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• TABLE OF CONTENTS:

• Overview of Foundation Design

• Shallow Footing Example

• Combined Footing Example

• Pile Foundation Example

• Design for Differential Settlement Example

• Design for Liquefiable Soil Example

FOUNDATION AND 
LIQUEFACTION DESIGN
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• Proportioning Elements for:

• Transfer of Seismic Forces

• Strength and Stiffness

• Shallow and Deep Foundations

• Elastic and Plastic Analysis

FOUNDATION DESIGN
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Load Path and Transfer of Seismic Forces
foundation force transfer

EQ motion

Passive earth
pressure

Friction

Shallow
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Load Path and Transfer of Seismic Forces
soil to foundation force transfer

Deep

EQ Motion

Motion
Soil

pressure
Bending
moment
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EQ motion

Overturning moment

Load Path and Transfer of Seismic Forces 
vertical pressures - shallow
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EQ Motion

Overturning
moment

Load Path and Transfer of Seismic Forces
vertical pressures - deep
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• Strength Design
– Permitted in 2015 

Standard

– Nominal strength 
with phi factors

– Allows direct 
comparison of 
foundation capacity 
with superstructure 
capacity

• Allowable Stress 
Design
– Traditional/historic 

approach

– Allowable 
geotechnical values 
have inherent factor 
of safety

– Requires separate 
ASD load 
combination

Allowable Stress Design vs 
Strength Design
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• Nominal Strength can be:

– Nominal strength associated with 
anticipated failure mechanism

– Nominal strength associated with limitation 
on maximum deformation at failure

• Settlement based on sustained loads rather 
than the loading associated with nominal 
strength should be considered

Allowable Stress Design vs 
Strength Design
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• Nominal Strength Example

– Strength reduction factor Φ=0.45 for 
compression (bearing pressure)

• Allowable Stress Example

– Factor of safety of ~3.0

Allowable Stress Design vs 
Strength Design
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• Most foundation failures are associated with 
excessive foundation movement, not loss of 
load-bearing capacity

• Maintaining a reasonably consistent service 
load-bearing pressure is encouraged to 
minimize differential settlement

Foundation Design Concepts
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• ACI 318 References

– Chapters 7,8 – One way, Two-way slabs 
referenced for detailing requirements

– Chapter 13 – General Foundations

– Chapter 18 – Seismic Provisions

– Chapter 22 – Sectional Strength

Design of Concrete Footings
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d/2 
(all sides)

(c) 
Critical section
for two-way shear

(b)
Critical section
for one-way shear

(a)
Critical section
for flexure

Outside face of concrete
column or line midway
between face of steel
column and edge of
steel base plate (typical)

extent of  footing
(typical)

d

Reinforced 
Concrete Footings:

Basic Design 
Criteria

(concentrically 
loaded)
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(a)
Loading

(b)
Elastic, no uplift

(c)
Elastic, at uplift

(d)
Elastic, after uplift

(e)
Some plastification

(f)
Plastic limit

M
P

Footing Subject 
to Compression 

and Moment:
Uplift Nonlinear
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Allowable Bearing 
(Settlement)

• 2,000 psf B<20 ft

• 1,000 psf B<40 ft

• Density = 125 pcf

• Friction angle = 33o

Bearing Capacity

• 3,000B psf (Square)

• 4,000B’ psf
(Rectangular)

• B = footing width (ft)

• B’ = average width of 
compressed area (ft)

• ϕ=0.45

Soil parameters:

• Medium dense sand

• (SPT) N = 20

Shallow Footing Examples
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Corner:
6'x6'x1'-2" thick

Perimeter:
8'x8'x1'-6" thick

Interior:
11'x11'x2'-2" thick

Footings 
proportioned for 
gravity loads 
alone
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Design of 
footings for 
perimeter 
moment 
frame
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7 Story Frame, Deformed
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• Maximum downward load:

1.2D + 0.5L + E

• Minimum downward load:

0.9D + E

• Definition of seismic load effect E:

E = r1QE1 + 0.3 r2QE2 +/- 0.2 SDSD

rx = 1.0    ry = 1.0  and   SDS = 1.0

Combining Loads



Instructional Material Complementing FEMA 1051, Design Examples Foundation Design - 22

