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C
ompressible gas flow with sig-
nificant variation in density 
along pipes is commonplace in 
the chemical processing indus-

tries (CPI). In designing these pipes 
for compressible flow, it is impor-
tant to calculate the pressure loss 
or maximum gas-handling capacity 
for safety and economic reasons. 

Due to the complexity of the equa-
tions for compressible flow, which 
often require time-consuming itera-
tions, current engineering practice 
considers three special flow condi-
tions to simplify calculations: incom-
pressible (fluid density is constant), 
isothermal (fluid temperature is 
constant) and adiabatic (there is 
no heat transfer between the fluid 
and its surroundings). However, 
when flow conditions are unknown, 
and assumptions must be made, 
engineers can become concerned 
with the accuracy of calculations. 
Through thorough derivations and 
analysis of literature, this article 
will delve deeper into pressure-drop 
calculation methods to form a valid 
comparison of each method.

Amidst the confusion of choosing 
the proper pressure-drop calcula-
tion method, two questions arise 
that must be addressed. Firstly, 
engineers may wonder which equa-
tion is more conservative, in terms 
of pressure-drop calculations: iso-
thermal or adiabatic? API Stan-
dard 521 [1] recommends the iso-
thermal method to size all pipes in 

relief systems, with the exception 
of cryogenic conditions, where the 
adiabatic equation is preferable. 
Yu [2] finds that the isothermal 
equation method is not always as 
conservative when compared with 
the adiabatic method, which is 
sometimes more conservative de-
pending on inlet pressure and other  
fluid properties. 
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Figure 1.  These typical adiabatic flow charts can be used to determine pressure 
drop for known inlet or outlet piping conditions



The second major concern engi-
neers may have is determining when 
it is appropriate to assume incom-
pressible flow. Accepted literature 
[3] concludes that the incompress-
ible equation can be applied if the 
density does not vary by more than 
around 30%. It is reported [4] that 
the incompressible equation can be 
employed using an average density 
when the pressure drop is less than 
40% of the inlet pressure. This ar-
ticle will clarify these concerns and 
will demonstrate which pressure-
drop calculation methods are most 
appropriate in various scenarios. 

Compressible fluid flow 
First, the basics of fluid flow in pipes 
must be discussed. The flow of an 
ideal gas through a horizontal pipe 
with constant cross-sectional area 
is governed by Newton’s second law, 
the first law of thermodynamics, the 
ideal gas law and the law of conser-
vation of mass. Equation (1) defines 
Newton’s second law. For definitions 
of the symbols and abbreviations 
used throughout this article, please 
refer to the “Nomenclature” section. 

dp
f

D
dx d+ + =ρυ ρυ υ

2

2
0

� (1)

The first law of thermodynamics 
(steady-state) is shown in Equation 
(2), where h is specific enthalpy.

dh d+ =υ 2

2
0

� (2)

The ideal gas law, shown 
in Equation (3), is crucial for  
fluid-flow calculations.

pv = nRT	 (3)

Equation (4) illustrates the law of 
conservation of mass.

dpv = 0	 (4)

The conditions corresponding 
to incompressible, isothermal and 
adiabatic flow must also be defined. 
These are shown in Equations (5), 
(6) and (7) below.

Incompressible flow:

dρ = 0	 (5)

Isothermal flow:

dT = 0	 (6)

Adiabatic flow:

dh = –cpdT	 (7)

By inserting any of Equations 
(5), (6) and (7) into Equations (1) 
through (4), the incompressible, 
isothermal and adiabatic flow equa-
tions can be derived accordingly.

Another important term that 
must be defined is the Mach Num-
ber (Ma), which is the ratio of gas 
velocity to the local sonic velocity, as 
shown in Equation (8).

Ma
RT
M

= υ
γ

	 (8)

When Ma ≥ 1 (gas velocity exceeds 
sonic velocity), sonic choking occurs. 
The expression for Mach number is 
independent of flow conditions. 

Isothermal flow 
In isothermal flow, the fluid tem-
perature remains constant. By using 
Equations (1) through (4) and Equa-
tion (6), Equations (9) and (10) for iso-
thermal flow of ideal gases at known 
upstream or downstream conditions 
can be derived [5]. 

