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INTRODUCTION

When you design a pipeline for a gravity flow water system, you usually assume 

that the water flow will fill the pipe. In this case, the flow rate out of the pipe is 

controlled by the available head, the length, diameter and roughness of the pipe 

and the so-called minor losses due to various obstructions (contractions, elbows, 

expansions, tees and especially valves). We will call this the full-pipe or friction

controlled case. It is adequately explained in many textbooks and manuals* . But if 

for some reason the pipe is not completely full of water, the relation between head 

available and flow rate is very different. This will happen in several cases. For 

instances:

- When you first turn on the water in a new installation with dry or

partially filled pipes.

- If you have cavitations somewhere in your circuits (too much 

suction).

- If the pipe is fed by a spring through a small spring box and the output

of the spring is smaller than the one for which you designed the pipe

system.

Now the general belief is that if you have air in the pipes you need to get rid of it 

so that the pipes will run full. This is because the presence of air often increases the 

head required for a given flow. In fact, it is not at all rare that this air acts as a 

block so that no water at all comes out at the end of the pipe.

On the other hand, it turns out that very frequently, in systems with springs of 

small, uncertain or variable output, there is a big advantage in operating with air in 

the pipes. The advantage is that you can design such a system so that it will 

operate like a canal, instead of a pipeline: within limits, which you can easily 

calculate, it will deliver to the end of the line whatever flow rate is provided by the 

spring and this without having to adjust a valve- without controls.

This manual is written to help you deal with air in water pipes. In particular it will 

make it possible for you to :

- Understand the problem of starting with dry pipes.

- Predict what will happen if your water supply is or becomes smaller 

than you assumed in your calculations ( for a friction-controlled

system).

* See for instance: A Handbook of Gravity-Flow Water Systems by Thomas D. Jordan, 

Intermediate Technology Publications, 1984. This handbook covers a comprehensive list of topics 

including “air blocks”. While incomplete for our purposes, Jordan’s discussion of air in pipes is 

nevertheless a valuable start.
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- Design deliberately smooth operating systems in which air is almost 

always present in the pipes.

Throughout this manual, we assume that even though the spring output 

will vary in time one of your primary objectives is to convey to the 

distribution tank through the conduction line, a flow rate that is always the 

full spring output up to a maximum of your choice. 

The manual addresses itself at the same time to two kinds of designers: 

• Those who have not had the unpleasant experience of problems with air 

making their conduits misbehave.

• Those who are leery of air problems and dutifully place an automatic air 

valve at every intermediate high point of their conduits. 

First, the hydraulic background necessary to understand this subject is presented. 

Then, the method for predicting and designing with air in the pipes is given. 

Finally, the manual presents a number of examples that will help you use this 

material and get on top of the subject.

You will find among these examples some friction-controlled designs that get in 

trouble when the flow rate of the spring is only a little bit less than the design 

value, as well as cases in which there is no air trouble, no matter how much the 

flow supplied to the pipe by the spring is reduced. After you have followed these 

examples, you will be able to predict whether your friction-controlled design will 

give you trouble in a specific case. You will also be able to modify your designs so 

as to eliminate problems with air in the pipes.

The examples make it clear that the problem is not to choose between a friction-

controlled full pipe design and a mixed air-water design but rather to adapt the 

design to the probability that air will be present in the pipes some of the time.

The standard way to deal with the possibility of blockage with air pockets is to 

systematically place an automatic valve at every high point of the conduction line. 

We don’t favor this solution for the following reasons:

1) As  will be explained in the text, when such a valve operates in a 

“supercritical” part of the circuit with transient water mixed with air, it 

constantly and abruptly opens and closes. That limits its life. 

2) Some circuits require no valves at all and no special provisions to deal with 

ingested air. Thus, for these cases, why increase complexity and costs?

3) The placement of air valves near high points is a matter of some delicacy: 

they have to be placed near the start but within the air pockets, which 

develop (if there is any flow) only downstream of the high points and the 

location of the high point is rarely obvious. This is an additional argument 

to avoid placing blindly unnecessary valves.
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The material which follows is arranged so that the general foundations are given in 

Chapter 1. The way to proceed in a design is given in Chapter 2. This chapter is 

the one that tells you how to deal with air. In other words, Chapter 2 is the "how 

to" part of the manual while Chapter 1 is a reference of "why" chapter. Any 

supplementary information required for the design is found in Appendix A, 

whether it is new information or available in other books or manual. Chapter 3 

presents the examples that illustrate the material. Appendix B makes a few more 

specialized points which would perhaps be confusing in the main text. But these 

can be read later.

The solutions suggested in Chapters II & III are, of course, not the only ones, 

perhaps not even the best ones. After you have examined this material, no doubt 

you will choose your own. The important thing is to have in hand enough elements 

to make an enlightened choice.

Note: It is possible (though often tedious) for you to carry out a suitable design 

without using the equations that appear in the text, for examples, by only adding, 

subtracting, multiplying , dividing and using the tables. The only exceptions are the 

two formulas of Appendix A-III. This is shown in Chapters II & III. But you can 

also download from the web, an APLV program called Air-in Pipes that will lead 

you rapidly (and somewhat more accurately) through your conduction pipe design. 

(See our Web site, www.aplv.org or request the program from aplv@igc.org. This 

Visual Basic Excel program is due to Charlie Huizenga with suggestions from 

Katherine Force, Mathieu Le Corre, Jim Stacey and Gilles Corcos.

The second edition of this manual is the outcome of twelve years of continuous 

use of the first. It incorporates some changes in the presentation and adds attention 

to some cases  that have occurred in the field more often than what we previously 

anticipated.
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SYMBOLS

h = head (meters)

H = height (meters); HAB = height difference between points A and B (meaning 

HA - HB); Q = flow rate (m3/s unless otherwise specified). Subscripts 1 & 2 refer 

to two points along the pipe with 1 upstream of 2. Letter S refers to the spring or 

spring tank. Letter T refers to the pipe outlet or distribution tank.  Other points 

along the pipe are indicated in the sketches.

ha = head available = HS – HT

ht = trickle height defined in the text. Appendix A shows you how to calculate it.

hf = friction head loss. You can use table A1 or the formulas in Appendix A to 

calculate it. 

hf1 = friction head loss for Q = Qc

hr =  maximum head required hr = hf + ht  if Q is smaller than Qc and hr = hf if Q 

is greater than Qc

Q = flow rate (m3/s)

Qc = The lowest critical flow rate: The flow rate at which in a horizontal part of 

the pipe a long bubble is carried downstream.Its value depends almost only on pipe 

diameter(see equation 2 and table A2). 

Qs = The highest critical flow rate: The flow rate at which a long bubble will be 

carried downstream, regardless of the slope of the pipe

Qmax = maximum expected output (flow rate) of the spring. Qmin.= minimum 

expected output of the spring.

 Q*= Q/Qc or Q/Qs. If Q<Qc the flow is called subcritical. If Q>Qs it is called 

supercritical. When Qc<Q<Qs the flow is transitional. 

L = length of a pipe line. LST  length along the pipeline from the spring to the 

distribution tank. LAB = length of pipe between points A and B ... etc..

V = water (section-averaged or discharge) velocity; m/s.

 g = acceleration of gravity (9.81 m/sec2).

 A = cross sectional area of the pipe interior.
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CHAPTER I

AIR IN THE PIPELINES

Air may be found in water pipelines mainly as large, stationary pockets, or as large 

or small moving bubbles.

When air collects in parts of the pipeline, without moving, the water may be 

blocked by the air so that no water flows or it may circulate past the pockets of air 

by flowing underneath these pockets. You will learn to figure out which will 

happen in a particular case.

When water flows sufficiently fast, air pockets are not able to remain still and they 

will be chased down the pipe along with the water. Then, the presence of air in the 

pipe will not affect the delivery of the water. You will also be able to determine 

when that happens in any particular case.

Stationary Air Pockets. You may first run into this problem when you fill for the 

Figure I-1

first time a newly constructed gravity flow pipeline since this pipeline starts out at

least partially full of air. If, as in figure I-1, the profile has a local maximum (point 

B) between spring S and tank T, as you allow a small flow of water out of S, the 

water will accumulate at the low point A and then, fill the pipe on both sides of A 
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(Figure I-1a). Progressively, air is chased out of this section of the pipe until there 

is no more air between A and B and the water reaches the level of the bottom of 

the pipe at B (Figure I-1b). The section BC' is still full of air and the water will 

now trickle down towards C' below the air. This air will not be flushed out by a 

small water flow rate. We will call the stationary air pocket above the trickle of 

falling water an air sock. The trickle of water below the air sock soon fills the

bottom of the  pipe at C' so that the air between B and C' is now trapped and 

isolated from the atmosphere: the sock is closed (Figure I-1b).

Now, the pressure throughout the sock downstream of B has to be uniform 

(because hydrostatic pressure variations are negligible in a gas), and this forces a 

uniform pressure in the thin stream of water flowing below the air sock. This is the 

origin of the head loss due to the presence of the sock: Between B and the end of 

the sock,  the water loses potential energy (height) and there is no corresponding

increase in pressure head since the pressure remains the same in the stream below 

the air sock and the kinetic energy (velocity head) is the same at the beginning and 

the end of the sock.

The head loss caused by the presence of the sock is the difference between the 

elevations of the beginning and of the end of the sock.

If there are several local high points as in Figure.I-2, as you continue to fill the 

pipe, more air socks appear downstream of these high points so that more head is 

lost. The total  head loss due to all the socks is the sum of the individual sock head 

losses.

Figure I-2

In Figures I-1c and I-2, note that while the top of the air socks remains at the level 

of the local high points, such as B or D, the bottom does not have to remain at the 

local low points because as you keep filling the pipe, the hydrostatic pressure in the 

socks increases. This compresses the air in the socks which causes the volume of 
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the socks to decrease. As a result, the socks become shorter and the level of the 

sock bottom rises from C' to C and from E' to E.

As You Fill The Pipe Will the Water Flow out At All?

If you keep releasing water slowly from the spring, the water level in the pipe 

below the spring may reach the spring tank level S and spill there before it comes 

out at the end of the pipe at level T. This is the case shown on Figure I-1c. In that 

case no water can be delivered to the downstream tank until some air has been 

purged out of the socks. This will happen if the available head, ha = HS – HT, is 

smaller than the sum of the heights of the socks.

Or the water may come out at T before it has backed up to the level of S. In this 

case you probably still want to purge the air out of the socks but even before you 

do so, some water will flow out the end of the pipe. This will happen when ha =

HS - HT is larger than the sum of the heights of the socks. 

This brings out the importance of figuring out the sum of the heights of the socks. 

The way to do that is given later in Chapter II.

So far, we have imagined that only a very small quantity of water is released at the 

spring. Now, we imagine that the spring output is larger, though always limited. In 

other words, we don't have a large reservoir or lake at the spring site. We can see 

that the flow of water and the discharge at T can be limited in one of the following 

two ways:

It can be limited by the head loss in the pipe. This head loss increases with the flow 

rate so that there is a flow rate for which the head loss is equal to the head 

available and clearly no matter how much water comes out of the spring the 

amount that flows through the pipe cannot exceed the flow rate for which the head 

available is equal to the head loss. The rest of the spring output merely overflows

at the spring tank.

