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The majority of the existing literature on the lateral stability of castellated beams deals with
experimental and/or numerical studies. This paper presents a comprehensive analytical study of

the lateral–torsional buckling of simply supported castellated beams subject to pure bending

and/or a uniformly distributed load. Using the principle of total potential energy, analytical
expressions for the critical buckling moments and loads are derived and applied for various

beam lengths. The three di®erent locations of the applied load are used: At the top °ange, shear

center and bottom °ange. The results show that the in°uence of web openings on the critical

buckling moments and loads are mainly due to the reduction of the torsional constant caused by
the web openings. Web shear e®ects and web shear buckling become important only when the

beam is short and the °ange is wide. The critical moments and loads will be overestimated or

underestimated if the full or reduced section properties are used. The accurate critical moment

or load should be calculated based on the average torsional constant of the full and reduced
sections rather than simply taking the average of the critical moments or loads calculated from

the full and reduced section properties. The present analytical solutions are veri¯ed using 3D

¯nite element analysis results.

Keywords: Castellated beams; lateral–torsional buckling; analytical solution; web openings;

energy methods.

1. Introduction

Castellated beams have been used as structural members in structural steel frames.1

An example is shown in Fig. 1. A castellated beam is fabricated from a standard

universal beam or column by cutting the web on a half hexagonal line down the

center of the beam. The two halves are moved across by a half unit of spacing and

then rejoined by welding.1 This process increases the depth of the beam and hence

the bending strength and sti®ness about the major axis without adding additional
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materials. This allows castellated beams to be used in long span applications with

light or moderate loading conditions for °oors and roofs. The fabrication process

creates openings on the web, which can be used to accommodate services. Despite the

increase in the beam depth, the overall building height can hence be reduced, com-

pared with a solid web solution, where services are provided beneath the beam. This

leads to savings in the cladding costs. Despite the increase in the fabrication costs

caused by cutting and welding, the advantages outweigh the disadvantages. Design

guidance on the strength and sti®ness of castellated beams is available in some

countries.1–3

Since castellated beams are made usually from I-beams or H-columns, they tend

to be deep and slender and have reduced torsional sti®ness of the web due to the

openings in the web. Hence, they are more susceptible to lateral–torsional buckling.

Some guidance for the determination of the lateral–torsional buckling moment of

members with web openings is given in BS 5950.4 Clause 4.15.4.5 of BS 59504 states

(a)

(b) (c) (d)

Fig. 1. A castellated beam. (a) Notations used in the beam. (b) Loading and displacements in web and

°anges during lateral–torsional buckling. (c) De¯nition of three parts for calculation of strain energy.
(d) Section properties of mid-part of web in four di®erent regions. Iy3 ¼ I �

y3, Iz3 ¼ I �
z3, J3 ¼ J �

3 in region�2 ,
Iy3 ¼ Iz3 ¼ J3 ¼ 0 in region �4 , section properties vary with x in regions �1 and �3 .
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that the same method used to determine the lateral buckling resistance moment of

solid web beams can be used for beams with web openings using the section prop-

erties at the centerline of an opening, i.e. the reduced cross-section properties.

Intensive research on the lateral stability5–14 of castellated beams started in the

early 1980s. Experimental investigations5–7,10,14 were carried out and ¯nite elements

methods7–9,11–13 were also used to predict the lateral–torsional or distortional

buckling behavior of such beams and/or to compare the predictions with the results

from the experiments.7,13 The e®ects of slenderness on the moment-gradient factor8

and of elastic lateral bracing sti®ness on the °exural–torsional buckling9,14 of simply

supported castellated beams were studied using 3D ¯nite element analysis models.

The failure modes5–7,10–12 and the interaction of the buckling modes11 of castellated

beams were investigated. It was found that the web opening of castellated beams had

little in°uence on lateral buckling behavior5 and failure modes,6 while web distor-

tional buckling was likely when an e®ective lateral brace was provided at the mid-

span of the compression °ange10,14 and this type of failure reduced signi¯cantly the

failure load11 of slender castellated beams. Compared with the same sized I-beams,

castellated beams have lower torsional rigidity due to the web openings and hence

more likely fail by lateral–torsional buckling. In addition, the °exural–torsional

buckling of thin-walled composite beams and Timoshenko beams have been dis-

cussed in papers.15–18 The axially compressed buckling of battened columns, which

have similar behavior to castellated beams, was investigated recently.19

The aforementioned survey shows that the majority of the existing literature

on the lateral buckling stability of castellated beams deals with experimental and/

or numerical studies. The only available analytical study is done by Pattanayak

and Chesson.20 They presented the lateral instability analysis of simply supported

castellated beams using the energy method. In their analytical model, the two

tee-sections and the webpost are treated separately for the calculation of the

strain energy but not for the potential work of the applied loads. Furthermore,

their analytical model was not validated either by experiments or by ¯nite element

analyses.

