + j 0.98 3.3 0.26 + j 1.49 5.0
2-wire bundle

420 kV 9.4 23 24 Al/St 240/40 0.03 + j 0.26 0.13 + j 0.91 3.5 0.24 + j 1.39 5.3
4-wire bundle
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3.3.5  Three-phase cables

The equivalent diagram of cables can also be represented by Π elements, in the same
way as overhead lines (Fig. 3-11). Owing to the smaller spacings, the inductances are
smaller, but the capacitances are between one and two orders greater than with over-
head lines.

When calculating short-circuit currents the positive-sequence operating capacitance is
disregarded. The conductor/earth capacitance is used in the zero phase-sequence
system.

Calculation of positive and negative phase-sequence impedance

The a.c. resistance of cables is composed of the d.c. resistance (R –) and the com-
ponents due to skin effect and proximity effect. The resistance of metal-clad cables
(cable sheath, armour) is further increased by the sheath and armour losses.

The d.c. resistance (R –) at 20 °C and A = conductor cross section in mm2 is

18.5 Ω
for copper: R –́ =  ——  in  ——,

A km

29.4 Ω
for aluminium: R –́ =  ——  in  ——,

A km

32.3 Ω
for aluminium alloy: R –́ =  ——  in  ——.

A km

The supplementary resistance of cables with conductor cross-sections of less than 50
mm2 can be disregarded (see Section 2, Table 2-8).

The inductance L and inductive reactance X L at 50 Hz for different types of cable and
different voltages are given in Tables 3-13 to 3-17. 

For low-voltage cables, the values for positive- and negative-sequence impedances are
given in DIN VDE 0102, Part 2 /11.75.
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Table 3-12

Reference value for supplementary resistance of different kinds of cable in Ω / km, f = 50 Hz

Type of cable cross-section mm2 50 70 95 120 150 185 240 300 400

Plastic-insulated cable
NYCY1) 0.6/1 kV — 0.003 0.0045 0.0055 0.007 0.0085 0.0115 0.0135 0.018
NYFGbY2) 3.5/6 kV to 5.8/10 kV — 0.008 0.008 0.0085 0.0085 0.009 0.009 0.009 0.009
NYCY2) — —- 0.0015 0.002 0.0025 0.003 0.004 0.005 0.0065

Armoured lead-covered cable
up to 36 kV 0.010 0.011 0.011 0.012 0.012 0.013 0.013 0.014 0.015

Non-armoured aluminium-
covered cable up to 12 kV 0.0035 0.0045 0.0055 0.006 0.008 0.010 0.012 0.014 0.018

Non-armoured single-core cable
(laid on one plane, 7 cm apart)
up to 36 kV
with lead sheath 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012
with aluminium sheath 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

Non-armoured single-core 
oil-filled cable with lead sheath
(bundled) 123 kV — — 0.009 0.009 0.009 0.0095 0.0095 0.010 0.0105
(laid on one plane,
18 cm apart) 245 kV — — — — 0.0345 0.035 0.035 0.035 0.035

Three-core oil-filled cable,
armoured with lead sheath, 36 to 123 kV 0.010 0.011 0.011 0.012 0.012 0.013 0.013 0.014 0.015
non-armoured with 36 kV — 0.004 0.006 0.007 0.009 0.0105 0.013 0.015 0.018
aluminium sheath, 123 kV — — 0.0145 0.0155 0.0165 0.018 0.0205 0.023 0.027

1) With NYCY 0.6/1 kV effective cross section of C equal to half outer conductor. 
2) With NYFGbY for 7.2 /12 kV, at least 6 mm2 copper.