Or the discharge may be limited by the output of the spring. This happens 

whenever this output is smaller than the flow rate for which the head losses equal 

to the head available.

In the first case (flow rate limited by the head losses), the standpipe below S is 

normally full of water.

In the second case (flow rate limited by the spring output), the flow out of the 

spring tank does not fill the pipe and we start below S with what is roughly 

speaking a waterfall. This is important because in general, air bubbles are created 

by the waterfall and they are carried (to a greater or lesser extent) by the water 

down the pipe so that in this second case air is supplied to the pipe along with the 
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water. Sometimes this does not matter but as we will soon see, there are frequent 

cases for which this new source of air causes problems.

The Critical Flow

We now return to the air socks which we assume we have not purged out.

It turns out that there is a special flow rate we call critical flow rate, Qc, which is 

fixed by the pipe diameter in the region of the socks.

The system may only be capable of a flow rate less than the critical flow rate Qc

either because the flow out of the spring is less or because the combined losses due 

to friction at Q = Qc and the air in the socks exceed the available head.

Or the system is capable of a flow rate larger than Qc because the flow out of the 

spring is larger and the head available is larger than the sum of friction head 

required for Q = Qc and the head loss from air in the pipe. 

Now the critical flow rate Qc has the following physical meaning:

If the flow rate Q of which the system is capable is smaller than Qc, air socks will 

remain in fixed locations downstream of the high points. Their tops will remain

level with the high points. Their bottoms will have a level which depends on the 

amount of air that has found its way to the sock and on the pressure within the 

sock. The loss of head they will cause is still the sum of the heights of the socks.

If the flow rate Q of which the system is capable is greater than Qc, the air socks 

will be chased out of the horizontal part of the pipe and any additional air coming 

from upstream will also circulate through that zone without stopping there.

The critical flow rate only depends on the diameter of the pipe in the region of the

sock: It is reached at a high point where 

Qc = 0.38d
5/2

g
1/2

 *       (1a)

But stationary socks will not be safely expelled downstream past the following

sloping part of the pipe until the flow rate Q exceeds

Qs = 0.50d
5/2

d
1/2

 *  (1b)

Where d is the inner diameter of the pipe at the location of the sock and g is the 

acceleration of gravity . If Q is in cubic meters per second, equations (1a) and (1b) 

can be rewritten

Qc = 1.19d
5/2

  (2a)

and

Qs = 1.57d
5/2

      (2b)
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Qc and Qs are given in table (A2, Appendix A) for a few pipe diameters. Flow rates

when larger than Qs are called supercritical, and when lower than Qc, subcritical.

Can We Evaluate the Additional Head Loss Due to the Socks?

In full pipes with no air socks, a familiar energy equation allows us to determine 

the flow. It is:

8Q2/d1
4g + h1 + H1 = 8Q2/ d2

4g + h2 + H2 + hf

The first term on the left is the "kinetic energy" (velocity energy). The second is 

the pressure energy. The third is the "potential energy" (energy due to height). The 

subscript 1 refers to a section upstream and the subscript 2 to a section 

downstream. The equation says that the sum of the three energy terms at the 

downstream section is less than the sum of the three energy terms at the upstream 

section because there is a loss hf due to friction between 1 and 2. This loss is 

always positive. You can calculate hf if you know the values of Q, d, and the 

distance between 1 and 2 (see Appendix A). Now, as we have just seen, when 

there are air socks between 1 and 2 the energy equation must include an additional

loss term on the right hand side of the equation. This term can be calculated  only 

when the difference between the elevations of the beginning and the end of all 

socks are known. However, this is the case only as you fill dry pipes and not later 

because air can leave the air pockets as small bubbles and also come in from 

upstream to replenish them. Therefore, in general, you won't know how much air 

there is in the pipe. What is known is that the initial head loss due to the socks, 

which is found when you first fill the dry pipes (which we will later call the trickle 

height, ht ), is the maximum air sock head loss you will encounter. You will usually 

design for this worse case situation.

You should keep in mind that: The head loss due to an air sock containing a 

given mass of air will not change drastically, whether the flow rate is very 

small or not, (it will slowly increase with flow rate) as long as the flow rate is

less than the critical flow rate, Qc. For Q larger than Qs, the trickle height 

head loss disappears because the air is chased out.

The sock head loss is not just a starting problem

Whether the flow is subcritical or supercritical, air bubbles and air pockets 

can be carried from the area of the pipe below the spring towards the 

location of the air socks as long as the head required is less than the head 

available. If the flow is subcritical this means that socks can be replenished 

with air after they have been flushed out manually.
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Moving Air Pockets And Bubbles.

 What happens when Q exceeds Qs is that since the water flow is now large 

enough to flush out the air sock, the head required suddenly decreases (ht

disappears). Now, if the head available is large enough to cause Q to exceed Qs

before the sock is chased out, an even greater flow rate will occur afterwards. If 

the output of the spring is sufficient to keep up with this greater flow rate, i.e. the 

flow rate determined by the head available with ordinary friction losses, the pipe 

will fill up with water and remain full. But if not, i.e. if the output of the spring falls 

short of the flow rate which the pipe can sustain with the available head ha when 

the pipe is full, air will almost always be entrained by the water at the beginning 

section of the pipe and will travel down the pipe. Some details of this entrainment 

will be given presently. Keep in mind that no matter how complicated the situation 

appears, as long as Q remains larger than Qs, the head requirement becomes the 

one you would calculate for the same Q if the pipe were full.

Entrainment of air in subcritical and supercritical flows when the spring 

output limits the flow rate.

Assume now that the flow rate out of the spring has decreased so that it requires 

less head  (for a given pipeline) than the head available. One might think that in this 

case, the level of the water in the pipe below the spring box would simply adjust 

itself so that the head of water just balances the head required for available flow 

rate.  In fact this happens only when the flow rate is extremely small (compared to 

Qc). Instead, if the pipe is not full below the spring, as Q increases, the current is 

increasingly able to carry air bubbles (created by the fall of water from the spring) 

downstream with the water. For flow rates much smaller than Qc, only very small 

bubbles are carried downstream. For Q approaching Qc, bubbles merge and larger 

bubbles are carried downstream. These can create or add to existing air socks. This 

normally takes a long time- up to many days. If Q is larger than Qs, while still 

smaller than the Q requiring the full head available, air will still be brought in from 

below the spring but will not remain in any fixed, stationary sock. Instead, it will 

be flushed out either periodically  (when Q is only a little larger than Qc) or more 

steadily (for greater flow rates). Now the flow down the first section of pipe is 

very complex-looking, full of pools and cascades. Air bubbles or pockets of 

various sizes now circulate through the pipe with the water. This has no adverse 

effect on the operation of the pipeline as long as the spring is able to supply a 

flow rate larger than Qs. However, if the spring output decreases below Qc, the 

air in transit through the pipe will accumulate again in the sock areas downstream 

of the local highs and contributes a new head loss. So:

The most  frequent way to get in trouble with air socks after the system has 

been started is for the flow to decrease from supercritical to subcritical as a 

result of a decrease in the output of the spring. In this case your flow may be 

completely shut out.
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Another form  of trouble is subcritical flow which has been started by 

bleeding the air socks once while the spring output is small. As a result, air 

slowly returns to the sock area. The capacity of the conduit does not change 

and the level of the water rises in the pipe towards the spring. If the spring 

flow rises the air in the socks, it will prevent the pipe from delivering it 

downstream.

The head requirement (if you start with empty pipes) is made clear in a graph, such 

as figure I-3.

This graph is appropriate even when there are several local maximae in the pipe 

profile as in Figure I-2, but only if the pipe diameters downstream of the several 

maximae are all the same. It shows the maximum head required on the vertical axis 

and the flow rate on the horizontal axis. When Q is less than Qc, this head required 

is the sum of two terms: The trickle height ht, and the friction head loss hf. hf is

the curve which starts as a dotted line and which rises steadily. It increases with 

flow rate. When Q is larger than Qc, hr is equal to hf because ht has disappeared 

(no sock losses).

When there are several socks and downstream of the socks, the pipe diameters are 

not the same, the sudden decrease in ht as Q increases occurs in steps as in Figure 

I-4. The first step occurs at the value of Q equal to the value of Qc for the smallest 

pipe diameter: The sock with the smallest diameter looses its air first.

Figure I-3
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Figure I-4

Now we return to the case of a single pipe diameter as in Figure I-3.

Let us now indicate the head available, ha = HS - HT as a horizontal line on the 

same graph (Figures I-5ab)

Figure I-5a

The smallest value of Q for which this line crosses the head required curve is the 

maximum flow rate, which the pipeline can deliver. If as in Figure I-5a, the 

horizontal line ha lies above the curve hr for low values of Q, and crosses it only 

once, the situation is simple: the pipeline will accommodate the flow rate of the 

spring from Q = 0 to Q1, the crossing point, and if the spring output is larger than 

Q1 the excess will spill at the spring.
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Figure I-5b

If as in Figure I-5b, the horizontal line ha is lower than hr even at Q = 0, water will 

not flow at all unless enough air is first bled out of the socks so that the curve 

hr falls below ha. If you do bleed the air, you will be able to have a supercritical 

flow up to Q2, provided of course that the spring output is sufficient.

These are only two possible situations used to illustrate the meaning of these 

curves. In Chapter II, you will learn that there are several other cases and that each 

normally leads to a different design. It is helpful to classify these cases. They 

depend mostly on the relative magnitude of the head available ha, of the trickle 

height ht and of the friction head loss when Q=Qs which we call hf1.

Here we run into a difficulty which may have already started to confuse you: Both 

hf and Qs depend on pipe diameter which cannot be chosen before we classify our 

case. So how are we going to proceed? Here it goes!

The ability for a conduit to run supercritically is nearly only a matter of 

average slope.

We have seen that when  the flow is subcritical in the sock regions it cannot get rid 

of the air in the socks whereas when it is supercritical it will. It follows that only 

for subcritical flows, shall we have to relieve the pockets of their air. Now, for a 

flow to run supercritically, it must have at least enough head to overcome friction 

at the critical flow rate. We presently make two simplifications that allow us to 

translate approximately that condition into a very simple one. 

The first simplification is to assume that the conduit has a single diameter over its 

whole length, ignoring for now the control that we gain by choosing a different 

diameter in the socks regions and in the regions where the pipe runs full. That 

option we will use later when we want to slip from one category to another.
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The second simplification is an approximation: the head loss by friction per unit 

length is often expressed as:

hf/L = 0.0826 Q
2
f/d

5
,       (3)

where Q is flow rate in m
3
/sec., d is the inner pipe diameter in meters; hf/L is the 

head loss per unit length (non-dimensional) and (3) defines f as a non dimensional 

friction coefficient whose value depends on Reynolds number and pipe roughness. 