In this paper, a more comprehensive analytical study is presented to determine

the critical buckling moments of simply supported castellated beams subject to a

uniformly distributed load and/or a pure bending. Using the principle of the total

potential energy, analytical expressions for the critical buckling moment of such a

beam are derived. To demonstrate the present analytical solutions, ¯nite element

analyses are also conducted using the linear elastic analysis module build in the

ANSYS software.

2. Analytical Study of Lateral–Torsional Buckling
of Castellated Beam

Consider a simply supported castellated beam that is subjected to a uniformly dis-

tributed transverse load, qz and a coupled bending moment, Mo, applied at the ends
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of the beam. Assume that when the beam has a lateral–torsional buckling, the shear

center of the beam has a lateral displacement v(x) and a transverse displacement

w(x), as shown in Fig. 1(b). The cross-section has an angle of twist �(x). To de-

termine the elastic critical moment when the lateral–torsional buckling occurs, one

can use the variational method of the total potential energy function of the beam as

follows21,22:

� ¼ 1

2

Zl
o

EIy
d2w

dx2

 !
2

þ EIz
d2v

dx2

 !
2

þ EIw
d2�

dx2

 !
2

þGJ
d�

dx

� �
2

" #
dx

�
Zl
o

My

d2w

dx2
þMy�

d2v

dx2
þ azqz

2
�2

� �
dx; ð1Þ

where E is the Young's modulus, G is the shear modulus, Iy and Iz are the second

moments of the cross-sectional area about the y and z axes respectively, Iw is the

warping constant, J is the torsional constant, My is the internal bending moment

about the y axis, az is the z-coordinate of the loading point de¯ning the vertical

distance between the loading point and the shear centre of the beam and l is the

length of the beam. The ¯rst integration in Eq. (1) represents the strain energy,

whereas the second one is the loss of potential energy of the applied loads while the

buckling occurs.

For a castellated beam, Iy, Iz, Iw and J are a function of x due to the existence of

web openings. For convenience of calculation, the cross-section of the castellated

beam is now decomposed into three parts, two of which represent the top and bottom

tee-sections, one of which represents the mid-part of the web (see Fig. 1). Using the

assumption of small displacements, the displacements at the shear centers of the top

and bottom tee-sections can be expressed as follows (see Fig. 1(b)):

v1 ¼ vþ h

2
sin� � vþ h�

2
; ð2Þ

w1 ¼ wþ h

2
ð1� cos�Þ � w; ð3Þ

v2 ¼ v� h

2
sin� � v� h�

2
; ð4Þ

w2 ¼ wþ h

2
ð1� cos�Þ � w; ð5Þ

where v1 and w1 are the lateral and transverse displacements of the shear center of

the top tee-section, v2 and w2 are the lateral and transverse displacements of the

shear center of the bottom tee-section, h is the distance between the shear centers of

top and bottom tee-sections.

For both tee and mid-part of the web, the warping constants are so small and thus

can be ignored. Hence, the strain energy of the beam calculated based on the three
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parts may be expressed as follows:

U ¼ 1
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where Iy1 ¼ Iy2 and Iz1 ¼ Iz2 are the second moments of the tee cross-sectional area

about the y and z axes, J1 ¼ J2 is the torsional constant of the tee-section, Iy3 and Iz3
are the second moments of the cross-sectional area of the mid-part of the web about

the y and z axes respectively, and J3 is the torsional constant of the mid-part of the

web. Substituting Eqs. (2)–(5) into Eq. (6) yields

U ¼ 1
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The ¯rst integration in Eq. (7) represents the strain energy of the two tee-

sections, whereas the second one represents the strain energy of the mid-part of the

web. Note that Iy1, Iz1 and J1 are constants while Iy3, Iz3 and J3 are a function of x,

which depend upon the position of the web openings (see Fig. 1(d)). It can be found,

by comparing Eqs. (7) and (1), that,

Iy ¼ 2Iy1 þ Iy3; ð8Þ
Iz ¼ 2Iz1 þ Iz3; ð9Þ
J ¼ 2J1 þ J3; ð10Þ

Iw ¼ h

2

� �
2

Iz �
h2

2
Iz1: ð11Þ

Equation (11) indicates that, although the warping strain energy is negligible in

the two individual tee-sections when using local displacement variables, it is not in

the assembly of the two tee sections when the displacement compatibility is enforced.