}
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Table 3-14

Hochstädter cable (H cable) with metallized paper protection layer, inductive reactance
X Ĺ (positive phase sequence) per conductor at  f =  50 Hz

Number of cores and U = 7.2 kV U = 12 kV U = 17.5 kV U = 24 kV U = 36 kV
conductor cross-section X Ĺ X Ĺ X Ĺ X Ĺ X Ĺ

mm2 Ω / km Ω / km Ω / km Ω / km Ω / km

3 × 10 re 0.134 0.143 — — —
3 × 16 re or se 0.124 0.132 0.148 — —
3 × 25 re or se 0.116 0.123 0.138 0.148 —

3 × 35 re or se 0.110 0.118 0.13 0.14 0.154
3 × 25 rm or sm 0.111 0.118 — — —
3 × 35 rm or sm 0.106 0.113 — — —

3 × 50 rm or sm 0.10 0.107 0.118 0.126 0.138
3 × 70 rm or sm 0.096 0.102 0.111 0.119 0.13
3 × 95 rm or sm 0.093 0.098 0.107 0.113 0.126

3 × 120 rm or sm 0.090 0.094 0.104 0.11 0.121
3 × 150 rm or sm 0.088 0.093 0.10 0.107 0.116
3 × 185 rm or sm 0.086 0.090 0.097 0.104 0.113

3 × 240 rm or sm 0.085 0.088 0.094 0.10 0.108
3 × 300 rm or sm 0.083 0.086 0.093 0.097 0.105

Table 3-13

Armoured three-core belted cables1), inductive reactance X Ĺ (positive phase
sequence) per conductor at  f =  50 HZ

Number of cores U = 3.6 kV U = 7.2 kV U = 12 kV U = 17.5 kV U = 24 kV
and conductor X Ĺ X Ĺ X Ĺ X Ĺ X Ĺ

cross-section
mm2 Ω / km Ω / km Ω / km Ω / km Ω / km

3 × 6 0.120 0.144 — — —
3 × 10 0.112 0.133 0.142 — —
3 × 16 0.105 0.123 0.132 0.152 —

3 × 25 0.096 0.111 0.122 0.141 0.151
3 × 35 0.092 0.106 0.112 0.135 0.142
3 × 50 0.089 0.10 0.106 0.122 0.129

3 × 70 0.085 0.096 0.101 0.115 0.122
3 × 95 0.084 0.093 0.098 0.110 0.117
3 × 120 0.082 0.091 0.095 0.107 0.112

3 × 150 0.081 0.088 0.092 0.104 0.109
3 × 185 0.080 0.087 0.09 0.10 0.105
3 × 240 0.079 0.085 0.089 0.097 0.102

3 × 300 0.077 0.083 0.086 — —
3 × 400 0.076 0.082 — — —

1) Non-armoured three-core cables: –15 % of values stated.
Armoured four-core cables: + 10 % of values stated.
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Table 3-15

Armoured SL-type cables1), inductive reactance X Ĺ (positive phase sequence) per
conductor at f = 50 HZ

Number of cores and U = 7.2 kV U = 12 kV U = 17.5 kV U = 24 kV U = 36 kV
conductor cross-section X Ĺ X Ĺ X Ĺ X Ĺ X Ĺ

mm2 Ω / km Ω / km Ω / km Ω / km Ω / km

3 x 6 re 0.171 — — — —
3 x 10 re 0.157 0.165 — — —
3 x 16 re 0.146 0.152 0.165 — —

3 x 25 re 0.136 0.142 0.152 0.16 —
3 x 35 re 0.129 0.134 0.144 0.152 0.165
3 x 35 rm 0.123 0.129 — — —

3 x 50 rm 0.116 0.121 0.132 0.138 0.149
3 x 70 rm 0.11 0.115 0.124 0.13 0.141
3 x 95 rm 0.107 0.111 0.119 0.126 0.135

3 x 120 rm 0.103 0.107 0.115 0.121 0.13
3 x 150 rm 0.10 0.104 0.111 0.116 0.126
3 x 185 rm 0.098 0.101 0.108 0.113 0.122

3 x 240 rm 0.096 0.099 0.104 0.108 0.118
3 x 300 rm 0.093 0.096 0.102 0.105 0.113

1) These values also apply to SL-type cables with H-foil over the insulation and for conductors with a
high space factor (rm/v and r se/3 f). Non-armoured SL-type cables: –15 % of values stated.