For PVC pipes the roughness is very small and f  varies relatively little over a wide 

range of diameters, and water flow rates. For smooth pipes the approximation 

consists in using an average value for f that we take to be 0.026. Under these 

conditions since 

Qs. = 1.57 d
5/2

we have simply:

hf1/L ≅  0.0053         (4a)

where hf1/L is the minmum head loss incurred per unit length for a supercritical 

flow. In other words, granted our assumptions, if the average pipe slope exceeds 

something like ½ of 1 % and the pipe diameter is chosen (as it must) for pipe 

friction per unit length to balance average pipe slope for maximum flow, the flow 

can run supercritically provided it can reach that flow rate (meaning: provided it is 

not prevented by trickle height losses from reaching critical velocity). On the other 

hand, with 

Qc = 1.19d
5/2

hf2/L = 0.0030    (4b)

where hf2/L is the upper bound of a head loss per unit length which guarantees a 

subcritical flow. Thus, for slopes smaller than 0.003 there is no way under the 

assumptions for the conduction line to run supercritically.

Note that if the flow rate is smaller than that for which friction loss/unit length 

equals average slope, a slope > .0.0053 does not guarantee that a supercritical flow 

can be maintained.

We shall classify a conduction line for which ha/L > 0.0053 as a case A or a

potentially supercritical case and a conduction line for which ha/L < 0.0030 as a 

case B or subcritical conduction line. In the computer program that carries out 

the steps outlined in this manual a more accurate friction calculation is employed 

to classify the conduction line.
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Remarks

1) Since the friction factor is not really fixed as assumed but varies in practice 

for critical flow by perhaps as much as + or - 20%, the boundaries of the 

band between supercritical and subcritical slopes will vary in the same 

proportions.

2) The notion of a subcritical flow rate has physical meaning only when the 

water runs over air pockets. Therefore, by choosing pipe diameters 

judiciously (i.e. large enough) in the sock region and adjusting them 

elsewhere for the desired friction head loss, you can always make sure that 

the flow is subcritical in the sock regions if you so desire. This point is 

taken up in Chapter 2.

3) In the approximate method above for determining the friction head loss at 

critical flow as well as in the more accurate calculation carried out by the

software program, the length of pipe used to get hf2 from hf2/L is that part 

of the pipe upstream of the relevant sock which is running full, the part 

occupied by previous socks contributing to ht but not to hf2.

4) If

0.003 < ha/L < 0.0053

you can test the suitability of operating supercritically by selecting smaller 

diameters downstream of high points (see discussion of case A2, Chapter 

II). But in practice, these marginal cases are best handled subcritically. 



18

Chapter II

A) Required design input:

• The maximum desired conduction line flow rate Qmax  and the minimum 

spring output observed Qmin, if available.

• HS and HT as well as the relative elevation and distance from the spring 

along the ground of all local low points and high points, (A,B, C’,D,E’

….etc, T).  In addition, enough points along the proposed conduction line 

to be able to define with satisfactory accuracy the height of any point as a 

function of its distance along the line.

• When the survey is carried out, it is useful to mark the high points with a 

stake. It also proves useful to survey a few points near the high point, so as 

to determine how far from it on either side the ground slope reaches, say 1 

degree. This will avoid misjudging the location of the high points which can 

be a serious mistake. Horizontal coordinates (North-South and East West) 

are not directly used in the design but are nevertheless frequently useful 

also.

B) You have a choice:

You may proceed as indicated below or you may use the APLV Air in Pipes

(version 4.0e) software program which will perform all these steps for you. 

However we advise you to examine carefully the content of this manual failing 

which you won’t understand the logic of the solutions proposed. A test of your 

understanding is to carry out a few of the simpler designs by hand and to compare 

them with the software program answers.

C) Design:

This is the design that allows the system to deliver automatically to the tank a 

variable spring flow rate. It avoids trouble with air in the course of the system 

operation. Such a design in one of its several versions is always possible if the 

spring tank is higher than any other point of the pipeline. For the same topography 

and flow rates, more than one solution may be possible. In that case cost and for 

instance, the availability of automatic air-purging valves should inform the choice.

Can you avoid the Problem?

A) If there is no intermediate high point there will be no air blockage and 

whatever the flow rate out of the spring, you may proceed as if the pipe were

always full.

In this case, you should use Qmax as Q, LST as L and ha as hf  in the friction tables A1.

But mind the execution! Watch out for flat areas where laying the pipes carelessly 

might result in a slight high point which could yield entirely different results (see 

example 5b, chapter III). 
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B) There are intermediate high points.

If the vented point T is lower than a local high upstream, you can eliminate the 

sock downstream of this high if you wish by venting the pipe there with a small 

break-pressure tank. This has the effect of moving the point S to that high point. 

However, this solution may turn out to be more expensive than alternative ones so 

do not stop there. Note also that a break-pressure tank or a vented T are not 

equivalent to an automatic air valve: The first two impose atmospheric pressure at 

all times whereas in the air valve, water communicates with the atmosphere only 

when it is located at the head of an air sock.

If not: the next step are these:

a) Calculate the head available, ha, from

ha = HS – HT

b) Calculate the trickle height, ht (for supercritical flows):

The trickle height ht is the largest head loss due to the greatest possible amount of 

air trapped in a pipe line when the flow rate just reaches the critical flow rate Qc. In

general, this is not precisely (somewhat larger than) the head you have to overcome 

to start the water flowing with the pipe full of air because when the flow rate is Qc,

the friction in the full parts of the pipe line tends to decrease the pressure in the

socks so that they expand somewhat. But it is the head loss of importance for our 

designs. The procedure calculates the vertical extent of each sock and then adds 

them up. 
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Figure II-1

Draw the pipeline to scale. The only convenient way is to use length along the pipe 

for your horizontal scale and to exaggerate your vertical scale. Choose a level 

datum and record the heights of all points such as S,T, A.B,C' etc...with respect to 

the datum. Record the distance along the pipeline of all these points. Call LSB the 

length of the section between S and B, etc...

In determining the trickle height, assume:

• that the initial volume of air is that contained in sections such as BC', DE', 

etc...(as when you start with dry pipe). This a conservative assumption but 

the only absolutely safe one. 

• that all the available head may be used to calculate the pressure within the 

socks ( this means that the reach from S to B is full).

Step 1. Record the quantities: (HB - HC') ; (HD - HE')...etc. and the length that 

go with these points: l1' = LBC'; l2' = LDE'...etc.

Step 2. Calculate the maximum head h1 in the first air sock. This is often almost 

h1 = (HS - HB) - 0.0053LSB.
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Note that this formula assumes that the friction is experienced at the critical flow 

rate. If the flow is supercritical that is the relevant friction for the pipe flow to 

overcome but if the flow is subcritical, this assumption will underestimate the 

pressure h1. We will see later  that this inaccuracy has no consequence. 

Step 3. Calculate the change in volume of the air sock due to the compression by 

the head h1. The calculation assumes that the temperature of the air is the same 

before and (eventually) after the compression (See Appendix B 1). The ratio of the 

volume v1 after compression to v1' before compression is

v1/v1' =  10.4/ (10.4 + h1)

where h1 is expressed in meters.

We will assume that the pipe diameter does not change between B and C' So the 

length of the sock is reduced in the same ratio:

l1 =10.4 l1' / (10.4 + h1)

Knowing l1, you can lay out the segment BC along the pipe (along the horizontal 

in your scale drawing) and find the height of the point C on the profile. 

Step 4.  The head at C is the same as the head at B = h1. The head in the next 

pocket (between D and E) is:

h2 = h1 + (HC - HD) - .0055 LCD

If h2 is a positive number proceed to step 5.

If h2 is negative: Step 4a.

It may happen that h2, (and/or h3, h4 etc…) is a negative number, (a pressure less 

than atmospheric). In this case, you should stop your calculation of the trickle 

height: you have to modify your system because it could cavitate, which means 

generate water vapor at these low-pressure points which would result in a failure 

of your gravity delivery. In any case, we systematically avoid negative pressures. 

The remedy is:

• either to place an automatic air valve “at” (see appendix AIII for proper 

automatic valve location) one or more of the previous high points; 

• or if the high point in question is higher than the tank, to provide break 

pressure tanks there.
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In the first case (automatic air valves = AAV), you will recalculate the pressures by 

assuming that there are no socks between the AAV and the following low points 

(e.g. if h2 were negative before placing the AAV at B, afterwards,  the pressure at 

D would be simply HS - HD).

In the second case (break pressure tanks = BPT), you will start from each BPT as 

though it were the source. For instance, if pressure h2 was negative before placing 

a BPT at B, afterwards, h2 would be HB - HD .

Step 5. The length of the second sock is found in the same way as that of the first:

LDE = LDE' {10.4/ (10.4 + h2)}

The height HE of the point E at the end of that length is again found by laying the 

segment LDE from D horizontally on your scale drawing of your profile.

Step 6. If you had more socks , you would repeat the procedure used for the 

second sock for these. 

Step 7. Collect and add together the vertical extent of the socks. This is the trickle 

height:

ht =  { HB - HC + {HD - HE} + ...etc.

Step 8. Record not only ht but also the number of AAV and/ or BPT that you have 

had to use. These are an inherent parts of your design.

Notes:

• Negative pressure at one high point may be unavoidable in unusually 

difficult terrain, but the occurrence of several such points usually

means a poorly chosen trench profile. You probably should revisit it. 

See Appendix B9 for tips about judicious choices. 

• To draw a hydraulic grade line with a sock, see Appendix A-II.

C) You have calculated ha and ht. You can now evaluate hf1 approximately

as:

hf = .0053  {LST - LBC - LDE - etc….}

You can now classify your case provisionally:

• If ha/L > .0053 you have a case A (or potentially supercritical case).

• If ha/L < .0030 you have a case B (or sub-critical case).



23

• If  0.003 < ha/L < 0.0053, you have an intermediate case that can always be 

transformed into a case B but that may also sometimes be transformed into 

a case A: See discussion of A2, below.

You can further subdivide case A as follows:

If ha > (ht + hf1), you are dealing with a case A1.

Figure II-2:  Case A1
Case A1 

For this category, the head available is sufficient to overcome the sum of the 

friction at critical flow rate and of the maximum possible trickle height so the flow 

is able to accelerate into supercritical territory where the head loss due to trickle 

height disappears. For type A1 flows, you need to do nothing further to deal with 

air, no matter how many high points without valves you encounter. Your design 

then consists in the following:

Find the combination of pipe diameters and lengths that will give you a total 

friction head loss hf = ha at your maximum desired flow rate. This is done as 

follows:

In the relatively rare cases when in the course of your trickle height calculation you 

have been forced to provide automatic air valves to prevent negative pressures, 

you should equip the section in the immediate neighborhood of the valve with a 

pipe section sufficient, i.e.:

d > 0.933Qmax
2/5

to insure subcritical flow rate at the valve, (see appendix AIII for details).This is 

judged necessary to ensure that the automatic valve does not open and close abruptly

and continuously with the rapid passage of air pockets past it. You will then calculate 
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the head lost over that section of subcritical flow with the help of the tables or the 

equations provided in Appendix A. 

Over the whole length (from the high point to the following low point) of the 

remaining socks (those that have not been provided with automatic air valves), you 

will choose pipe diameters from among those available to you, such that 

d < 0.835Qmax
2/5

This diameter, according to  (II-1) will be small enough to maintain supercritical 

flow. You then calculate the head loss due to those sections at maximum flow rate. 

Finally, you determine from the tables the diameter of the remaining length of pipe, 

using as hf , ha – (the sum of the two head losses determined above). The relevant 

flow rate is of course Qmax..