For a simply supported castellated beam where v ¼ w ¼ � ¼ 0 at the two ends, the

following displacement functions for vðxÞ, wðxÞ and �ðxÞ can be assumed,

wðxÞ ¼ A sin
�x

l
; ð12Þ
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vðxÞ ¼ B sin
�x

l
; ð13Þ

�ðxÞ ¼ C sin
�x

l
; ð14Þ

where A, B, and C are constants to be determined. Substituting Eqs. (12)–(14) into

Eq. (7) yields

U ¼ l

4

�

l

� �
4
Eð2Iy1 þ kI �

y3ÞA2 þ Eð2Iz1 þ kI �
z3ÞB2 þ EIwC

2 þGð2J1 þ kJ �
3 Þ

l

�

� �
2

C 2

� �
;

ð15Þ
where k is a constant between 0 and 1. I �

y3 and I �
z3 are the second moments of the

cross-sectional area of the mid-part of the web with no openings about the y and z

axes, and J �
3 is the torsional constant of the mid-part of the web with no openings. If

k ¼ 1, then the full section properties are used (i.e. the web openings are ignored). If

k ¼ 0, then the reduced section properties are used (i.e. the whole mid-part of the

web is ignored and only the two tee-sections are taken into account). Physically, k

represents the volume fraction of the solid in the mid-part of the web. Clearly, if the

areas of the solid and voids in the mid-part of the web are identical, which is often

used in castellated beams, then k ¼ 1=2 can be taken.

For a simply supported beam subject to a uniformly distributed load and a pure

bending where two equal moments in opposite directions are applied at the ends of

the beam, the internal bending moment can be expressed as follows:

MyðxÞ ¼ Mo þ
1

2
qzxðl� xÞ: ð16Þ

By substituting Eqs. (12)–(14) and Eq. (16) into the second integration of

Eq. (1), the loss of potential energy of the applied loads during buckling may be

expressed as

W ¼ �2
�Mo

l
þ qzl

�

� �
A� �2

2l

� �
Mo þ

qzl2

4

1

3
þ 1

�2

� �� �
BC � qzazl

4
C 2: ð17Þ

The second-order variation of the total potential energy functional,

�2
Q ¼ �2ðU þWÞ, leads to the following eigenvalue equation:

A ¼ 0; ð18Þ

Eð2Iz1 þ kI �
z3Þ

�

l

� �
2
B ¼ Mo þ

qzl2

4

1

3
þ 1

�2

� �� �
C; ð19Þ

�2EIw
l2

þG 2J1 þ kJ �
3ð Þ

� �
C ¼ Mo þ

qzl2

4

1

3
þ 1

�2

� �� �
Bþ qzazl2

�2
C: ð20Þ

Eliminating B in Eqs. (19) and (20), it yields

Mo þ qzl
2

4
1
3 þ 1

�
2

� �h i
2

E 2Iz1 þ kI �
z3

� �
�
l

� �
2 þ qzazl2

�2
¼ �2EIw

l2
þG 2J1 þ kJ �

3ð Þ
� �

: ð21Þ
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Equation (21) provides the relationship between the critical moment and critical

uniform load when the lateral–torsional buckling of the castellated beam occurs. For

a beam with pure bending, the critical moment of lateral–torsional buckling can be

simpli¯ed from Eq. (21) as follows:

ðMoÞcr ¼ � �

l

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2EIw
l2

þGð2J1 þ kJ �
3 Þ

� �
Eð2Iz1 þ kI �

z3Þ
s

: ð22Þ

For a beam with a uniformly distributed load applied at the shear center (i.e.