Table 3-16

Cables with XLPE insulation, inductive reactance X Ĺ (positive phase sequence) per
conductor at  f =  50 Hz, triangular arrangement

Number of cores and U = 12 kV U = 24 kV U = 36 kV U = 72.5 kV U = 123 kV
conductor cross-section X Ĺ X Ĺ X Ĺ X Ĺ X Ĺ

mm2 Ω / km Ω / km Ω / km Ω / km Ω / km

3 x 1 x 35 rm 0.135 — — — —
3 x 1 x 50 rm 0.129 0.138 0.148 — —
3 x 1 x 70 rm 0.123 0.129 0.138 — —

3 x 1 x 95 rm 0.116 0.123 0.132 — —
3 x 1 x 120 rm 0.110 0.119 0.126 0.151 0.163
3 x 1 x 150 rm 0.107 0.116 0.123 0.148 0.160

3 x 1 x 185 rm 0.104 0.110 0.119 0.141 0.154
3 x 1 x 240 rm 0.101 0.107 0.113 0.138 0.148
3 x 1 x 300 rm 0.098 0.104 0.110 0.132 0.145

3 x 1 x 400 rm 0.094 0.101 0.107 0.129 0.138
3 x 1 x 500 rm 0.091 0.097 0.104 0.126 0.132
3 x 1 x 630 rm — — — 0.119 0.129
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Table 3-17

Cables with XLPE insulation, inductive reactance X Ĺ (positive phase sequence) per
conductor at  f =  50 Hz

Number of cores and U =  12 kV
conductor cross-section X Ĺ

mm2 Ω / km

3 x 50 se 0.104
3 x 70 se 0.101
3 x 95 se 0.094
3 x 120 se 0.091
3 x 150 se 0.088
3 x 185 se 0.085
3 x 240 se 0.082

Zero-sequence impedance

It is not possible to give a single formula for calculating the zero-sequence impedance
of cables. Sheaths, armour, the soil, pipes and metal structures absorb the neutral
currents. The construction of the cable and the nature of the outer sheath and of the
armour are important. The influence of these on the zero-sequence impedance is best
established by asking the cable manufacturer. Dependable values of the zero-sequence
impedance can be obtained only by measurement on cables already installed.

The influence of the return line for the neutral currents on the zero-sequence
impedance is particularly strong with small cable cross-sections (less than 70 mm2). If
the neutral currents return exclusively by way of the neutral (4th) conductor, then

R 0L = R L + 3 · R neutral, X 0L ≈ (3,5…4.0)xL

The zero-sequence impedances of low-voltage cables are given in DIN VDE 0102,
Part 2 / 11.75.

Capacitances

The capacitances in cables depend on the type of construction (Fig. 3-17).

With belted cables, the operating capacitance Cb is Cb = CE + 3 Cg, as for overhead
transmission lines. In SL and Hochstädter cables, and with all single-core cables, there
is no capacitive coupling between the three conductors; the operating capacitance Cb
is thus equal to the conductor/earth capacitance CE. Fig. 3-18 shows the conductor /
earth capacitance CE of belted three-core cables for service voltages of 1 to 20 kV, as
a function of conductor cross-section A. Values of CE for single-core, SL and H cables
are given in Fig. 3-19 for service voltages from 12 to 72.5 kV.

Fig. 3-17

Partial capacitances for different types of cable:
a) Belted cable, b) SL and H type cables, c) Single-core cable

a) b) c)

Cb =  CE = 3 Cg Cg =  0 ��� Cb =  CE Cg =  0 ��� Cb =  CE

CE ≈ 0,6 Cb
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Fig. 3-18

Conductor /earth capacitance CE of belted three-core cables as a function of conductor
cross-section A. The capacitances of 1 kV cables must be expected to differ
considerably.

Fig. 3-19

Conductor/earth capacitance CE of single-core, SL- and H-type cables as a function of
conductor cross-section A.

The conductor /earth capacitances of XLPE-insulated cables are shown in Tables 3-18
and 3-19.
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3.3.6  Busbars in switchgear installations

In the case of large cross-sections the resistance can be disregarded.
Average values for the inductance per metre of bus of rectangular section and arranged
as shown in Fig. 3-20 can be calculated from 

π · D + bL´ = 2 · [In (2 ————–) + 0.33] · 10–7 in H /m.
π · B + 2 b

Table 3-18

Cables with XLPE insulation, conductor /earth capacitance C É per conductor

Number of cores and U = 12 kV U = 24 kV U = 36 kV U = 72.5 kV U = 123 kV
conductor cross-section C É C É C É C É C É
mm2 µF/km µF/km µF/km µF/km µF/km