You may ask why it is that the unvented sock areas were treated separately from 

the rest of the pipe since our classification told us the flow was supercritical over 

the whole line. This comes from the fact that only finite diameters are available to 

you so that you may have to split the length of the pipe into segments of two 

different diameters. When the case is only slightly supercritical, it may happen that 

the larger diameter flow rate is subcritical. That diameter should then be reserved 

for the part of the pipe that runs full.

In this case A1, the flow rate through the conduction line will be equal to the 

output of the spring, whatever that is, up to the flow rate you have chosen as a 

maximum.  In other words, in Case A1, you need not to worry about air in the 

pipeline either as you start by filling them or during later operations no matter 

how much the output of the spring varies.
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Case A2:  hf1 < ha <  (hf1 + ht). In this case (Figure II-3): if you manage to reach 

supercritical flow, you will be able to get rid of the air pockets but:

You may well accumulate enough air to prevent you from accelerating to 

supercritical flow.

Also, remember that in the dry season, the spring output may limit you to a 

subcritical flow rate in which case an unknown amount of air will stay in the pipes, 

quite possibly enough to prevent any flow.

You then have the choice of two types of solutions:

1. If you know without question that the flow rate of the spring never falls below 

a given value, Qmin,  you can provide along possible air pockets a pipe diameter 

sufficiently small for the flow through these sections to be supercritical at 

Qmin. You will also have to provide manual valves at high points to bleed air 

when you start the system in order to reach supercritical velocities. The 

supercritical pipe diameter needs to be used all the way from the high points 

down to the next low points. You then need to calculate the head lost through 

these supercritical sections at Qmax. You may find that this head loss is already 

larger than the head available. If this is the case, the solution is not satisfactory. 

If the head loss through the supercritical section at Qmax is less than the head 

available, the difference is the head available for friction loss through the rest 

of the pipe whose diameter you calculate accordingly. 

2. Alternatively you  may provide enough automatic air valves (together with 

subcritical sections in their neighborhood) to lower the trickle height ht enough 

so that ha > hf1. In effect, you reduce the case A2 to a case A1. You may have 

to experiment a bit with your choice of which high points should get the air

valves so as to effect a sufficient trickle height reduction with the minimum 

number of air valves.
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Figure II-3: Case A2

Case B: ha < hf1

Figure II-4. A case B with some flow without air valves

For cases B, head loss from pipe friction alone at critical velocity exceeds the 

available head. In this case, without air valves, some initial flow may or may not 

occur depending on the value of ht but the solution is the same in either case. Case 

B is one for which one has to accept to operate subcritically. Since air pockets 

cannot be chased out, each air pocket translates into a head loss which in turns

means either a completely blocked flow or at least the need to use larger pipe 
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diameters to compensate for these losses. It is, thus, almost always advisable in 

case B to provide an automatic air valve at every high point. The pipe sections are 

chosen so that the head loss by friction at Qmax = the head available. Whenever 

Qmax is only slightly subcritial, it is important to  ensure that the sections

straddling the high points enforce subcritical flow.

Figure II-5 : Another version of case B:

There is no flow without air valves.
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CHAPTER III

EXAMPLES

The examples which follow have been chosen to illustrate various aspects of 

the material just presented. Examples requiring longer computations are 

given in the Guide to the Air-In Pipes software program.

Note: In these examples, for simplicity the full topography of the conduction line is 

not given. Thus, the elevation of the lower end of an air pocket whose length has 

been reduced by compression by a given amount is assumed rather than calculated 

as in the software program.

Example 1

Figure III-1a

LST = 1700m LSB = 480m LBC' = 475m

HS = 31m HA = 18m HB = 20m HC' = 0 HT = 6m

Qmax = 0.3 lit. /sec.

Therefore:

 Ha = HS – HT = 25m. HSB = 11m.

There is one local high point at B and so there will be one sock with a trickle 

height. This high point is higher than the next vented point (Tank T) so that you 

could if you wished, eliminate the sock by designing a break-pressure tanklet at B. 

You should always check for this possibility. But in this example, it will turn out 

that there is no advantage in using it.
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Calculate the trickle height. When the pipe upstream of B is full up to S, the static 

head at B is HS – HB = 11m. Therefore, 

h1 = HS – HB - .0053LSB = 11 -.0053(480) = 8.46.

As a result,  the volume of the sock after compression is 

10.4/(10.4 + 8.46) = 0.551

times the volume before compression. If the pipe diameter is uniform along the 

sock, the length of the sock after compression will also be 0.551 times what it was 

originally. Assume that after you measure off the length LBC= 0.551( LBC')=

262m (downstream of B), you find on the pipe profile that the height HC = 11m. 

Then:

ht = HB – HC = 9m. 

Note that ha is larger than ht so that water will flow when you first fill the pipe.

Next calculate hf1 + ht approximately:

hf1 = 0.0053(The length of the part of the pipe that is filled) =

 0.0053(1700 - 262) = 7.62 

so that

 hf1 + ht = 7.62 + 9 = 16.62m.

 So ha = 25 = is larger than hf1 + ht = 16.62. This is CaseA1. (Figure III-1b)

In this case, we use Table 1A to determine d after having determined hf/L. We 

calculate the hf/L = (ha/LST) where ha = 25m, and L = LST = 1700:

hf/L = 25/1700 = 0.0147

We enter this value and our maximum flow rate = 0.30 lit./sec. in the table. We 

find that for a diameter of 1", and Q = 0.30 lit./sec., hf/L = 0.0091, (less than the 

friction we can afford) but for d = 3/4" and Q = 0.30 lit./sec, hf/L = 0.124 (much 

more than what we can afford). We could choose D = 1" and check that this will 

allow us to get almost 0.40 lit./sec. if it turns out that the spring output is that 

high.

Alternatively (a better practice) we can use a combination of 3/4" and 1" pipe 

lengths to get the system to limit the flow rate to be exactly the maximum flow rate 

that we were given. You proceed as indicated in Appendix A-IV:
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With Ll = length of 1" pipe and Ls = length of 3/4" pipe in the formula of the 

appendix, and (hf/L)s = 0.124 (the value for d = 3/4" and Q = 0.30 lit./sec, taken 

from the table) while (hf/L)l = 0.00909 (the value for d = 1" and the same Q):

L1" = {(0.124 x 1700) - 25}/{0.124 - 0.00909} = 1617m

L3/4" = 1700m - 1617m = 83m.

Now we check our calculation by finding the total head loss for maximum flow 

which should match the head available: 

hf = (83m x  0.124) + (1617m x 0.00909) = 24.99m 

which matches our ha = 25m.The 83m of smaller pipe diameter is best placed 

downstream of C' to keep the hydraulic grade line sufficiently high up to point B.

To summarize:

The system is now designed so that it will deliver without fail any amount of water 

supplied by the spring up to a maximum of 0.30 lit./sec. It is not necessary either 

to provide an automatic air valve at B or to bleed the pipes of air as you start the 

water going in the empty pipes.
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Example 2

The profile is given below.

 Figure III-2

The data are:

HS = 121m HT = 93  HA = 85m HB = 91m HC' = 0

HD = 89m HE' = 21m LST = 1150m    LSB = 150m 

LC'D = 265m LBC' = 383m  LDE' = 241m

Qmin = 0.13 lit./sec Qmax = 0.260 lit./s

From which we calculate:

 Ha = HS – HT = 28m HBC' = 91m HDE' = 68m

We first note that there are two local high points and that we cannot eliminate 

either one of them with a venting (break pressure) tanklet since they are both 

lower than T. We proceed to calculate the trickle height ht. For the sock between 

B and C' the head at B is 

h1 = HS – HB - (.0053 x 150m) = 29.21m

Therefore, according to Appendix A-2.

LBC / LBC' = 10.4/{10.4 + 29.21} = 0.263
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so that LBC = 383 x .263 = 100.7m. On the profile, the point 100.7m downstream 

of B is found to be at a height HC = 67m so that HBC = 91 - 67 = 24m.

We will now need LCD:

LCD = LCC' + LC'D = LBC' – LBC + LC'D = 383 - 100.7 + 265 = 547m

We now calculate the head a the next high point D.

 h2 = h1 + HC – HD - .0053LCD = 29.1 + 67-89 - (.0053 x 547) = 4.2m

 So the volume compression ratio in the second sock is:

vDE/vDE' = LDE/LDE' = 10.4/{10.4 + 4.2} = 0.712

Therefore,

LDE = 241 x 0.712 = 172m. 

On the profile, the point 174m downstream of D is found at a height HE = 30m so 

that HDE = 38m. The trickle height is therefore 

ht = HBC + HDE = 24 + 38 = 62m

We note that:

 ha = 28 while ht = 62

so that:

hf < ha < ht + ha

Our case here is therefore a Case A2 (See figure III-2b above).

We, therefore, assess the relative merits of the two solutions described in Chapter 

II.

a) The supercritical solution

 We first select the pipe diameter to be located between the high points and the 

following low points  so that Qmin will remain supercritical there. From  equation 

2b, we find that a 3/4" pipe has a critical flow rate Qc = 0.127 lit./s, slightly less 

than our Qmin and therefore (if we trust our Qmin), suitable in principle. We then

evaluate the head loss at Qmax through the required pipe sections. Their total length 

is:

LBC’ + LDE’ = 383m + 241m = 624m

And with d = 0.0231m and Qmax = 0.260 l/sec, from the Tables of Appendix 1, 

approximately  hf/L = .025 (more precisely .0.0251). So the head loss in the 

imposed supercritical sections is:

0.025 x 624m = 15.6m
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This leaves us: ha - 15.6 = 28 - 15.6 = 12.4m of head loss for the rest of the line 

whose length is LST – 624 = 1150m – 624 = 526m. The allowed head loss /m is 

then :

12.4/526 = .0236

which, as we have just seen is slightly less than that of a ¾” pipe at Qmax. We then 

use Appendix A-III (equations A-4 & A5) to find the right combination of lengths 

of pipes of  ¾” and 1” over the 526m of length to get precisely 12.4 m of head loss

at Qmax. At Qmax =  0.260 l/sec, hf//L = 0.025 for d = .0231 and hf/L = 0.0070. 

Therefore,

L1” = {526(.025) - 12.4}/(0.025 - .0070) =  41.7m

L3/4” = 526 - 41.7 = 484.3m

As a matter of routine,  the larger 1” section should be located early- immediately

downstream of the spring.

Critique:  This  is a good solution provided:

• You don’t forget to place manual valves at the two high points to drain 

the air when you initiate the flow.

• You are absolutely sure that Qmin will not fall below your estimate.

b) The conversion to a case A1 by means of a single automatic valve.

It is not immediately clear whether we should place it at the first or at the second 

high point. Say we start with the first:

The pressure at D is

{Hs - Hd - .0053 (150 + 383 + 265} = 27.8m

so that 

LDE/LDE’ = 10.4/(10.4 + 27.8) = 0.27 and LDE = 65m

On the pipe profile, this puts the point E, say, 13.6m below D. This is then the new 

trickle height ht.. We note that ht < ha so that we have successfully converted to a 

case A1. 

We also note that if we had placed the automatic valve at the second high point D, 

the trickle height would have been (from previously) 24m, which would have 

permitted the conversion to case A1, but less comfortably so- hence we would 

choose to place the valve at B.