Grid Dead Live Ex Ey

A-5 P

Mxx

Myy

203.8 k 43.8 k -3.8 k

53.6 k-ft

-243.1 k-ft

21.3 k

-1011.5 k-ft

8.1 k-ft

A-6 P

Mxx

Myy

103.5 k 22.3 k -51.8 k

47.7 k-ft

-246.9 k-ft

-281.0 k

-891.0 k-ft

13.4 k-ft

Reactions
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• NEHRP Provisions allow base overturning 
moment to be reduced by 25% at the soil-
foundation interface

• For a moment frame, the column vertical 
loads are the resultants of base overturning 
moment, whereas column moments are 
resultants of story shear

• Thus, use 75% of seismic vertical reactions

Reduction of Overturning Moment
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• Combining loads on footings A-5 and A-6, 
applying the 0.75 multiplier for overturning 
effects to the axial loads, and neglecting the 
weight of the foundation and overlying soil,

• P = 688 kips

• Mxx = -6,717 ft-kips

• Myy = -126 ft-kips (which is negligible)

Additive Load w/ Largest 
eccentricity
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• Again combining loads on footings A-5 and A-
6, including the overturning factor, and 
neglecting the weight of the footing and 
overlying soil,

• P = 332 kips

• Mxx = -5,712 ft-kips

• Myy = -126 ft-kips (negligible)

Counteracting Load w/ Largest e
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P
M

W

R

L

e

• Objective is to set L 
and W to satisfy 
equilibrium and 
avoid overloading 
soil

• Successive trials 
usually necessary

Elastic Response
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Given P = 688 k, M =6717 k-ft

e = M / P = 9.76 ft

Try L = 40 ft, B = 9 ft

L/6 < e < L/2 therefore elastic with some uplift

L’ = 3 (L/2-e) = 30.7’

qmax = 2 P / [3 B(L/2-e)]

qmax = 4.98 ksf

Additive Combination
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Bearing Capacity:

Qns = 4,000B’ = 4,000 min (B, L’/2)

Qns = 4,000 min (9, 30.7/2) = 36,000 psf

Design bearing capacity:

ϕQns = 0.45 (36,000 psf)

ϕQns = 16.2 ksf > 4.98 ksf

OK by elastic analysis

Additive Combination
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P
M

W

R

L

e
R

• Same objective as 
for elastic 
response

• Smaller footings 
can be shown OK 
thus

Plastic Response
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• Given P = 332 k; M = 5712 k-ft

• e = M / P = 17.2 ft

• Try L = 40 ft, B = 9 ft

• Try elastic solution:

– L’ = 3(40/2 – 17.2) = 8.4 ft

– qmax = 2 P / [3 B(L/2-e)] = 8.82 ksf

• Bearing Capacity:  

– Qns = 4,000 min (9,8.4/2) = 16,800 psf

– ϕQns = 0.45 (16.8 ksf) = 7.56 ksf < qmax NG

Counteracting Case
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Try plastic solution:

L’ = 4.54 ft

Qns = 4,000 min (9,4.54)

Qns = 18,120 psf

ϕQns = 0.45(18.12) = 8.15 ksf

Check equilibrium:

(8.15 ksf)(4.54’)(9’) = 332 kips = P, satisfied

OK by plastic analysis

Counteracting Case
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• Long term settlement verification

• Load combination:  D+0.5L per Appendix C 
Commentary (ASCE 7)

• P = 340 kips

• Qsustained = 340,000 / (9’ x 40’) = 945 psf

• Qallowable = 2,000 psf

• OK for settlement

Settlement Analysis
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• Moments and shears for reinforcement 
should be checked for the overturning case

• Plastic soil stress gives upper bound on 
moments and shears in concrete

• Horizontal equilibrium:  Hmax< fm(P+W)

in this case friction exceeds demand; passive 
could also be used

Additional Checks
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Corner:  9'x40'x5'-0" w/
top of footing 2'-0" below grade

Middle:
5'x30'x4'-0" 

Side:
8'x32'x4'-0"