3 x 1 x 35 rm 0.239 — — — —
3 x 1 x 50 rm 0.257 0.184 0.141 — —
3 x 1 x 70 rm 0.294 0.202 0.159 — —
3 x 1 x 95 rm 0.331 0.221 0.172 — —
3 x 1 x 120 rm 0.349 0.239 0.184 0.138 0.110
3 x 1 x 150 rm 0.386 0.257 0.196 0.147 0.115
3 x 1 x 185 rm 0.423 0.285 0.208 0.156 0.125
3 x 1 x 240 rm 0.459 0.312 0.233 0.165 0.135
3 x 1 x 300 rm 0.515 0.340 0.251 0.175 0.145
3 x 1 x 400 rm 0.570 0.377 0.276 0.193 0.155
3 x 1 x 500 rm 0.625 0.413 0.300 0.211 0.165
3 x 1 x 630 rm — — — 0.230 0.185

Here:
D Distance between centres of outer main conductor, 
b Height of conductor, 
B Width of bars of one phase,
L´ Inductance of one conductor in H/m.

To simplify calculation, the value for L´ for common busbar cross sections and
conductor spacings has been calculated per 1 metre of line length and is shown by the
curves of Fig. 3-20. Thus,

X = 2 π · f · L´ · l

Table 3-19

Cables with XLPE insulation, conductor /earth capacitance C É per conductor

Number of cores and U = 12 kV
conductor cross-section C É
mm2 µF/km

3 x 50 se 0.276
3 x 70 se 0.312
3 x 95 se 0.349
3 x 120 se 0.368
3 x 150 se 0.404
3 x 185 se 0.441
3 x 240 se 0.496
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3.4  Examples of calculation

More complex phase fault calculations are made with computer programs (Calpos®).
See Section 6.1.5 for examples.

When calculating short-circuit currents in high-voltage installations, it is often sufficient
to work with reactances because the reactances are generally much greater in
magnitude than the effective resistances. Also, if one works only with reactances in the
following examples, the calculation is on the safe side. Corrections to the reactances
are disregarded.

The ratios of the nominal system voltages are taken as the transformer ratios. Instead
of the operating voltages of the faulty network one works with the nominal system

Example:

Three-phase busbars 40 m long, each conductor comprising three copper bars 
80 mm × 10 mm (A = 2400 mm2), distance D = 30 cm, f = 50 Hz. According to the curve,
L´ = 3.7 · 10–7 H/m; and so

X  =  3.7 · 10–7 H /m · 314 s–1 · 40 m  =  4.65 m Ω.

The busbar arrangement has a considerable influence on the inductive resistance.

The inductance per unit length of a three-phase line with its conductors mounted on
edge and grouped in phases (Fig. 3-20 and Fig. 13-2a) is relatively high and can be
usefully included in calculating the short-circuit current.

Small inductances can be achieved by connecting two or more three-phase systems in
parallel. But also conductors in a split phase arrangement (as in Fig. 13-2b) yield very
small inductances per unit length of less than 20 % of the values obtained with the
method described. With the conductors laid flat side by side (as in the MNS system) the
inductances per unit length are about 50 % of the values according to the method of
calculation described.

Fig. 3-20

Inductance L´ of
busbars of rectangular
cross section
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voltage. It is assumed that the nominal voltages of the various network components are
the same as the nominal system voltage at their respective locations. Calculation is
done with the aid of the %/ MVA system.

Example 1

To calculate the short-circuit power S"k, the peak short-circuit current i p and the
symmetrical short-circuit breaking current I a in a branch of a power plant station service
busbar. This example concerns a fault with more than one infeed and partly common
current paths. Fig. 3-21 shows the equivalent circuit diagram.