In case you are not sure what your Qmi. is,  solution b) should be adopted.
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Example 3: What if you don’t worry about air?

The profile is sketched on figure III-3a.  The geometric data is:

Figure III-3

Hs = 48m    HC' = 0     HA = 36m HB = 38m HT = 41m;   LST = 1100m

LSB = 145m LBC' = 267m

The available and desired flow rate is estimated as 15 lit./min.

Here we first ignore what we have learned above and design without paying 

attention to the possibility of air trouble.

Standard Friction Design. The available head, ha is:

 ha = HS – HT = 48 – 41 = 7m

We calculate the average slope, ha/L:

ha/L = 7/1100 = 0.00636

This is very close to the friction slope for the desired flow rate ( 0.25 l/sec.) for a 

1" PVC pipe, SDR 26 (see Table A1 or carry out the calculations in Appendix A 

for a pipe with diameter = 0.0300m). If we use a 1" pipe from S to T and if the 
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pipe is full of water, we should be able to get the flow rate that we desire. 

Furthermore the maximum pressure head is about 43m (well within the rating of 

SDR 26) and there is no negative pressure anywhere so a single diameter pipe 

seems appropriate.

How well will it work?  Now, we worry about starting the system and about what 

happens if the output of the spring falls below 15 l/min.

We note first from the profile (only one local maximum), that only one air sock is 

possible. We notice also that we cannot use a simple break-pressure tank at B, 

since B is lower than T. We calculate the trickle height ht, i.e. the height of the air 

sock, when the water in the pipe backs up to the level of S. In this case, the 

pressure head at B is 

h1 = HS – HB - .0053LSB = 9.23m

So

LBC'/LBC = 10.4/{10.4 + 9.2} = .531

Then,

LBC = 267 (0.531) =142m and LSC = 145 + 142 = 387m

Here, on the scale drawing of the pipe, measure off the distance BC of the sock 

once compressed and read the height of point C. Suppose that this gives HC=19m

so that 

ht = HB – HC = 38 – 19 = 19m

This is a large potential trickle height since ha is only 7m. And this raises two 

problems:

Starting: Now, since ht is larger than ha, you will probably have to bleed the air 

out of the sock before any water will flow out at T. You can do that with a T or a 

valve just downstream of B. If you bleed all the air out, the system will deliver the 

design flow rate as long as it is provided by the spring.

Sustained Operation:  Now, suppose that the spring output decreases during the 

dry season. In other words, suppose for instance that it is or becomes only 13.5 

lit./min. (or less). This is a very small decrease- 90% of the estimated flow rate. 

However, this amount is also less than the critical flow rate, Qs for this size of pipe 

since Qs = 14.7 l/min. for a 1" pipe (see Table A3, Appendix A). With a spring 

flow rate less than both the critical flow rate and the flow rate that your chosen 

pipe friction calls for, air in the form of small or medium size bubbles will travel 

from the spring exit downstream and keep accumulating in the sock. This is 

serious. For instance, by the time the sock height is 1/3 of its maximum height, you 

would only have 0.65m of head left to overcome pipe friction which would reduce 

your flow to 0.018 lit./s =1 lit/min. instead of 15. In fact, if the decrease in the 

spring output occurs fairly rapidly, enough air will accumulate in the sock to block 

the flow completely.
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Cure (Standard):You may install a float-type air purging valve downstream of B. 

In general this is not a good idea for flow rates which are supercritical, as 

explained in Chapter II because these flows tend to cause the valve mechanism to 

turn on and off rapidly and all the time- a source of wear. A better idea is to:

Follow the procedure recommended in this manual!

The first step since we have calculated ht is to classify this case. Following the 

procedure outlined in Chapter II and used in the first example we calculate hf1:

hf1 = 0.0053 (1100 - 142) = 5.1m

so that

hf1 < ha < hf1 + ht

We recognize that this is a Case A2 although very close to a case B (see Figure 

III-3). The figure makes it clear that, as we have already found out, a very small 

decrease in flow rate out of the spring leads to the possibility of an air sock. 

Besides, we have not been given a minimum flow rate out of the spring so that we 

cannot follow the option offered in Chapter II for this case which suggests that 

you set Qc< Qmin.. We don't even know the value of Qmax.! This is life! We do 

our best:

 As explained in the section n Chapter II dealing with a case A2, we could choose 

a section guaranteeing supercritical flow in the sock region for a flow rate lower 

than the prescribed 1 l/ min. We already know that a 1” section does not leave us

enough margin. A ¾” (SDR17 or d = .0231) section would according to equation

impose supercritical flow down to:

Q = 1.57 * 0.0231
2.5

= 1.27E - 4m
3
/sec = 7.6l/min.

Or roughly half the desired flow rate. We don’t know whether that is adequate, 

since we have no knowledge of minimum flow. If you judge this safe,  (i.e. if you 

are sure- but don’t ask me how -the flow rate won’t fall below that value), you 

proceed as follows:

You reserve the ¾” section between B an C’ (note: not C) ,i.e. for 267m. 

This consumes  at the desired flow rate of 0.25  l/sec (see Table A1)

0.0229 x 267 = 6.11m. That only leaves 

Ha - 6.11 = 7 - 6.11 = 0.89m of head

for the remaining 1100m - 267m = 833m.So for that section

hf/L = .89/833 = 0.00107

which according to the table, is almost exactly accommodated by a 1.5” pipe.
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To summarize:

1100m of 1" pipe have approximately the same friction at 15 lit./s. 269m of 3/4" 

and 831m of 1.5" pipe so that the new combination will give the same flow rate 

when the pipe is full as the original design. But the new design will not get into air 

trouble until the flow rate has fallen below 51% of the expected flow rate provided 

the smaller pipe is positioned where the air socks might form.

You would still need to bleed the pipe as you fill it initially, of course, and for this, 

you could use a simple T which you could cap after the start. The 1.5 " section, 

you would locate anywhere except between B and C'.

The additional cost of the modification is substantial.

Alternate (and preferred) solution 

In this particular case (no knowledge of minimum flow), it is safer to use an 

automatic valve at the high point and to force subcritical flow at the beginning of

the sock section. For the maximum flow = 15l/min = 0.25l/sec, Equation 2a gives:

d > (Q/1,19)
2/5

= 0.0338m.

So that a 1  1/4” pipe (SDR 32.5, d = .0391) would be adequate. It would be 

placed somewhat earlier than the high point and would trail the automatic valve by 

a short distance. The automatic valve would be placed sufficiently downstream of 

the high point to be sure that a mistake in the location of this high point would not 

place the valve upstream of that point (which would render the valve useless).

Recommendations for putting these precautions into effect are found in Appendix 

A-III.

 Let us assume that following them the length of the 1&1/4” section is found to be 

70 meters. The head lost through that section at maximum flow rate is then, 

(equation A2a):

hf = 70 (7.76E
-4

 ) (2.5E-4)
7/4

/.0391
19/4

= 0.13m

The remaining head available for the rest of the pipe (1100 – 70 = 1030m) is 7 -

0.13 = 6.87m or hf/L = .00667 which is almost exactly the head loss of a 1” pipe, 

SDR26.

This solution  is not only safer but also cheaper (no need for  a lot of 1.5” pipe) but 

it requires an automatic air valve.

Example 4

 This example is adapted from a case near Quolga Khoya, in the Cochabamba 

region of Bolivia. A community of 16 families has access to water for washing  and 

cattle from a canal but this is not suitable for drinking. About 1 km away from the 

village and 4m above a possible distribution tank is a small spring through broken 
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rock on a steep slope. An unlined earth canal with a very small slope used to bring 

the water to the village (presumably when it was more abundant). The campesinos

have now dug the canal deeper and intend to place a PVC pipe at the bottom of 

the trench and bury it to protect the small water supply and prevent seepage losses.

The spring output is about 1.5 lit./min. Will the system work?

This example illustrates one important practical consideration in the construction 

of gravity flow systems: It is easy to introduce unintentionally local high points 

which create unexpected trickle height losses. This is a particular danger when the 

desired profile is almost horizontal at sections where the head is small.  In this 

case, the high points may even be accidentally higher than the spring level.

For the present case, we first calculate the friction head required. Even with the 

smallest easily available PVC pipe diameter d = 1/2", this friction loss is small.

For this very small flow rate, Table A1 gives approximately for d = 0.0173m, hf/L

= 0.0016 or hf = 1.6m, so that the available head, 4m, is more than adequate for 

the friction head loss. But even for d = 1/2", the flow will always be subcritical 

(see table A-3). Since the trench follows a canal, there are no intended local high 

points in the profile. But normally as the workers lay and bury the pipe at the 

bottom, it will not be perfectly flat. This is particularly true of polyethylene pipes 

which are manufactured in rolls. But even with PVC, the pipe can be expected to 

go up and down an inch or two several times for each pipe section. Each one of 

these rises, if they exceed the inner pipe diameter (1/2 ") will cause a small trickle 

height and if the cumulative total of these small head losses exceed 4m, there can 

be no flow at all through the pipe. The remedy is time-consuming because the

workers need to insure that everywhere the pipe as laid has a downstream slope. 

This needs to be done with a carpenter's level or by trying the pipeline before the 

trench is filled. Also, the trench filling needs to be done with great care.

Example 5 

Similarly in the actual construction of the system, small deviation from an intended 

profile can occasionally cause serious problems. Consider the following intended 

(III-5a) and actual (III-5b) profiles inspired by a case near Rio-Blanco, Nicaragua: 
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Figure III-5

HS – HT = 6m;       HS – HB = 7m;        HB - HC' = 70m;        HB – HA = 0.30m.

 L = 600m. Q between 8 and 18 l/min. 

In the design, there is no trickle height at all and the pipe diameter has been chosen 

on the basis of friction losses. The available head allows a hf/L = 6/600 = 0.01 For 

a maximum flow rate of 18 lit./min. = 0.3lit./s., a 1" pipe (SDR 26) has a hf/L = 

0.0091. It is, therefore, suitable and if the construction conforms to figure III-5a,

all is well. But if the profile turns out to be as in figure III-5b (a very minor change 

in height), there is a considerable trickle height whose maximum value needs to be 

computed for a specified profile between B and C' but which is likely to be about 

40 meters- much more than the available head. With this trickle height, you can 

expect complete blocking, a situation which clearly needs to be avoided. In this 

case, it is far better to get rid of the low point at A than to add a float-type air 

valve beyond B because the system operates supercritically a good deal of the time 

( Qs = 14.7). Anyway, always strive for the simplest installation, the one which 

requires the fewest number of moving parts.

Example 6 

HS = 40m      HA = 21m      HC' = 0  HT = 20m HB = 26m

LST = 4700m LSB = 200m LBC' = 786m

Qmin = 0.10 lit./s.      Qmax = 0.217 lit./s.
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Figure III-6

This is an example for which there are three possible solutions. But one of them, 

which involves allowing for an unknown amont of air in a case B is not 

recommended and will ot be retained.

Solution 1: There is one high point (one possible sock) at B. Since B is higher 

than the tank at T, we can get rid of the sock problem by placing a break-pressure

tanklet there. Then, we can accommodate any flow up to the maximum by 

equating the head available between S and B to the friction head loss between 

these two points at Qmax and doing the same for the section BT.

