APPENDIX E

NOMINAL SECTION MOMENT CAPACITY FOR COMPOSITE SECTIONS UNDER SAGGING MOMENTS

(Informative)

The nominal section moment capacity of composite sections under sagging moment determined by simple plastic theory using the assumptions of Clause 6.3.3 may be calculated from Cases 1, 2 or 3, as appropriate.

Case 1 Compression zone entirely within the concrete slab

This case is applicable if—

$$d_{\rm h} \le d_{\rm s}$$
 (see Figure E1)— ... E(1)

where

 d_h = depth of the compression block shown in Figure E.1

$$= \frac{f_y A}{0.85 f_c' b} \qquad \dots E(2)$$

 d_s = thickness of the composite concrete slab

A = area of the cross-section of the steel section

b = width of the concrete flange of the composite section

For these conditions, the nominal section capacity (M_p) may be calculated as follows:

$$M_{\rm p} = Af_{\rm y} \left(d_{\rm g} + \frac{d_{\rm s} - d_{\rm h}}{2} \right) \qquad ... E(3)$$

where

 $d_{\rm g}=$ distance from the centroid of the steel beam to the centroid of the composite concrete slab

FIGURE E1 SECTION MOMENT CAPACITY COMPRESSION ZONE ENTIRELY WITHIN THE CONCRETE SLAB

Case 2 Compression zone extends into the top flange of the steel section

This case is applicable if—

$$d_{\rm s} < d_{\rm h} < (d_{\rm s} + t_{\rm f})$$
 (see Figure E2) ... E(4)

where

 d_s = thickness of the composite concrete slab

 $t_{\rm f}$ = top flange thickness of the steel beam

For these conditions, the nominal section capacity (M_p) may be calculated as follows:

$$M_{\rm p} = f_{\rm y} \left[A d_{\rm g} - b_{\rm f} (d_{\rm h} - d_{\rm s}) d_{\rm h} \right]$$
 ... E(5)

where

ΑI

$$d_{\rm h} = \frac{f_{\rm y} A - 0.85 f_{\rm c}' b d_{\rm s}}{2 f_{\rm y} b_{\rm f}} + d_{\rm s} \qquad \dots E(6)$$

 $b_{\rm f}$ = width of the top flange of the steel section

FIGURE E2 SECTION MOMENT CAPACITY COMPRESSION ZONE EXTENDS INTO THE TOP FLANGE OF THE STEEL SECTION

Case 3 Compression extends into the steel beam

This case is applicable if—

$$d_h > (d_s + t_f)$$
 (see Figure E3) ... E(7)

where

 d_s = thickness of the composite concrete slab

 $t_{\rm f}$ = top flange thickness of the steel beam

For these conditions, the nominal section capacity (M_p) may be calculated as follows:

$$M_{p} = f_{y} [Ad_{g} - b_{f}t_{f}(d_{s} + t_{f}) - t_{w}(d_{h} + t_{f})(d_{h} - d_{s} - t_{f})] \qquad \dots E(8)$$

where

A1

$$d_{\rm h} = d_{\rm s} + t_{\rm f} + \left[\frac{f_{\rm y} (A - 2b_{\rm f} t_{\rm f}) - 0.85 f_{\rm c}' b d_{\rm s}}{2 f_{\rm y} t_{\rm w}} \right] \qquad \dots E(9)$$

 $t_{\rm w}$ = thickness of the web of the steel beam

FIGURE E3 SECTION MOMENT CAPACITY FULL COMPOSITE ACTION, PLASTIC NEUTRAL AXIS IN WEB OF STEEL SECTION