For the reactances of the equivalent circuit the formulae of Table 3-4 give:

1.1 · 100 110Network reactance xQ =  ————  =  ——–  =  0.0138 %/MVA,
S k̋Q 8000

uK 13
Transformer 1 xT1 =  ——  =  —— =  0.1300 %/MVA,

S rT1 100
x d̋ 11.5

Generator xG =  ——  =  —— =  0.1227 %/MVA,
S rG 93.7
uK 7

Transformer 2 xT2 =  ——  =  —— =  0.8750 %/MVA,
S rT2 8
IrM/Istart 1

Induction motor xM1 =  ———  · 100  =  ———— · 100  =  7.4349 %/MVA,
S rM 5 · 2.69

IrM/Istart 1
Induction- xM2 =  ———  · 100  =  —————–  · 100  =  5.4348 %/MVA.
motor group S rM 5 · 8 · 0.46

For the location of the fault, one must determine the total reactance of the network. This
is done by step-by-step system transformation until there is only one reactance at the
terminals of the equivalent voltage source: this is then the short-circuit reactance.

Calculation can be made easier by using Table 3-20, which is particularly suitable for
calculating short circuits in unmeshed networks. The Table has 9 columns, the first of
which shows the numbers of the lines. The second column is for identifying the parts and
components of the network. Columns 3 and 4 are for entering the calculated values.
The reactances entered in column 3 are added in the case of series circuits, while the
susceptances in column 4 are added for parallel configurations.
Columns 6 to 9 are for calculating the maximum short-circuit current and the
symmetrical breaking current.
To determine the total reactance of the network at the fault location, one first adds the
reactances of the 220 kV network and of transformer 1. The sum 0.1438 % /MVA is in
column 3, line 3.
The reactance of the generator is then connected in parallel to this total. This is done
by forming the susceptance relating to each reactance and adding the susceptances
(column 4, lines 3 and 4).
The sum of the susceptances 15.1041 % /MVA is in column 4, line 5. Taking the
reciprocal gives the corresponding reactance 0.0662 % /MVA, entered in column 3, line
5. To this is added the reactance of transformer 2. The sum of 0.9412 % /MVA is in
column 3, line 7.
The reactances of the induction motor and of the induction motor group must then be
connected in parallel to this total reactance. Again this is done by finding the
susceptances and adding them together.



3

105

The resultant reactance of the whole network at the site of the fault, 0.7225% /MVA, is
shown in column 3, line 10. This value gives

1.1 · 100 % 1.1 · 100 %
S k̋ =  —————        ————————  =  152 MVA, (column 5, line 10).

x k 0.7225 % /MVA

To calculate the breaking capacity one must determine the contributions of the
individual infeeds to the short-circuit power S k̋.

The proportions of the short-circuit power supplied via transformer 2 and by the motor
group and the single motor are related to the total short-circuit power in the same way
as the susceptances of these branches are related to their total susceptance.

Contributions of individual infeeds to the short-circuit power:

0.1345Contribution of single motor S k̋M1 =  ———  · 152  =  14.8 MVA,
1.381

0.184Contribution of motor group S k̋M2 =  ———  · 152  =  20.3 MVA,
1.381

1.0625Contribution via transformer 2 S k̋T2 =  ———  · 152  =  116.9 MVA.
1.381

The proportions contributed by the 220 kV network and the generator are found
accordingly.

8.150Contribution of generator S k̋G =  ———  · 116.9  =  63.1 MVA,
15.104

6.954Contribution of 220 kV network S k̋Q =  ———  · 116.9  =  53.8 MVA.
15.104

The calculated values are entered in column 5. They are also shown in Fig. 3-21b.

To find the factors µ and q

When the contributions made to the short-circuit power S k̋ by the 220 kV network, the
generator and the motors are known, the ratios of S k̋ /S r are found (column 6). The
corresponding values of µ for t v = 0.1 s (column 7) are taken from Fig. 3-5.
Values of q (column 8) are obtained from the ratio motor rating / number of pole pairs
(Fig. 3-6), again for t v = 0.1 s.

Single motor
S k̋M1 14.8 motor rating 2.3
——  =  ——  =  5.50 → µ = 0.74 ——————  =  —–  =  1.15 → q =  0.59
S rM1 2.69 no. pole pairs 2

Motor group
S k̋M2 20.3 motor rating 0.36
——  =  —–——  =  5.52 → µ = 0.74 ——————  =  —––  =  1.12 → q =  0.32
SrM2 8 · 0.46 no. pole pairs 3

S k̋G 63.1
Generator ——  =  —––  =  0.67 → µ =  1

S rG 93.7

For the contribution to the short-circuit power provided by the 220 kV network, µ = 1,
see Fig. 3-5, since in relation to generator G 3 it is a far-from-generator fault.
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Contributions of individual infeeds to the “breaking capacity”

The proportions of the short-circuit power represented by the 220 kV network, the
generator and the motors, when multiplied by their respective factors µ and q, yield the
contribution of each to the breaking capacity, column 9 of Table 3-20.