For SB, the head available is HS – HB = 14m and the length is LSB = 200m. So, 

the maximum friction loss ratio hf/L = 14/200 = 0.070. Table A1 gives hf/L (by 

interpolation) = 0.07 for Q = 0.217l/sec. and d = 1/2". We shall, therefore, use 

1/2" pipe for this first section.

For the section BT, LBT = 4700m - 200m = 4500m. and HB – HT = 6m so the 

maximum friction ratio allowed for this segment is 6m/4500m = 0.00133.  We 

should therefore plan for a case B. According to Table A1 (again by interpolation) 

for a Q = 0.217, a 1" pipe has a hf/L = 0.0051 and a 1.5" pipe has a hf/L = 

0.000812. So, we need a mix of these two diameters. Turning to Section A3, we 

find that :

Ld = 1.5" = Ll = {(0.0051 (4500) – 6}/(0.0051 - 0.000812) = 3950m

Ld = 1" = Ls = 4500m – 3950 = 550m
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Check: {0 .000812 (3950 ) + (0 .0051) 550 } = 6.001m

Summary solution 1): From T to B 200m of 1/2" pipe. From B to T first 

3950mm of 1.5” pipe, then 550 m of 1" pipe. A break pressure unit at B. 

The second solution:

Without a break-pressure unit at B, we have to allow for a sock after B.

- Calculate ht:

h1 = HS – HB - .0053LSB = 14 - (.0053 x 200) = 12.9m

 LBC/LBC' = 10.4/(10.4 + 12.9) = 0.446 

So,  LBC = 0.446 x 786m = 350m. On your profile of the pipeline, you find that 

the height of point C is 14.9m so that ht = 11.1m., ha = HS – HT = 20m and from 

equation A-4:

hf1 = 0.0053 x (4700 - 350) = 23.05m

From this, we get:

ha/ht = 1.80 hf1/ht = 2.08

So ha is smaller than hf1. This is a Case B (Figure III-6b: The slope is insufficient 

to allow supercritical flow). It is true that even with the maximum possible air 

losses, some water will flow (ha > ht and therefore, ha > head loss for smaller flow 

rates) but it is a bad idea to design your system without getting rid of the air for 

two reasons:

1) Since you don’t know how much air the system will have at any particular 

time, you cannot design a known cap on Qmax.

2) To make up for the trickle height loss, you would have to use larger pipe 

sections with a larger pipe cost.

So, unless you have no access to automatic air valves, you will place one 

“at” B and design for a simple friction with Qmax.

The friction ratio or slope is hf/L = ha/LST = 20/4700 = 0.00426. At Qmax =

0.217 l/sec., as we have just seen, hf/L is .0051 for a 1" pipe and it is 0.000812 for 

a 1.5”" pipe. The proper combination of these is, following Section A3, 

Ll = L1.5" = {(0.0051 x 4700) - 20}/(0.0051 - 0.000812) = 926m

Ls = L1" = 4700 – 926 = 3774m

Check: (3774 x .00510) + (926 x 0.000812) = 19.99m

Summary of Solution 2: With a air-bleeding float valve “at” B, the right 

maximum flow rate is achieved with 926m of 1.5" pipe and 3774m of 1" pipe. The 

order in which these diameters are chosen is not important in this particular case 

because the hydraulic grade line will remain above the pipe profile for any order. 

But one normally uses the larger section pipes upstream..
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The results for the two solutions are summarized below:

diameter solution 1 solution 2

1/2' 200m 0

1" 550m 3774m

1.5" 3950m 926m

Device Break-pressure

tank
Air-bleed

valve

From this table, it appears that solution 2 would be the cheapest: lower pipe cost

and the automatic air-bleeding valve installation is generally cheaper than a break 

pressure tank. But it requires a device with moving parts. 

Example 7:   For our final example, we use the same profile as for example 6 but 

we raise the height of the end tank T to 31m. This only changes ha.. Qmax = 0.15

l /sec.. We have:

ha = 9m.    ht = 12.9m hf1 = 24.71m

Note that T is higher than B now so that solution 1 of the previous example cannot 

be used. ha is smaller than ht and also smaller than hf1. This is also a case B, only 

different from the previous one by the possibility  that without an automatic air 

bleeding valve, no flow at all will result (Figure III-7). This means that we have to 

use an air bleeding float-valve at B and that we evaluate:

hf/L = ha/LST. = 9/4700 = 0.00191

For Q = Qmax = 0.15 l/sec. Table A1 gives us: 

hf/L = 0.00270 for d = 1" and hf/L = .0042 for d = 1.5"

So, according to Section A3:

L1.5" = Ll = {(0.00270 x 47000) - 9}/ (0.00270 - 0.00042) = 1618m

L1" = Ls = 4700 – 1618 = 3082m

Check: 1618 ( 0.00042)  + 3082 (0.00270) = 9m
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Figure III-7
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APPENDIX A

A-1: SUMMARY OF FORMULAS AND TABLES FOR CONVENTIONAL

( FULL PIPE) HYDRAULIC CALCULATIONS IN PIPES.

These apply if there are no stationary air socks. Stationary air socks will not occur 

if:

- There is no unvented local maximum in the pipeline profile.

- Or the pipe runs full.

- Or the pipe runs with a flow rate Q greater than the critical flow rate 

Qc.

One exception: If the hydraulic grade line is locally sufficiently below the pipe line 

elevation to cause cavitations (8 to 9 meters), there will be not air but water vapor 

there and also a great deal of shocks and knocks caused by the collapse and 

reforming of vapor bubbles. This will damage the pipe and should be avoided.

The basic equation for a single pipe (without branching) between an upstream 

point 1 and a downstream point 2 is:

.0826Q2/d1
4 + h1 + H1 =  0.0826Q2/d2

4 + h2 + H2 + hf12(A1)

In this equation, h is the pressure head in units of meters (the pressure head is the 

pressure above atmospheric pressure divided by the weight of a m3 of water); H is 

the height of the pipe line at any point (with respect to any fixed datum) and hf12

is the friction head loss between any two points 1 and 2.

A hydraulic grade line (HGL) is a line which plots the height of the sum (h + H) as 

a function of position along the pipe. One usually plots also the height H of the 

pipeline on the same graph. In principle, there should be one more line, the Energy 

line whose height represents the sum of all three terms in the equation. But for 

drinking water designs, the first term on the left of either side of the equation is 

quite small compared to the others so that the hydraulic grade line and the energy 

line are almost the same. This is because the recommended velocity in drinking 

water systems does not exceed 3m/s. This gives a maximum difference in levels 

between the energy and hydraulic grade line of less than 50 cms. For pipelines 

leading to pumps and turbines, this is far from true and the energy line should 

always be shown.

Since the height of the hydraulic grade line is (H + h), while the height of the pipe 

is H, the vertical spacing between the hydraulic grade line and the pipe height is the 
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pressure head h. If the HGL falls below the pipeline height, the pressure head is 

negative (i.e. less than atmospheric ). 

Wherever the pipe is vented (spring, break pressure tank, distribution tank, valve 

opened to the atmosphere), the HGL and the pipe profile have the same height.

In the absence of a pump, the energy line and so also the HGL in our case, always 

decrease downstream because hf is always a loss of head.

Friction Losses: The equation you can use, instead of TableA1 to calculate hf or

to determine the hydraulic grade line, given d & Q and in the absence of air socks 

is due to Blasius1. It is: 

hf /L = 7.76 x 10-4 Q 7/4 / d19/4 (A2a)

where he units of Q are m
3
/sec and those of d are meters.

If you know Q and ha instead, you get d from:

d = 0.222 Q7/19( hf/L)-4/19 (A2b)

And if you know ha and d, you can get Q from:

Q = 59.9 (hf/L)4/7d19/7 (A2c)

Equation (A2a) was used to calculate hf/L in the tables A1 which are found on the 

next pages.

Equations 3 and 4 of Chapter II, the approximate equations used to classify your 

cases are reproduced here for convenience:

hf/ht = 0.0053 Q*2 (L/ht) (A3)

hf1/ht = 0.00568 L/ht (A4)

The length L here does not include the length of the socks.

Note: For the following tables, the inner diameters assumed are as follows:

Nominal diam. SDR# Diam, m.

1/2 13 0.0173m

3/4" 17 0.0231m

1" 26 0.0300m

1.5" 26 0.0444m

2.0" 26 0.0557m

2.5" 26 0.0674m

The diameters assumed in all the examples of Chapter III are these.

1 Blasius’s formula applies only to smooth pipes, such as PVC. It also depends on the viscosity of 

the fluid. Here, the kinematic viscosity of the water has been assumed: ν = 9.8E-7m2/sec, which 

corresponds to a water temperature of about 21 degrees centigrade. This formula is accurate 

enough up to a value of Q/d = approximately 100 (liters/sec)/meter which is the useful range of 

the tables.
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Table A 1 was prepared by using Equation A-2. It can be used instead of A-2.

TABLE A-1: FRICTION HEAD LOSSES

d = 1/2" = 0.0173m d = 3/4" = 0.0231m d = 1" = 0.0300m

Q, l/sec hf/L Q, l/sec hf/L Q, l/sec hf/L

0.010 .000323 0.01 .000082 0.03 .00016

0.015 .000657 0.02 .000275 0.05 .00040

0.020 .00109 0.03 .00056 0.075 .00080

0.025 .00161 0.05 .00137 0.10 .00133

0.030 .00221 0.075 .00278 0.125 .00196

0.040 .00365 0.10 .00460 0.150 .00270

0.050 .00540 0.125 .00680 0.175 .00353

0.075 .0101 0.150 .00936 0.200 .00447

0.100 .0182 0.175 .0122 0.225 .00550

0.125 .0268 0.20 .0158 0.250 .00661

0.150 .0309 0.225 .0190 0.275 .00780

0.175 .0483 0.250 .0229 0.300 .00909

0.200 .0611 0.275 .0270 0.325 .0105

0.225 .0751 0.300 .0315 0.350 .0119

0.250 .0903 0.325 .0362 0.375 .0134

0.275 .106 0.350 .0412 0.400 .0150

0.300 .124 0.375 .0465 0.425 .0167

0.325 .143 0.400 .0521 0.450 .0185

0.350 .163 0.425 .0579 0.475 .0203

0.375 .184 0.450 .0640 0.500 .0222

0.400 .205 0.475 .0703 0.525 .0242

0.425 .228 0.500 .0769 0.550 .0263

0.450 .252 0.525 .0837 0.575 .0284

0.475 .278 0.550 .0909 0.600 .0306

0.500 .303 0.575 .0982 0.625 .0328

0.525 .330 0.600 .106 0.650 .0352

0.550 .359 0.625 .114 0.675 .0376

0.575 .388 0.650 .122 0.700 .0400

0.600 .418 0.675 .130 0.725 .0426

0.700 .139 0.750 .0452

0.725 .147 0.775 .0478

0.750 .156 0.800 .0506

0.800 .175 0.825 .0534

0.825 .185 0.850 .0562

0.850 .195 0.875 .0592
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TABLE A-1: FRICTION HEAD LOSSES 