az ¼ 0), the critical load can be simpli¯ed from Eq. (21) as follows:

qzl2

8

� �
cr

¼ � 3�2

2ð�2 þ 3Þ
�

l

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2EIw
l2

þGð2J1 þ kJ �
3 Þ

� �
Eð2Iz1 þ kI �

z3Þ
s

: ð23Þ

For a beam with a uniformly distributed load applied on the top °ange of the

beam (i.e. az ¼ hw/2), the critical load can be simpli¯ed from Eq. (21) as follows:

qzl2

8

� �
cr

¼
� hw

2 þ tf
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2 þ tf
� �2 þ �2

6 þ 1
2

� �
2
Iw þ Gð2J1þkJ �

3 Þl 2
�2E

h i
1

2Iz1þkI �
z3

r
1
3 þ 1

�
2

� �
2

� E 2Iz1 þ kI �
z3ð Þ

l2
: ð24Þ

For a beam with a uniformly distributed load applied on the bottom °ange of the

beam (i.e. az ¼ �hw/2), the critical load can be simpli¯ed from Eq. (21) as follows:

qzl2

8

� �
cr

¼
hw

2 þ tf
� �þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2 þ tf
� �2 þ � 2

6 þ 1
2

� �
2
Iw þ Gð2J1þkJ �

3 Þl 2
� 2E

h i
1

2Iz1þkI �
z3

r
1
3 þ 1

�
2

� �
2

� E 2Iz1 þ kI �
z3ð Þ

l2
: ð25Þ

For most castellated beams, I �
z3 << 2Iz1. Hence, I �

z3 can be ignored and Eqs. (22)–

(25) can be further simpli¯ed as follows:

ðMoÞcr ¼ � �

l

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EIz1

�2EIw
l2

þGð2J1 þ kJ �
3 Þ

� �s
; ð26Þ

qzl2

8

� �
cr

¼ � 3�2

2ð�2 þ 3Þ
�

l

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EIz1

�2EIw
l2

þGð2J1 þ kJ �
3 Þ

� �s
; ð27Þ

qzl2

8

� �
cr

¼
� hw

2 þ tf
� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hw
2 þ tf
� �2 þ �2

6 þ 1
2

� �
2 Iw
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3 Þl 2
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1
3 þ 1

�
2

� �
2 � 2EIz1
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;

ð28Þ
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qzl2

8

� �
cr

¼
hw
2 þ tf
� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hw
2 þ tf
� �2 þ �2

6 þ 1
2

� �
2 Iw

2Iz1
þ Gð2J1þkJ �

3 Þl 2
2� 2EIz1

h ir
1
3 þ 1

�
2

� �
2 � 2EIz1

l2
:

ð29Þ
It can be seen from Eqs. (26)–(29) that if Iw were neglected in the equation, the

critical load would be largely underestimated. Also, Eqs. (26)–(29) indicate that the

in°uence of web openings on the critical loads of lateral–torsional buckling is mainly

due to the reduction of the torsional constant caused by the web openings. It can be

seen from these equations that the use of the full section properties (i.e. k ¼ 1) will

lead to an overestimation of the critical load, whereas the use of the reduced section

properties (i.e. k ¼ 0) will lead to an underestimation of the critical load. The true

critical load will be in between these two bounds but is not simply the average of

them, since the relationship between the critical load and k-value is not linear.

3. Parametric Study

Two castellated beams are considered. The cross-sectional dimensions of the beams

are given in Table 1. For these two beams, the ratios of the second moment of the

cross-sectional area of the mid-part of the web about the z axis to that of the two tee-

sections are I �
z3/(2Iz1Þ ¼ 0:77% for Beam 1 and 0.029% for Beam 2, respectively. This

demonstrates that the second moment of the cross-sectional area of the mid-part of

the web about the z axis can be ignored in the calculation. In contrast, the ratios of

the torsional constant of the cross-sectional area of the mid-part of the web to that of

the two tee-sections are J �
3 /(2J1Þ ¼ 73% for Beam 1 and 31% for Beam 2, respec-

tively. This indicates that the torsional constant of the cross-sectional area of the

mid-part of the web is comparable to that of the two tee-sections and thus cannot be

ignored.

The critical moments of the lateral–torsional buckling of the two beams under

pure bending are calculated using Eq. (26) for various beam lengths and corre-

sponding results are plotted in Fig. 2, in which, for the purpose of comparison, the

critical moments calculated based on the full section properties (k ¼ 1) and reduced

section properties (k ¼ 0 and Iw ¼ 0) are also superimposed. It can be seen from the

¯gure that, for a castellated beam with wider °anges, the web openings have almost

no in°uence on the critical moment of the beam, if the warping strain energy is

properly considered. It is only the beam with narrow °anges for which the web

Table 1. Cross-sectional dimensions of the two castellated beams considered.