Single motor SaM1 = µ q S k̋M1 =  0.74 · 0.59 · 14.8 MVA  =  6.5 MVA

Motor group SaM2 = µ q S k̋M2 =  0.74 · 0.32 · 20.3 MVA  =  4.8 MVA

Generator SaG = µ S k̋G =  1 · 63.1 MVA  =  63.1 MVA

220 kV network SaQ = µ S k̋Q =  1 · 53.8 MVA  =  53.8 MVA

The total breaking capacity is obtained as an approximation by adding the individual
breaking capacities. The result Sa = 128.2 MVA is shown in column 9, line 10.

Table 3-20

Example 1, calculation of short-circuit current

1 2 3 4 5 6 7 8 9
Component x 1 S k̋ S k̋ /Sr µ q Sa

x
% /MVA MVA/% MVA (0.1s) (0.1s) MVA

1 220 kV network 0.0138 — 53.8 — 1 — 53.8
2 transformer 1 0.1300 — — — — — —
3 1 and 2 in series 0.1438 → 6.9541 — — — — —
4 93.7 MVA generator 0.1227 → 8.1500 63.1 0.67 1 — 63.1
5 3 and 4 in parallel 0.0662 ← 15.1041 — — — — —
6 transformer 2 0.8750 — — — — — —
7 5 and 6 in series 0.9412 → 1.0625 116.9 — — — —
8 induction motor

2.3 MW/ 2.69 MVA 7.4349 → 0.1345 14.8 5.50 0.74 0.59 6.5
9 motor group

Σ = 3.68 MVA 5.4348 → 0.1840 20.3 5.52 0.74 0.32 4.8
10 fault location

7, 8 and 9 in parallel 0.7225 ← 1.3810 152.0 — — — 128.2

At the fault location: 

S k̋ 152.0 MVA 
I k̋ =  ——–— =  —————  =  14.63 kA,

��3 · Un ��3 · 6.0 kV

I p =  κ · ��2 · I k̋ =  2.0 · ��2 · 14.63 kA  =  41.4 kA (for κ =  2.0),

S a 128.2 MVA 
I a =  ——–— =  —————  =  12.3 kA.

��3 · Un ��3 · 6.0 kV

Example 2

Calculation of the phase-to-earth fault current I k̋1. 

Find I k̋1 at the 220 kV busbar of the power station represented by Fig. 3-22.

Calculation is made using the method of symmetrical components. First find the
positive-, negative- and zero-sequence reactances X1, X 2 and X 0 from the network
data given in the figure.
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Fig. 3-21

a) Circuit diagram, b) Equivalent circuit diagram in positive phase sequence with
equivalent voltage source at fault location, reactances in %/MVA: 1 transformer 1,
2 transformer 2, 3 generator, 4 motor, 5 motor group, 6 220 kV network, 7 equivalent
voltage at the point of fault.

Zero-sequence reactances (index 0)

A zero-sequence system exists only between earthed points of the network and the
fault location. Generators G1 and G 2 and also transformer T1 do not therefore
contribute to the reactances of the zero-sequence system.

Positive-sequence reactances (index 1)

1Overhead line X1L = 50 · 0.32 Ω · –  =  8 Ω
2

1.1 · (220 kV)2
220 kV network X = 0.995 ·  —————–—  =  6.622 Ω

8000 MVA
(21 kV)2

Power plant unit XG = 0.14 ·  ————  =  0.494 Ω
125 MVA

(220 kV)2
XT = 0.13 ·  ————  =  48.4 Ω

130 MVA

XKW = KKW (ü2
r · XG + XT)

1.1KKW = ——————————
1 + (0.14 – 0.13) · 0.6

220XKW = 1.093 [(——)2
· 0.494 + 48.4] Ω =  112.151 Ω

21

At the first instant of the short circuit, x 1 = x 2. The negative-sequence reactances are
thus the same as the positive-sequence values. For the generator voltage: UrG = 21 kV
with sin ϕ rG = 0.6, the rated voltages of the transformers are the same as the system
nominal voltages.
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Overhead line
X 0L =  3.5 · X 1L =  28 Ω2 circuits in parallel 

220 kV network X 0Q =  2.5 · X 1Q =  16.555 Ω
Transformer T 2 X 0T2

=  0.8 · X 1T · 1.093  =  42.321 Ω

With the reactances obtained in this way, we can draw the single-phase equivalent
diagram to calculate I k̋1 (Fig. 3-22b).