(continued)

d =1"= 0.0300m (cont.) d = 1.5" = 0.0444m d = 1.5" = 0.0444m

Q, l/sec hf/L Q, l/sec hf/L Q, l/sec hf/L

0.900 .0622 0.10 .00021 1.90 .0357

0.925 .0652 0.15 .00042 1.95 .0374

0.950 .0684 0.20 .00069 2.00 .0390

0.975 .0715 0.25 .00102 2.05 .0408

1.000 .0748 0.30 .00141 2.10 .0425

1.025 .0780 0.35 .00185 2.15 .0443

1.050 .0814 0.40 .00234 2.20 .0461

1.075 .0848 0.45 .00287 2.30 .0499

1.10 .0883 0.50 .00345 2.40 .0537

1.125 .0918 0.55 .00408 2.50 .0577

1.15 .0954 0.60 .00475 2.60 .0618

1.175 .0991 0.65 .00546 2.70 .0660

1.20 .103 0.70 .00621 2.80 .0704

1.25 .110 0.75 .00702 2.90 .0748

1.30 .118 0.80 .00786 3.00 .0794

1.35 .126 0.85 .00873 3.10 .0841

1.40 .134 0.90 .00965 3.20 .0889

1.45 .143 0.95 .0106 3.30 .0938

1.50 .152 1.00 .0116 3.40 .0988

1.55 .161 1.05 .0126 3.50 .104

1.60 .170 1.10 .0137 3.60 .109

1.65 .180 1.15 .0148 3.70 .115

1.70 .189 1.20 .0160 3.80 .120

1.75 .199 1.25 .0172 4.00 .131

1.80 .209 1.30 .0184 4.20 .143

1.85 .219 1.35 .0196 4.40 .155

1.90 .230 1.40 .0209 4.60 .168

1.95 .240 1.45 .0222 4.80 .181

2.0 .251 1.50 .0236 5.00 .194

2.1 .274 1.55 .0250 5.20 .208

2.2 .297 1.60 .0264 5.40 .222

2.3 .321 1.65 .0279 5.60 .237

2.4 .346 1.70 .0294 5.80 .252

2.5 .371 1.75 .0309 6.00 .267

2.6 .398 1.80 .0324 6.20 .283

2.7 .425 1.85 .0341 6.40 .299
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TABLE A1: FRICTION HEAD LOSSES 

(continued)

d = 2.0" = .0557m d = 2.0" = .0557m d = 2.5" = .0674m

Q, l/sec hf/L Q, l/sec hf/L Q, l/sec hf/L

0.2 .000236 2.90 .0255 0.40 .000322

025 .000300 3.00 .0270 0.50 .000475

0.30 .000481 3.20 .0303 0.60. .000654

0.35 .000630 3.40 .0337 0.70 .000856

0.40 .000796 3.60 .0372 0.80 .00108

0.45 .000978 3.80 .0409 0.90 .00133

0.50 .00118 4.00 .0447 1.00 .00160

0.55 .00139 4.20 .0487 1.10 .00189

0.60 .00162 4.40 .0529 1.20 .00220

0.65 .00186 4.60 .0571 1.30 .00253

0.70 .00212 4.80 .0615 1.40 .00288

0.75 .00239 5.00 .0661 1.50 .00325

0.80 .00268 5.20 .0708 1.60 .00364

0.85 .00298 1.70 .00404

0.90 .00329 1.80 .00447

.0.95 .00361 1.90 .00492

1.00 .00395 2.00 .00538

1.10 .00467 2.10 .00586

1.20 .00544 2.20 .00635

1.30 .00626 2.30 .00687

1.40 .00712 2.40 .00740

1.50 .00804 2.50 .00794

1.60 .00900 2.60 .00851

1.70 .0100 2.70 .00909

1.80 .0111 2.80 .00969

1.90 .0122 2.90 .0103

2.00 .0133 3.00 .0109

2.10 .0145 3.20 .0122

2.20 .0157 3.40 .0136

2.30 .0170 3.60 .0150

2.40 .0183 3.80 .0165

2.50 .0196 4.00 .0180

2.60 .0210 4.20 .0197

2.70 .0225 4.40 .0214

2.80 .0240 4.60 .0231

4.80 .0249
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TABLE A1: FRICTION HEAD LOSSES

(continued)

d = 2.5" = .0674m. d = 2.5" = .0674m d = 3.0" = .0820m

Q, l/sec hf/L Q, l/sec hf/L Q, l/sec. hf/L

5.0 .0267 9.8 .0868 0.50 .000187

5.2 .0286 10.0 .0899 0.75 .000380

5.4 .0305 10.5 .0979 1.00 .000628

5.6 .0326 11.0 .106 1.25 .000930

5.8 .0347 11.5 .115 1.50 .00128

6.0 .0368 12.0 .124 1.75 .00167

6.2 .0389 12.5 .133 2.00 .00211

6.4 .0412 13.0 .142 2.25 .00260

6.6 .0434 13.5 .152 2.50 .00312

6.8 .0458 14.0 .162 2.75 .00369

7.0 .0482 15.0 .183 3.00 .00430

7.2 .0506 16.0 .205 3.25 .00494

7.4. .0531 17.0 .228 3.50 .00563

7.6 .0556 18.0 .251 3.75 .00635

7.8 .0582 19.0 .276 4.00 .00711

8.0 .0608 20.0 .302 4.25 .00791

8.2 .0636 21.0 .329 4.50 .00874

8.4. .0662 22.0 .357 4.75 .00960

8.6 .0690 5.00 .0105

8.8 .0719 5.25 .0114

9.0 .0748 5.50 .0124

9.2 .0777 5.75 .0134

9.4 .0807 6.00 .0145

9.6 .0837 6.25 .0155
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TABLE A1: FRICTION HEAD LOSSES

(continued)

d = 3" = .0821m d = 3" = .0821m d = 3" = .0821m

Q, l/sec hf/L Q, l/sec hf/L Q, l/sec hf/L

6.50 .0166 12.00 .0486 18.00 .0988

6.75 .0178 12.50 .0522 18.50 .103

7.00 .0189 13.00 0559 19.00 .109

7.50 .0214 13.50 .0597 20.00 .119

8.00 .0239 14.00 .0637 21.00 .129

8.50 .0266 14.50 .0677 22.00 .140

9.00 .0293 15.00 .0718 23.00 .152

9.50 .0323 15.50 .0761 24.00 .164

10.00 .0353 16.00 .0804 25.00 .176

10.50 .0385 16.50 .0849 26.00 .188

11.00 .0418 17.00 .0894 27.00 .201

11.50 .0451 17.50 .0941 28.00 .214

Correction for slightly different pipe diameters: The friction head losses vary a 

lot with pipe diameter. For instance, with the 1" pipe, if you had used its nominal 

diameter, 1" = .0254m instead of the S.D.R. 26 diameter of .0300m, say, with Q = 

0.8 l/sec., equation A2 says that hf/L would be .111 instead of .0506 (twice as 

much!). So, even pipes of the same nominal diameter but of different thickness 

have different friction head losses and once in a while you might want to correct 

for that. You can, of course, use the correct diameter in equation A2a. But if you 

don't have the right pocket calculator for that, you can correct Table A1 this way:

Call dt the diameter of the pipe given in the table and hft, the corresponding head 

loss at a given flow rate. For a real diameter d at the same flow rate, the corrected

head loss is given by:

Hf = (hf)t x {1 + 3.75 (dt - d)/dt}         (A5)

Note that the smaller diameter pipe gives the larger head loss.

A-II. The hydraulic grade line with a sock.

The HGL is modified b, the presence of a stationary sock (see figure A-2). As we 

have seen, the pressure does not change along the length of the sock either in the 

air or in the water. So, from the high point where the sock begins to its end, the 

HGL is parallel to the pipe profile standing vertically above it, a height equal to the 

value of h at the high point. At the end of the sock, where the pipe is filled with 

water again, the HGL resumes a slope whose sine is hf/L.
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Figure A-2

A-III: Valves and pipe selection near high points

1) Enforcing subcritical flow near a valve 

This matter is a little involved:

When one chooses to place an automatic air valve “at” a high point of a 

conduction line, one should take account of the following:

a) The valve should operate in a zone of subcritical flow in order to 

drain steadily slowly accumulating air and avoiding reacting to the 

rapid passages of bubbles carried by supercritical flows. The section 

of pipe into which the valve is embedded must, therefore, be large 

enough in diameter to impose subcritical flow at the highest

possible flow rate, Qmax. Practically, this means that the beginning 

of this section should be upstream of the valve and the end, some 

distance downstream– probably a couple of pipe lengths is enough.

b) The valve needs imperatively to be downstream of the high point 

(HP) because if it is upstream instead, the upstream extent of the 

sock stopping within one diameter or so of the HP, the valve will 

drain no air. 
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c) The steady formation of a stationary air pocket (in flowing water), 

“the sock”, is only possible downstream of  but starting at a sill2,

meaning at a horizontal section of the pipe. If the subcritical section 

of pipe starts not at the HP but downstream of it, there will be no 

sill and the air pocket will be unstable and may miss the valve. So, it

is necessary for the subcritical section to straddle the HP.

d) Finally, one must allow for an error in the determination of the 

location of the HP. For one thing, the HP for the pipe at the bottom 

of the trench may not be located where the HP of the surface of the 

trench used to be at survey time. How accurate does one have to 

be?  The vertical accuracy is measured in units of pipe diameters

(an error of one pipe diameter is a serious error). But near a HP, 

elevation differences are by definition small (of second order in the 

distance from it). So, one may misjudge the high point location by 

horizontal distances that may be appreciable, the more so, the 

flatter the ground around the HP.

So, one will opt for a conservative local design, one that will function well, even if 

a plausible error in the appreciation of the high point occurs.  Let us call that error 

in the high point location EU if the HP is estimated upstream of where it really 

turns out to be and ED if the HP is estimated downstream of where it really turns 

out to be. Then, according to a) - d), the valve location should be at least EU

downstream of the estimated HP whereas the beginning of the subcritical section 

should be at least ED upstream of the estimated HP. This means that one needs to:

• provide a subcritical section with a length of (ED + EU + LT), where LT is 

the length of trailing subcritical pipe downstream of the valve, say two pipe 

lengths.

• Place this segment so that the estimated HP is located ED downstream of 

the start of the subcritical section. 

But what about EU and ED? These possible errors will vary a great deal with the 

type of topography: small at a sharp ridge, large along a flat plateau. So, attention 

is needed to the topography near the high points: 

• First, one should mark the surveyed high point with a stake.

• Second, several points should be surveyed on either side along the trench 

down to where the height of the ground is unambiguously less by a 

sufficient amount. Practically, a local slope of +/-1
0
 seems adequate to 

define the end points of the lengths ED and EU respectively. Provided the 

topography is sufficiently detailed, the evaluation of the length of 

subcritical pipe required for a given case and of the location of the air-

release valve are conveniently provided by the ALV Air-In-Pipes Visual 

Basic program.