Equation (9) is used when upstream 
conditions are known. Here, Mi is 
used to denote Mach Number, as the 
specific heat ratio γ is not present.
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Equation (10) is used when down-

stream conditions are known.
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Figure 2.  The effect of molecular weight on adiabatic pres-
sure drop with known outlet conditions is minimal

FIGURE 3.  Specific heat ratio’s effect on pressure drop is 
shown for fluid in adiabatic flow with known outlet conditions

NOMENCLATURE
cp	 �Heat capacity  

(constant pressure)
D	 Pipe diameter
f	 Darcy friction factor
fa	 Acceleration factor
G	 Mass flux
h	 Enthalpy, static
L	 Total pipe length
M	 Molecular weight
n	 Molar flux
p	 Pressure
R	 Ideal gas constant
T	 Temperature
X	 Pipe length

α	 Ratio of downstream  to upstream pressure
β	 �Ratio of squared upstream Mach number to 

squared downstream Mach number
υ	 Velocity
ρ	 Density
γ	 Specific heat ratio
φ	 �Dimensionless group defined by Equation (23)
η	 �Difference between calculated pressure using iso-

thermal equation and incompressible equation 

i	 Isothermal
a	 Adiabatic

c	 Critical
m	 Average

SUBSCRIPTS
1	 Pipe inlet
2	 Pipe outlet
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In Equations (9) and (10), Mi1 
and Mi2 are inlet Mach num-
ber and outlet Mach number, re-
spectively, and they are given by  
Equations (11) and (12). 

Mi
RT
M

1
1= υ

� (11)

Mi
RT

M

2
2=

υ

� (12)

Unlike Equation (8), Equations 
(11) and (12) do not have a physical 
meaning, they are just the result of 
grouping υ2, T and M together when 
deriving the isothermal equation 
[5]. In order to distinguish from the 
Mach number expressed in Equa-
tion (8), Mi is used instead of Ma 
when there is no specific heat ratio 
(γ) in the expressions throughout 
this article. It can be simply dem-
onstrated that the maximum Mi1 is 
equal to one based on two boundary 
conditions: fL/D ≥ 0 and 0 < p2/p1 ≤ 
1. Since the ratio of Mi to Ma is equal 
to the square root of γ the isothermal 
flow will be choked when Ma equals 
one over the  square root of γ.

An isothermal flow chart de-
veloped by Mak [6] is one of two 
graphical methods that have been 
adopted by API Standard 521 [1] 
to size discharge pipes for relief de-
vices. In the chart, p2/p1 is plotted 
against fL/D using either Equation 
(9) with known inlet conditions or 
Equation (10) with known outlet 
conditions. The interested reader is 
referred to Branan's book [7] for the 
detailed procedure on how to use 
Mak’s chart. In this article, Mak’s 
chart is extensively used to compare 
the aforementioned three pressure-
drop calculation methods.

Adiabatic flow
Adiabatic flow has no heat transfer 
into or out of the fluid. Adiabatic 
conditions prevail if the pipe is well 
insulated or if the heat transfer rate 
is very small compared to the fluid 
flow. The adiabatic flow expression 
illustrated in Equation (13) can 
be derived by using Equations (1) 

through (4) and Equation (7).
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There are both inlet and outlet 
Mach numbers in Equation (13), in 
contrast to only one Mach number 
in the isothermal equation expres-
sions derived in Equations (9) and 
(10). In order to plot the adiabatic 
flow equation in Mak’s chart, we 
have to find the relationship be-
tween Ma1 and Ma2 and eliminate 
one of them from Equation (13). The 

ratio of downstream to upstream 
pressure is given by Equation (14).

β = p

p
2

1 � (14)

The ratio of squared upstream to 
downstream Mach number is de-
noted below in Equation (15).

α υ
γ

γ
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= = =Ma
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Using the ideal gas law, we arrive 
at Equation (16).

p

p

T

T
2

1

2

1

2

1

υ
υ

=
� (16)

Rearranging Equations (14), (15) 
and (16) gives expressions for υ1 
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Figure 4.  With known inlet conditions, adiabatic and isothermal fluid flow equa-
tions are compared

Figure 5.  With known outlet conditions, adiabatic and isothermal fluid flow equa-
tions are compared
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and T1, shown respectively in Equa-
tions (17) and (18).

υ α
β

υ1 2=
� (17)

T T1 2= α
β 2

� (18)
For an ideal gas, we know that dh 
= cpdT and cp = γR/(γ – 1). Integrat-
ing Equation (2) from inlet to outlet 
yields Equation (19).

2
1 1 2 2

2
1
2γ

γ
υ υR

T T
−

− = −( )
� (19)

Assuming that T2 > T1 in Equation 
(19), T1 and υ1 can be eliminated 
by inserting Equations (17) and 
(18) into Equation (19), resulting in 
Equation (20).

2
1

1 12 2 2
2

2

2
γ

γ
α
β

υ α
β

R
T

−
− = −







( )
� (20)

Rearranging Equation (20) gives 
Equation (21).