Beam
Flange

width bf (mm)
Flange thickness

tf (mm)
Web depth
hw (mm)

Web thickness
tw (mm)

Web opening
2a (mm)

1 117 10 350 10 247

2 350 10 350 10 247
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openings reduce the critical moment. This is partly because the ratio of the torsional

constant of the cross-sectional area of the mid-part of the web to that of the two tee-

sections is relatively large and partly because the ratio of the torsional constant of the

whole section to the second moment of the whole section about the z axis becomes
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(b)

Fig. 2. Critical moments of lateral–torsional buckling of beams under pure bending with °ange width

(a) bf ¼ 117mm and (b) bf ¼ 350mm (°ange thickness tf ¼ 10mm, web depth hw ¼ 350mm, web

thickness tw ¼ 10mm and depth of web opening 2a ¼ 247mm, k ¼ 0:5).
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more signi¯cant. In this case, the reduction of the torsional constant due to the web

openings will a®ect the critical moment signi¯cantly. The ¯gure also shows that, in

either section if the warping constant is neglected, then the critical moment will be

signi¯cantly underestimated.

The critical load of lateral–torsional buckling of the castellated beam subjected

to a uniformly distributed load applied at the shear center can be calculated using

Eq. (27). However, the comparison of Eqs. (26) and (27) indicates that, in terms of

the maximum moment, the critical moment of the beam with a uniformly distributed

load is very similar to that of the beam under pure bending. The only di®erence

between them is the pre-factor 1.5�2/(3þ�2). This pre-factor appeared in the critical

moment re°ects the in°uence of the varying pre-buckling moment along the beam

axis, which is similar to what has been reported for I-beams in the literature.21,22

Figure 3 presents the e®ect of the locations of the applied load on the critical loads

of lateral–torsional buckling of the two castellated beams subject to a uniformly

distributed load. Equations (27)–(29) are used for various beam lengths and corre-

sponding results are plotted in Fig. 3. As expected, the critical load decreases as the

beam length increases. It can be seen from the ¯gure that, the loading position has a

signi¯cant in°uence on the critical load. The shorter the beam, the greater the

in°uence of the load position becomes. The comparison of the critical load curves

between the two beams indicates that the wider the °ange of the beam, the greater

the in°uence of the load position becomes.

Figure 4 shows the critical loads of the lateral–torsional buckling of the two

simply supported castellated beams of 7m length, subjected to combined uniformly

distributed load applied at the top °ange and two equal bending moments but in

opposite directions applied at the ends. This is for the case where the beam is

subjected to an pure bending ¯rst, followed by an uniformly distributed load, or vice

versa. The critical load of the uniformly distributed load is obviously dependent on

the moment of the pure bending. The results are obtained by solving Eq. (21) for qcr
for a given Mcr. As expected, qcr decreases with the increase of Mcr. The relationship

between them is approximately linear. It is interesting to notice from Fig. 4 that, the

horizontal critical moments, representing the lateral–torsional buckling strength

under pure bending, are slightly higher than the vertical critical moments, repre-

senting the lateral–torsional buckling strength under a uniformly distributed load,

since in the normal circumstance, the pure bending is a more severe loading condi-

tion. The reason for this is because the uniformly distributed load is applied at the

top °ange, which makes the beam less stable and thus, has a low critical value when

compared to the load applied at the shear center or at the bottom °ange.

4. Finite Element Analysis

In order to verify the analytical solution described in Sec. 2, ¯nite element analyses

were performed using the ANSYS software. Various lengths of the two castellated

beams in Table 1 were modeled using 3D shell elements (shell 63) built in the
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software. For the material properties of the beam, Young's modulus of 210 GPa and

Poisson's ratio of 0.3 were used. Owing to symmetry, only a half span was modeled.

The boundary conditions of the beam were assumed to have zero transverse and

lateral displacements (v ¼ w ¼ 0) for all nodes on one end section of the beam

(a)

(b)

Fig. 3. Critical moments of lateral–torsional buckling of beams subjected to a uniformly distributed load
with °ange width (a) bf ¼ 117mm and (b) bf ¼ 350mm (°ange thickness tf ¼ 10mm, web depth

hw ¼ 350mm, web thickness tw ¼ 10mm and depth of web opening 2a ¼ 247mm, k ¼ 0:5).