Since the total positive-sequence reactance at the first instant of the short circuit is the
same as the negative-sequence value, it is sufficient to find the total positive and zero
sequence reactance.

Calculation of positive-sequence reactance:
1 1 1

— =  ——––— +  ————  → x 1 =  11.598 Ω
x 1 56.076 Ω 14.622 Ω

Calculation of zero-sequence reactance:
1 1 1

— =  ——––— +  ————  → x 0 =  21.705 Ω
x 0 42.321 Ω 44.556 Ω

Fig. 3-22

a) Circuit diagram, b) Equivalent circuit diagram in positive phase sequence, negative
phase sequence and zero phase sequence with connections and equivalent voltage
source at fault location F for I k̋1.

With the total positive-, negative- and zero-sequence reactances, we have

1.1 · ��3 · Un 1.1 · ��3 · 220
I k̋1 =  ————–—  =  ——————  =  9.34 kA.

x 1 + x 2 + x 0 44.901
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The contributions to I k̋1 represented by the 220 kV network (Q) or power station (KW)
are obtained on the basis of the relationship

I k̋1 =  I 1 + I 2 + I 0 = 3 · I 1 with I 0 =  I 1 =  I 2 =  3.11 kA

to right and left of the fault location from the equations:

I k̋1Q =  I 1Q + I 2Q + I 0Q, and I k̋1KW =  I 1KW + I 2KW + I 0KW.

The partial component currents are obtained from the ratios of the respective
impedances.

56.08I 1Q =  I 2̋Q =  3.11 kA · ———  =  2.47 kA
70.70

42.32I 0Q =  3.11 kA · ———  =  1.51 kA
86.88

I 1KW =  0.64 kA

I 0KW =  1.60 kA

I k̋1Q =  (2.47 + 2.47 + 1.51) kA  =  6.45 kA

I k̋1KW =  (0.641 + 0.64 + 1.60) kA  =  2.88 kA

Example 3

The short-circuit currents are calculated with the aid of Table 3-2.

1.1 · (0.4)2

20 kV network: x1Q =  0.995  ————— =  0.0007 Ω
250

r1Q ≈ 0.1 x1Q =  0.00007 Ω

(0.4)2

Transformer: x1T =  0.058  ——— =  0.0147 Ω
0.63

(0.4)2

r1T =  0.015  ——— =  0.0038 Ω
0.63

x 0T =  0.95 · x 1T =  0.014 Ω
r0T ≈ r1T =  0.0038 Ω

Cable: x1L =  0.08 · 0.074 =  0.0059 Ω
r1L20 =  0.08 · 0.271 =  0.0217 Ω
r1L80 =  1.24 · r 1L20 =  0.0269 Ω
x 0L ≈ 7.36 · x 1L =  0.0434 Ω
r0L20 ≈ 3.97 · r 1L20 =  0.0861 Ω
r0L80 =  1.24 · r 0L20 =  0.1068 Ω

Maximum and minimum short-circuit currents at fault location F 1

a. Maximum short-circuit currents

Z 1 = Z 2 =  (0.0039 + j 0.0154) Ω;    Z 0 =  (0.0038 + j 0.0140) Ω
1.0 · 0.4I k̋3 =  —————– kA  =  14.5 kA

��3 · 0.0159

��3I k̋2 =  —– I k̋3 =  12.6 kA
2

��3 · 1.0 · 0.4I k̋1 =  —–——–—— kA  =  15.0 kA.
0.0463



110

Table 3-21

Summary of results

Fault Max. short-circuit currents Min. short-circuit currents
location 3p 2p 1p 3p 2p 1p

kA kA kA kA kA kA

Fault location F 1 14.5 12.6 15.0 13.8 12.0 14.3
Fault location F 2 6.9 6.0 4.0 6.4 5.5 3.4

The breaking capacity of the circuit-breakers must be at least 15.0 kA or 6.9 kA.
Protective devices must be sure to respond at 12 kA or 3.4 kA. These figures relate to
fault location F1 or F2.

b. Minimum short-circuit currents

The miminum short-circuit currents are calculated with c = 0.95.