2
1

2

2
2

2 2

2
γ

γ υ
β α
α β

R T

−
= −

− � (21)
By grouping T2 and υ2, Equation 
(21) becomes Equation (22).

2
1

1
2
2

2 2

2
M

Maγ
β α
α β−

= −
− � (22)

Equation (23) simplifies matters by 
denoting the lefthand side of Equa-
tion (22) as φ.

ϕ
γ

=
−

2
1

1
2
2

M

Ma � (23)

Solving for the roots of Equation 
(22), and knowing that both α and 
φ are greater than zero, the expres-
sion’s valid root is given in Equa-
tion (24).

α ϕ ϕ ϕ β
=

− + + +2 24 1
2

( )
� (24)

By inserting Equation (15) into 
Equation (13), we get Equation 
(25).
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The term α is expressed as in Equa-
tion (24), or, alternatively, as shown 
as in Equations (26) and (27).
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With only one Mach number in 
Equations (25) and (26), we can now 
plot the adiabatic flow equation 
using Mak’s chart. A typical graphi-
cal representation of Equations (25) 
and Equation (26) is shown in Fig-
ure 1, for known outlet and inlet 

conditions. In Figure 1b, the dashed 
line represents the boundary be-
tween the subsonic and supersonic 
regions. Ma2 is equal to one along 
the dashed line.

From Equations (25) and (26), we 
can also see that p2/p1 is affected 
by pipe data (fL/D), Mach number 
(Ma1 or Ma2), specific heat ratio (γ) 
and molecular weight (M). Figure 1 
clearly shows how p2/p1 varies with 
different fL/D and Mach number. 
In the following section, the effect of 
molecular weight and specific heat 
ratio will be investigated. 

Four virtual fluids with the same 
specific heat ratio (γ = 1.4) and dif-
ferent molecular weight (2, 10, 20 
and 40) are selected for comparison. 
They pass through the same pipe 
(diameter and length) at the same 
mass flowrate. The outlet pressure 
(p2) and Mach number (Ma2) for all 
four fluids are identical. The cal-
culated p2/p1 change with fL/D is 
shown in Figure 2. The clustering of 
the four curves in Figure 2 indicates 
that the effect of molecular weight 
on pressure drop is negligible.

Similarly, the p2/p1 values of 
four fluids with the same molecu-
lar weight and different γ is plotted 
against fL/D. In contrast to Figure 
2, Figure 3 shows four curves with 
wide separation, indicating that, 
unlike molecular weight, specific 
heat ratio significantly affects pres-
sure drop. At the same pipe length,  
p2/p1 decreases with increasing spe-
cific heat ratio. Since all four fluids 
have the same outlet pressure (p2), 
a smaller p2/p1 in Figure 3 corre-
sponds to larger p1 and larger pres-
sure drop. At fL/D values of around 
one, the calculated p1 for a fluid with 
γ of 1.4 is about 6% higher than that 
for fluid with γ of 1.1.

Isothermal versus adiabatic
With the adiabatic flow equation 
plotted in Mak’s chart, we now 
can compare isothermal and adia-
batic flow in graphical form. A vir-
tual fluid with γ = 1.4 and M = 20 
is chosen for the comparison. The 
fluid passes through a pipe with a 
length of L and an internal diam-
eter of D. The real flow condition is 
unknown, instead, we assume iso-
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thermal and adiabatic conditions 
for the pressure-drop calculation. 
The results are then compared. Two 
scenarios are considered in the cal-
culation, one with known inlet con-
ditions, and one with known outlet 
conditions. For both isothermal 
and adiabatic flow, the Mach num-
ber (Ma) based on sonic velocity, as 
defined in Equation (8), is used in  
the comparison.
Scenario 1: known inlet condi-
tions. With inlet conditions p1, υ1, 
T1 and Ma1 known, outlet condi-
tions p2, υ2, T2 (which is the same 
as T1 for isothermal flow) and Ma2 
must be calculated. Using Equa-
tions (9) and (26), adiabatic and iso-
thermal curves are plotted for p2/
p1 versus fL/D in Figure 4, where 
the red and blue lines represent the 
boundary between subsonic and su-
personic region. In Figure 4, it is no-
table that, at large Ma1 values, the 
solid line is below the dashed line, 
which means that calculated p2 val-
ues for isothermal flow are smaller 
than that for adiabatic flow at  
the same fL/D. 