Analytical Solutions of Lateral–Torsional Buckling

1550044-11



(x ¼ 0) and zero rotations about the transverse and lateral axes (�y ¼ �z ¼ 0) and

zero axial displacement (u ¼ 0) for all nodes on the other end section (symmetric

section at x ¼ 1=2). The uniformly distributed transverse load was applied at the

intersection line between the top °ange and web. A linear buckling analysis was

employed to obtain the lowest positive and lowest negative eigenvalues, which rep-

resent the critical loads of the beam when the loading was applied at the top and

bottom °anges, respectively. The maximum element size used in the analysis is

20mm. This is based on the trial in which the obtained eigenvalues associated with

the ¯rst two lowest buckling modes have almost no change with any further re-

duction in element sizes.

Figure 5 compares the critical loads of the two castellated beams obtained from

Eqs. (28) and (29) and those obtained from the ¯nite element analyses. It can be seen

from the comparison that the present analytical solutions agree very well with the

results obtained from the ¯nite element analyses for the beam with narrow °anges.

However, for the beam with wide °anges, the present analytical solution is valid only

when the beam is longer than 5.5m for upper °ange loading and 8.5m for lower

°ange loading. For short beams, the analytical solutions are much higher than those

predicted by the ¯nite element analyses. The reason for this is because when the

beam is short and its °anges are also wide, the lowest buckling mode of the beam is

no longer the lateral–torsional buckling. This is demonstrated by the buckling modes

shown in Fig. 6. Figure 6(a) shows the half of the ¯rst buckling mode of the beam at
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Fig. 4. Critical loads of lateral–torsional buckling of beams subjected to a uniformly distributed load

applied at the top °ange and a coupled bending moments applied at the ends (°ange thickness tf ¼ 10mm,

web depth hw ¼ 350mm, web thickness tw ¼ 10mm, depth of web opening 2a ¼ 247mm, beam length

l ¼ 7000mm, k ¼ 0:5).
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length L ¼ 4:278m when it is subjected to a uniformly distributed load applied at

top °ange. It can be seen from this buckling mode that there is substantial distortion

involved in the web and compressed °ange. This web-°ange distortion could be due

to the widening of °anges and also the shear weakness of the web owing to the web

(a)

(b)

Fig. 5. Comparison between the analytical solution and FEA for the critical loads of beams subjected to a

uniformly distributed load. (a) bf ¼ 117mm and (b) bf ¼ 350mm (°ange thickness tf ¼ 10mm, web

depth hw ¼ 350mm, web thickness tw ¼ 10mm and depth of web opening 2a ¼ 247mm, k ¼ 0:5).
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opening.23–25 However, with the increase of beam length, this distortional buckling

mode is overtaken by the lateral–torsional buckling mode as is demonstrated in

Fig. 6(b). It should be pointed out that the dimensions chosen here represent two

extreme cases, i.e. very narrow and very wide castellated beams. In practice, the wide

(a)

(b)

Fig. 6. Buckling modes associated with the critical load of a beam when the load is applied at the top
°ange obtained from the FEA. (a) L ¼ 4:278mm and (b) L ¼ 6:845m (°ange width bf ¼ 350mm, °ange

thickness tf ¼ 10mm, web depth hw ¼ 350mm, web thickness tw ¼ 10mm, and depth of web opening

2a ¼ 247mm).
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°anged castellated beams are usually used for long span buildings in which case the

lateral–torsional buckling is always dominant.

5. Conclusion

An analytical solution is presented to determine the critical moment of the lateral–

torsional buckling of simply supported castellated beams subjected to a uniformly

distributed load and/or a coupled bending moment applied at the ends of the beam.

The analytical solution is veri¯ed using the ¯nite element analysis. From the present

study, the following conclusions may be drawn:

(1) For most castellated beams, the reductions in both warping rigidity and lateral

°exural rigidity caused due to the web openings are very small and can generally

be ignored in the calculation.

(2) The main e®ect of the web openings on the lateral–torsional buckling of the

castellated beam is due to the reduction in torsional rigidity caused by the web

openings. The critical load of the lateral–torsional buckling of castellated beams

thus should be calculated using the average torsional constant of the full and

reduced section properties.

(3) For a castellated beam with wider °anges, the web openings have almost no

in°uence on the critical load of the lateral–torsional buckling of the beam. For a

castellated beam with narrow °anges, the web openings can marginally reduce

the critical load of the lateral–torsional buckling of the beam.

(4) Since the web openings have only marginal in°uence on the lateral–torsional

buckling behavior of castellated beams, most features found in I-beams can be

also applied to castellated beams.

(5) It should be noted that the analytical solution derived here is only for simply

supported castellated beams. However the principle proposed could be applied to

beams with other boundary conditions.
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