Results for all 
Seismic 
Resistant 
System 
Footings
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25 foot square bays at 
center of building

Design of footings for 
core-braced 7 story 
building
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Very high uplifts at 
individual 
columns; mat is 
only practical 
shallow 
foundation

Mat:  45'x95'x7'-0"
with top of mat 
3'-6" below grade

Solution for Central Mat
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(a)
Plastic
solution

(b)
Elastic solution
pressures (ksf)0

4 8

12 16

12.2 ksf

~

Plastic 
solution is 
satisfactory; 
elastic is not

Bearing Pressure Solution
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Central Mat Bearing

Design bearing capacity:

ϕQns = 0.45 (27.12 ksf) = 12.21 ksf OK

(a)
Plastic
solution

12.2 ksf

~
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Verify equilibrium:

(12.21)(6.78)(95) = 7864 kips ≈ Axial Load 
(1749 kips)

(7849)(5.42) = 42,542 ft-kips ≈ Off-axis 
moment (42,544 ft-kips)

(a)
Plastic
solution

12.2 ksf

~

Central Mat Bearing
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(a)
Plastic
solution

12.2 ksf

~

Verify equilibrium:

(12.21 ksf)(6.78 ft)(95 ft) = 7864 kips ≈ Axial 
Load (1749 kips)

(7849 kips)(5.42 ft) = 42,542 ft-kips ≈ Off-axis 
moment (42,544 ft-kips)

Central Mat Bearing
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• Use moment 
contours to define 
areas of flexural 
reinforcement 
density

Central Mat Flexural Reinforcement
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• Critical section at d/2 
(two-way) and d 
(one-way)

• Be aware of size-
effect in thick 
foundation elements

Central Mat Shear Design
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View of cap with 
column above and 
piles below

Passive resistance
(see Figure 4.2-5)

p-y springs
(see Figure 4.2-4)

Pile
cap

Pile

Pile/Pier Foundations
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• Soil Stiffness
– Linear springs –

nomographs e.g. 
NAVFAC DM7.2

– Nonlinear springs –
LPILE or similar 
analysis

• Pile Stiffness:
– Short (Rigid)

– Intermediate

– Long

• Cap Influence

• Group Action

Pile/Pier Foundations
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Sample p-y Curves

Site Class E, depth = 10 ft

Site Class E, depth = 30 ft

Site Class C, depth = 10 ft

Site Class C, depth = 30 ft
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s = 2D

s = 3D

s = 5D

s = 7D
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(4) #5

#4 spiral at
11 inch pitch

(6) #5

#4 spiral at
7.5 inch pitch

(6) #5

#4 spiral at
3.75 inch pitch

4" pile 
embedment

Section A

Section B

Section C

C

B

A

21
'-0

"
23

'-0
"

6'
-4

"

• Site Class C

• Larger amounts where 
moments and shears 
are high

• Minimum amounts 
must extend beyond 
theoretical cutoff points

• “Half” spiral for 3D

Pile Reinforcement
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(4) #7

#4 spiral at
11 inch pitch

(6) #7

#5 spiral at
3.5 inch pitch

(8) #7

#5 spiral at
3.5 inch pitch

4" pile 
embedment

B

A

32
'-0

"
20

'-0
"

12
'-4

"

Section A

Section B

Section C

C

• Site Class E

• Substantially more 
reinforcement

• “Full” spiral for 7D

• Confinement at 
boundary of soft and 
firm soils (7D up and 
3D down)

Pile Design
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• Foundation Ties:  F = PG(SDS/10)

• Pile Caps:  high shears, rules of thumb; look 
for 3D strut and tie methods in future

• Liquefaction:  another topic

• Kinematic interaction of soil layers

Other Topics for Pile Foundations

ISM2
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ISM2 Remove pending Steve Harris material
Ian S. McFarlane; 2.05.2016
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• Designed for axial force (+/-) 

• Pile cap axial load times SDS/10

• Oftentimes use grade beams or 
thickened slabs on grade

(3) #6 top bars

(3) #6 bottom bars

#4 ties at 7" o.c.