2 for the same reason that in free surface flow in canals, (as shown in long  wave theory) the 

steady transition from subcritical to supercritical flow occurs only over a sill.
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Enforcing a supercritical flow downstream of a high point

If a supercritical flow is desired downstream of a high point to prevent the 

presence of stationary air socks, fewer precautions need to be taken. Since no

automatic valve is involved, it does not make much difference whether the 

supercritical section occurs immediately upstream or downstream of the high 

point. In the later case, only an unimportant air pocket of negligible vertical extent 

will result. On the other hand,  the downstream end of the supercritical pipe 

section should not coincide with the end of  the otherwise possible air sock but 

instead, it should extend to the low point following the high point in question. The 

reason is given in  Appendix B-III.

A-IV: How to combine pipe diameters to get a given

friction head loss over a given length

 and with a given flow rate.

Let the required head loss be ha and let the length be L. Divide one by the other to 

get ha/L. Let us assume that you have already selected one of the pipe diameters, 

but that it is too small to be used over the whole length L of the pipe. Call this 

diameter ds and the corresponding friction loss per unit length, (hf/L)s. For the 

required value of Q find in table A1 a diameter dl which causes a hf/L smaller than 

ha/L. Call this value from the table (hf/L)l. The two pipe lengths which together 

will add up to L and cause a friction head loss equal to ha are given by:

Ll = {L(hf/L)s - ha}/ {(hf/L)s - (hf/L)l}       (A 4)

Ls = L - Ll          (A 5)

where Ll is the length of the pipe of larger diameter and smaller friction and Ls is 

the length of the pipe with smaller diameter and larger friction.

Note: The larger pipe diameter does not have to be the size just above the smaller 

one. For instance, if ds = 3/4", dl can be 1.5" instead of 1".
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A -V. Table of Critical flow rates

These are defined in Chapter I. Recall that a flow rate larger than Qs is supercritical 

and will sweep air bubbles along with it while a flow rate smaller than Qc is

subcritical and will allow stationary air pockets downstream of high points. The

table makes use of Equations (2a) and (2b). But here, while the pipe diameters are 

in meters, the flow rates are in liters /second. 

d, nominal d, (ID, m) Qc  (l /sec) Qs  (l /sec)

1/2" 0.0173 0.047 0.0618

3/4" 0.0231 0.097 0.1273

1" 0.03 0.186 0.2447

1.25" 0.0389 0.355 0.4686

1.5" 0.0444 0.494 0.6522

2" 0.0557 0.871 1.1496

2.5" 0.0674 1.403 1.8516

3" 0.083 2.362 3.1160



55

APPENDIX B

B-I: Why is the volume of a sock inversely proportional to its absolute 

pressure?  This does not happen right away. As the pressure increases in the sock, 

the volume decreases but, to start with, less than the formula predicts, because the 

air temperature increases (the compression is initially close to isentropic). After a 

while, the air in the pipe cools off by losing heat to the pipe and to the dirt in the 

trench so that its temperature is eventually the same as before the compression. 

Only then does the volume of air follow the law given in Appendix A-II. So, for 

those cases A1 which are close to cases B, you may have to wait a while before 

water comes out at the end of the pipe.

B-II: Can't you get rid of the air in a sock permanently with a small hole 

drilled in the cap of a T?

In the absence of an automatic air-flushing valve, it is tempting to drill a small hole 

in a plastic T cap, for instance, because such a hole will let a lot more air escape 

than water. This solution would surely simplify things. The trouble with it is that

the hole has to be rather small not to waste an excessive amount of water in a 

typical installation. So, it has to be made carefully and it is likely to plug up.

The relation between the hole diameter d, the flow rate Q of water through the 

hole and the head h1 in the pipe at the hole is approximately, (this formula is not 

too accurate for small holes)

d = 0.3 Q1/2/h1
1/4

where the hole diameter is in meters, the flow rate is in m3/sec. and the head is in 

meters. The same size hole will pass a volume of air about 28 times as large. It 

does not make much difference whether the hole is at the top or at the bottom of 

the pipe.

Now if, for example, we want no more than 3% of the water flow rate through the 

pipe to spill out of it, if the pipe passes 15 lit./min. of water and if the head at the 

sock is 10 meters, we get for the diameter of the hole:

d = 0.3 x {15 x .03/60 x 103}1/2 x 10-1/4 = 0.00046m = 0.46mm

A hole diameter twice as big will waste 4 times as much water.

So, this solution may be handy at times but I would worry about dirt or 

vegetable matter plugging it up. Don’t expect too much luck in general with 

small holes passing a reliable amount of water or not plugging up completely.

B-III: More on changing the diameter in the sock area.

a) When the design calls for a smaller diameter pipe along the sock than 

elsewhere, this manual recommends that the smaller pipe extends to the low 

point rather than only to the end of the sock. Why?
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As Q increases and approaches Qc, the top of the sock moves along the downhill 

leg downstream of the high point. But it does not get chased out of the downhill 

leg suddenly. This is because, for moderate pipe angles, the flow rate required to 

chase the pocket downstream first increases (from the horizontal to about 15 

degrees of slope) then decreases. You need about the same flow rate to chase the 

top of the sock for a horizontal pipe and for one that has about 35 degrees of 

slope. As a result, if the pipe diameter is increased between C and C' for a flow 

which is supercritical with respect to the smaller diameter, but subcritical with 

respect to the larger one, you should expect the sock to be trapped at the section 

where the diameter changes unless that section is at the bottom of the pipe.

b) Start up: Note that to choose a smaller diameter at the lower end of sections, 

such as BC', than at the upper end can help with the starting problem because the 

compression head h1 will then shorten the initial sock more than with a uniform 

diameter (l/l' will then be smaller than v/v' in the calculation of the trickle height). 

But you also have to take into account the effect of this change of diameter on the 

steady operation of the system after start up so that this trick can seldom be used. 

Anyway, you don't really need it.

B-IV:  How do I control the water velocity in the conduction line?

The advice commonly given is to keep the water velocity between limits, such as 

0.7m/sec and  3.0 m/sec. The reason is that if the velocity is too low, sediments 

will tend to deposit  in the pipe, especially at low points and eventually plug up the 

conduit, while if the velocity is too high, the same sediments will tend to erode the 

pipes.  Lateral forces at elbows may also require special immobilizing measures 

when the water velocity is high. 

It is usually easy to keep water from exceeding the recommended upper limit. 

However, it’s not so to keep it above the lower limit because it might require 

abandoning other more crucial constraints. For instance, your system may not have 

enough  slope to allow that velocity. 

(Note from Table A-3 that all subcritical velocities for pipes with diameters up to 

3” fall below the recommended lower limit). This situation is a bit like the one we 

face with the Ten Commandments: We do our best  but sometimes we will sin.

Then, we make amends. For instance, if a short section of pipe passes under a 

stream (a favorite spot for the accumulation of sediments), you can usually afford 

the extra friction loss caused by a pipe of small enough diameter to keep the 

velocity high along that short passage. Now, if the pipe then climbs for a 

considerable length towards the tank, you may need further “amends”: you will 

provide a clean-out near the river crossing and you will make sure that either as it 

enters the spring box, or within a sedimentation unit next to it, the spring water is 

forced to filter most of its sediments.
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B-V:  Can’t one operate with a full pipe all the time by adding a regulating 

valve at the end of the conduction line in order to match its head loss to that

required for the variable flow rate of the spring?

This sounds great and  it would make it unnecessary to read most of this 

complicated manual!  But if you try it, you will find that it takes days and repeated 

air bleedings to reach the proper valve setting. So, the villager will either not 

manage trouble free operations (valve opened too much) or close it down too 

much and deprive himself of water that could be delivered.

B-VI: Where does equation (1) come from?

This is an experimental result of sufficient accuracy for practical use. It also has 

some theoretical support. Its origin may only interest hydraulics specialists. 

Nevertheless (since it is the basis of this manual), it is given below:

A)  This equation applies evidently to air pockets that are long compared to

the diameter of the pipe, and not to bubbles, such as those found in water 

levels. For the later Qc = 0 but ht is negligible and so, they are unimportant.

B) To be perfectly general, we should write (from Dimensional Analysis), 

Qc = Ad5/2g1/2

Where the numerical value of A depends on: 

- the surface tension of water (the Weber number, 16Q2/π2d3
γ, where γ

is the surface tension as well as on the contact angle.

- the velocity profile, through the Reynolds number, 4Q/πdν, where ν is

the kinematic viscosity of water,

- the pipe slope distribution in the region of  the pocket.

Now:

1) For a non-viscous fluid flow with negligible surface tension and a 

horizontal pipe, it is possible to calculate theoretically the velocity of 

propagation of the nose of a semi infinite3 air bubble into a water filled

circular pipe, (the water ahead of the air pocket being at rest). This gives, 

(see Brooks Benjamin, Journal of Fluid Mechanics, 1968, vol.31, pages 

209-248):

Qc = 0.426d
5/2

g
1/2

2) The real case is different because:

• It is the water that flows while the bubble  does not move. (This is a 

trivial difference).

3 Because the flow some distance downstream of the nose of the bubble becomes supercritical in 

the sense: Froude Number>1, downstream signals do not propagate upstream so that the bubble 

does not really have to be semi-infinite, only long in the sense of shallow wave theory.
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• Water is a viscous fluid and its velocity far upstream of the sock is 

not uniform across the pipe. It is zero everywhere at the pipe wall.

• There is some (though small) surface tension between the water and 

the air along the bubble-water boundary near the bubble nose.

• When you want to chase the bubble not only from the high points 

but all the way past the next low points so that the head of the 

bubble will move past inclined sections of the pipe, the simple 

theory for the horizontal pipe fails to yield conclusive information 

about the existence of a bubble propagation velocity.

3) Experimentally, but still for a horizontal section of pipe with typical Weber 

and Reynolds numbers and with the water flowing, the critical flow rate 

(the flow rate for which a long bubble remains stationary) is about:

Qc = 0.38d5/2/g1/2

The bubble moves upstream if Q is less (but never if the pipe upstream 

bends down) and it moves downstream if Q is more (but not necessarily 

more than a short distance if the pipe downstream bends down).

4) Finally, also experimentally, if a section of straight pipe is inclined 

(lowered downstream) through variable angles, Qc first increases as 

the slope increases from the horizontal to a maximum of about 35 

degrees and then decreases as the slope continues to increase past that 

value. The value of the constant A chosen for Qs , i.e 0.5 is slightly 

larger than that which is needed in equation (1) to flush the sock of 

the worst slope (30 degrees) somewhere along the sock. If the 

maximum slope downstream of a high point is small (say, 5 or 10 

degrees) the value of A chosen is somewhat too large.

The experimental results referred to above are all mine.
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B-VII: Is it possible in the field to choose a conduction line that minimizes air 

problems?

It is not only possible but often easy and always highly recommended. 

One attempts the four following steps:

1) Avoid high points. Many will be unavoidable. At least beware of  the 

unintentional ones (see example problem 5).

2) Between a high point high along the conduction line (towards the 

spring) and one lower down, choose the lower one.  This will result in a 

higher pressure and therefore a lower volume within the sock.
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3)  Between two equally high high points followed by low point of unequal 

heights, choose the one with the higher low point.

4) Finally- and this one is frequently an effective option, for two high points 

of equal height followed by two low points of identical height, choose the 

one for which the trench profile maintains its height longest and drops

down to the low point latest. The effect of this simple option is especially

large when the pressure at the high point is substantially larger than 

atmospheric.

.