Maximum and minimum short-circuit currents at fault location F 2

a. Maximum short-circuit currents

Z 1 = Z 2 =  (0.0265 + j 0.0213) Ω;    Z 0 =  (0.0899 + j 0.0574) Ω
1.0 · 0.4I k̋3 =  —————– kA  =  6.9 kA

��3 · 0.0333

��3I k̋2 =  —– I k̋3 =  6.0 kA
2

��3 · 1.0 · 0.4I k̋1 =  —–——–—— kA  =  4.0 kA.
0.1729

b. Minimum short-circuit currents

The minimum short-circuit currents are calculated with c = 0.95 and a temperature of
80 °C.

Fig. 3-23

a) Circuit diagram of
low-voltage network,
b) Equivalent diagram in
component systems and
connection for single-
phase fault
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Examples of use Networks of limited Overhead-line Cable networks High-voltage networks
extent, power plant networks 10…230 kV system (123 kV) to 400 kV
auxiliaries 10…123 kV e. g. in towns (protective multiple

earthing in I. v. network)

Between system Capacitances, (inst. trans- Capacitances, Capacitances, (Capacitances),
and earth are: former inductances) Suppression coils Neutral reactor Earth conductor

Z 0 / Z 1 1/ jωCE very high resistance inductive: 4 to 60 2 to 4
——— resistive:  30 to 60Z 1

Current at fault site with Ground-fault Residual ground- Ground-fault current I k1

single-phase fault current fault current
Calculation (approximate) I E (capacitive) I R

I E ≈ j 3 ω CE · E 1 I R ≈ 3 ω CE(δ + jν) E 1

δ =  loss angle
ν =  interference

3.5 Effect of neutral point arrangement on fault behaviour in three-phase high-voltage networks above 1 kV

Table 3-22

Arrangement of neutral isolated with arc current-limiting low-resistance earth
point suppression coil R or X

c · Un
E1 =  —–—  =  E ˝

��3

3 E 1
I k̋1 =  I R ≈ —–———–——

j (X 1 + X 2 + X 0)

I k̋1 3 X 1 3
—–  =  —–———  =  —–—––—
I k̋3 2 X 1 + X 0 2 + X 0 /X1 (continued)



112 Table 3-22 (continued)

Arrangement of neutral isolated with arc current-limiting low-resistance earth
point suppression coil R or X

I k̋2 / I k̋3 ICE / I k̋3 IR / I k̋3 inductive: 0.05 to 0.5 0.5 to 0.75
resistive:  0.1 to 0.05

U LEmax /Un ≈ 1 1 to (1.1) inductive: 0.8 to 0.95 0.75 to � 0.80
resistive:  0.1 to 0.05

U 0max /Un ≈ 0.6 0.6 to 0.66 inductive: 0.42 to 0.56 0.3 to 0.42
resistive:  0.58 to 0.60

Voltage rise in yes yes no no
whole network

Duration of fault 10 to 60 min 10 to 60 min < 1 s < 1 s
Possible short-time earthing with subsequent selective
disconnection by neutral current (< 1 s)

Ground-fault arc Self-quenching Self-quenching Partly self-quenching Sustained
up to several A usually sustained

Detection Location by disconnection, ground-fault wiping-contact Selective disconnection by Short-circuit
relay, wattmeter relay. (With short-time earthing: dis- neutral current (or short- protection
connection by neutral current) circuit protection)

Risk of double earth fault yes yes slight no

Means of earthing Earth electrode voltage UE < 125 V Earth electrode voltage U E > 125 V permissible
DIN VDE 0141 Touch voltage � 65 V Touch voltages � 65V

Measures against interfer- Generally not Not necessary Overhead lines: possibly required if approaching over
ence with communication necessary a considerable distance
circuits Cables: generally not necessary
DIN VDE 0228 needed only with railway block lines
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