2" clear
at sides

3" clear at
top and bottom

Tie between pile caps
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• Predicted differential settlement exceeds limit in 
Table 12.13-3

• Structure must be shown to perform acceptably 
when subject to imposed settlement

Example: Differential Settlement
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• Analysis is required to use shallow 
foundations

• No loss of gravity support permitted

• Residual member strength at least 2/3 of 
undamaged nominal strength

– If demands exceed nominal strength 
consideration of nonlinear behavior is 
required

Structural Requirements
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• Steel SMF 
frame building

• Two conditions 
studied

– Interior

– Perimeter

• Expected 
Settlement, 
v=8”

Floor Framing Plan
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25 ft.

• Exceeds 0.01 rad 
limit in Table 
12.13-3

• Settlement v=8”

• Bay width 25 ft.

Rotation Demand
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W16x36

• SMF members and 
connection can sustain 
0.04 rad.

• Must assess:

– Simple shear tab 
connection to web

– Gravity beam

– Column weak axis 

Condition 1
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DMD VD

MDVD

• Consider the beam fixed-ended with an 
imposed displacement

Check of W16x36 Beam
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• Compute the gravity shear and moment

– 85 psf dead load, 50 psf live load

– 4.17 feet tributary width

Add gravity loading
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• Shear capacity fVn = 141 kip

– Beam is adequate for shear

• Flexural capacity fMn = 174 kip-ft

– Demand exceeds flexural capacity

– Either the beam will yield in flexure or the 
connection will yield

Compare to design values
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• Shear 
capacity
fVn = 78.3 kip

• Flexural 
capacity
fMn = 21 kip-ft

• Connection 
will yield in 
flexure

Check Connection
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• Check plate 
thickness to 
ensure ductile 
behavior 
(plate yielding)

• Check 
permissible 
rotation per 
ASCE 41

Check Connection
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• Maximum plate 
thickness is 
acceptable

– But not if it 
were 50 ksi
steel

Check Connection



Instructional Material Complementing FEMA 1051, Design Examples Foundation Design - 65

• Check plastic 
rotation to provide 
collapse resistance 
per ASCE 41

– Acceptable

Check Connection
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• Considered acceptable, because:

– SMF column is known to be able to resist 
any moment the beam can impart

– Yield moment of weak axis connection is 
so small as to be considered negligible

Bi-Axial bending of column F/2
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W16x36

• Must assess:

– Gravity girder

Condition 2
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∆

∆
ସ ଶ

∆
ସ ଷ

DMD VD

MDVD

• Consider the beam fixed-ended with an 
imposed displacement

Check of W24x62 Girder
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• Compute the gravity shear and moment

– 85 psf dead load, 50 psf live load

– Two equal point loads of 208 sq. ft. each

Add gravity loading
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• Shear capacity fVn = 306 kip

– Girder is adequate for shear

• Flexural capacity fMn = 482 kip-ft

– Demand exceeds flexural capacity

– Either the girder will yield in flexure or the 
connection will yield

Compare to design values



Instructional Material Complementing FEMA 1051, Design Examples Foundation Design - 71

• Shear capacity
fVn = 133 kip

– Short slotted 
holes req’d

• Flexural capacity
fMn = 63 kip-ft

• Connection will 
yield in flexure

Check Connection
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• Check plate 
thickness to 
ensure ductile 
behavior 
(plate yielding)

• Check 
permissible 
rotation per 
ASCE 41

Check Connection
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• Maximum plate 
thickness is 
acceptable

– But not if it 
were 50 ksi
steel

Check Connection
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• Check plastic 
rotation to provide 
collapse resistance 
per ASCE 41

– Acceptable

Check Connection
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• The building can sustain the differential settlements imposed 
by the liquefaction

• Acceptable to use shallow foundations

– This assessment was primarily concerned with 
connection ductility

– Other systems may have different concerns
• Concrete systems must be checked for shear and remain 

essentially elastic

• Non SMF steel moment connections may not have sufficient 
ductility

• Must consider load reversals causing the need for added bracing

Conclusions
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• Effects of Liquefaction on Structures

– Differential settlement leading to damage 
in the superstructure

– Lateral spreading leading to damage to 
foundations and superstructure

Foundations on Liquefiable Soil 
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77

• Structures are intended to resist collapse due 
the liquefaction effects

– MCEG ground motions.

• Distinct from remainder of Provisions

– 2/3 of MCER ground motions

Performance Goals of Provisions
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• Settlement or lateral spreading due to 
liquefaction may cause nonlinear behavior

• This behavior must be addressed where 
applicable

• Complete nonlinear analysis not required, 
provided that nonlinear behavior is assessed 
appropriately.  

Nonlinear Behavior
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• Occurs in loose, saturated sands and silts 
with poor drainage

– Differential settlement

Liquefaction



• Can occur when liquefaction occurs adjacent 
to a scarp, channel or riverbank.  
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Picture by NISEE-PEER, Univ. of California, Berkeley. Used by permission.

Lateral Spreading
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• Structure is on deep foundations

• Lateral displacements exceed Table 12.13-2 limits

Example: Lateral Spreading
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• Analysis is required to demonstrate 
acceptable pile behavior

• Nonlinear behavior is permitted

– No loss of gravity support permitted

– Residual member strength at least 2/3 of 
undamaged nominal strength

– Prescriptive detailing for ductility

– Nominal shear capacity must not be 
exceeded 

Structural Requirements
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24 in.

3
0

 f
t.

• Lateral displacement 24 in

– Exceeds 18 in limit

• Occurs over depth of 30 ft.

• Factored loads per pile 
250k

Pile Foundation
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• Improved flexural ductility at low axial loads

• Choose diameter, such that
೒ ೎

ᇲ

• Choose 30 in. diameter

Pile Diameter
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• Consider fixed-fixed behavior between the 
bottom of the cap and the top of the 
competent soil.  

– Half of P-Delta moment occurs at two 
locations

Flexural Demand
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• Consider fairly 
light reinforcing 
and concrete 
strength of 5ksi

Axial-Moment Interaction
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• Rotation is computed from displacement and 
effective length

௧

• Curvature depends on presumed hinge 
length:   ½ pile diameter

௧

௣

ିଵ

Rotation and Curvature
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• Strength at 
imposed curvature 
remains above 
67% limit

• Imposed curvature 
is less than limit 
due to bar fracture

Moment-Curvature
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• Consider whether 
smaller pile 
diameters would 
be acceptable

• Smaller diameters 
result in earlier bar 
fracture

– Not acceptable

– Use 30” initial 
design

Moment-Curvature
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• ACI 318-14, Sections 18.7.5.2 through .4

• Spiral spacing

– ¼ member dimension (7.5 in.)

– Six time bar diameter (6 in.)

– 6 in.

• Volumetric ratio (larger of the following):
௦ ௖

ᇱ
௬௧

௦
௚

௖௛

௖
ᇱ

௬௧

Detailing for Ductility
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• Choose #5 spirals and compute required 
spacing

௦ ௦ ௖௛ ௦ ௖௛
௖

ଶ
௦

௖௛

௦

௖௛ ௦

• Use pitch of 2½ inches

• Required from the top of the pile to 7 pile 
diameters (17’-6”) below the interface of the 
liquefiable soil and the competent soil below. 

Detailing for Ductility
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• Compute shear demand at probable moment

– Taken conservatively as 1.25 times 
nominal moment

௨ ௣௥

• Compute shear strength ignoring concrete 
within plastic hinge

௡

• Shear capacity is sufficient.

Shear Strength
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Pile Section Detail
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Questions



Instructional Material Complementing FEMA P-1051, Design Examples

• NOTICE: Any opinions, findings, conclusions, or recommendations 
expressed in this publication do not necessarily reflect the views of the 
Federal Emergency Management Agency. Additionally, neither FEMA 
nor any of its employees make any warranty, expressed or implied, nor 
assume any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, product or process 
included in this publication. 

• The opinions expressed herein regarding the requirements of the 
NEHRP Recommended Seismic Provisions, the referenced standards, 
and the building codes are not to be used for design purposes. Rather 
the user should consult the jurisdiction’s building official who has the 
authority to render interpretation of the code.

• Any modifications made to the file represent the presenters' opinion 
only. 

DISCLAIMER