In other words, isothermal flow 
provides more conservative results 
regarding pressure-drop calcula-
tions. Also, it should be noted that 
the solid and dashed lines nearly 
overlap with each other at small 
values of Ma1, implying that the 
difference between isothermal and 
adiabatic flow assumptions is in-
significant. The discrepancy only 
becomes obvious when the Mach 

number is very large (>0.3). Addi-
tionally, the red line is above the 
blue line, which shows that the 
critical pressure at the pipe’s outlet 
(p2), for a given flowrate and pipe 
length, is lower for adiabatic flow 
than for isothermal flow. 
Scenario 2: known outlet condi-
tions. In the next scenario, p1, υ1, 
T1 and Ma1 under isothermal and 
adiabatic flow are to be calculated 
and compared using known outlet 
parameters (p2, υ2, T2 and Ma2). 
The result is shown in Figure 5. 
Similar to the previous scenario 
with known inlet conditions, the 
solid line and dashed line almost 
overlap with each other at small 
Mach numbers (Ma2 < 0.3), imply-
ing that the difference between the 
two methods is negligible. When 
Ma2 becomes larger (Ma2 ≥ 0.4), the 
two lines separate and the solid line 
is below the dashed line, suggesting 
that isothermal flow gives a larger 
p1 value than predicted by adia-
batic flow. It is also worth mention-
ing that the difference between iso-
thermal and adiabatic flow is small 
at large fL/D values (greater than 
10) regardless of the Mach number. 
Thus, we can apply either isother-
mal or adiabatic flow equations in 
this scenario.

Overall, the isothermal flow equa-
tion is more conservative than the 
adiabatic equation in terms of pres-
sure-drop calculations, because the 
solid line is below the dashed line in 
Figures 4 and 5 at most conditions. 

However, the question arises as to 
whether isothermal flow is always 
conservative, even when the solid 
and dashed lines are visually in-
separable. A careful look at Figures 
4 and 5 finds that the answer is 
“yes” for known inlet conditions but 
“no” for known outlet conditions, 
in which the dashed line turns 
out to be above the solid line when  
p2/p1 decreases to a critical value. 
This critical p2/p1 value is found to 
be greatly dependent on the fluid’s 
molecular weight, but not on spe-
cific heat ratio. As shown in Figure 
6, critical p2/p1 continues to de-
crease with molecular weight. For 
hydrogen with a molecular weight 
of 2 and a specific heat ratio of 1.3, 
the adiabatic equation becomes 
more conservative (larger p1) as p2/
p1 drops below 0.53 when the outlet 
Mach number Ma2 is 0.04.

Temperature and velocity
The pressure drop and variation in 
temperature and velocity along a 
pipe are always interrelated. With 
known inlet conditions, the dimen-
sionless temperature (T2/T1) and 
velocity profiles (υ2/υ1) for both 
isothermal and adiabatic flow are 
depicted in Figure 7. At both small 
and large Mach number values, it 
can be clearly seen that υ2/υ1 under 
isothermal flow is larger than that 
under adiabatic flow at the same 
pipe length (fL/D). Since higher ve-
locity will result in larger pressure 
drop, Figure 7 indirectly explains 
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Figure 7.  Velocity and temperature profiles of isothermal and adiabatic flow with known inlet conditions for two different Ma1 
values show that isothermal flow assumptions are generally more conservative in terms of pressure-drop calculations
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why isothermal flow is more con-
servative in term of pressure-drop 
calculations. Figure 7a also shows 
that the temperature drop for adia-
batic flow is very small (<0.1% when 
fL/D < 50). 

So we may conclude that the 
temperature remains constant at 
a small inlet Mach number (Ma1), 
even if the flow is adiabatic. Com-
paring Figure 7a and Figure 4, we 
can understand why the solid and 
dashed lines overlap each other 
when Ma1 is less than 0.3.

Critical mass flux 
Critical mass flux under isother-
mal flow is defined as the maxi-
mum mass flowrate per unit duct 
area at Mi1 = 1. It is reported by 
Lapple [8] and referenced in API 
Standard 521 [1] that the critical 
mass flux of adiabatic flow (where 
γ = 1.4) is 12.9% higher than that 
of isothermal flow under the same 
inlet conditions. However, Lap-
pel’s model represents gas expan-
sion from an infinite reservoir 
through a frictionless convergent 
nozzle, which has an inlet velocity 
equal to zero. This assumption is 
not valid for gas flowing in pipe-
lines. With the equations derived 
in this article, we can calculate 
and compare the critical mass flux 
for isothermal and adiabatic flow 
and find that the reported value of 
12.9% is not accurate. The detailed 
calculations are presented below. 
First, we define critical mass flux 
under isothermal flow at Mi1 = 1 
as the maximum mass flux (Gmax) 
in Equation (28).

G p
M

RTmax = 1
1 � (28)

At any pipe length, Gmax under 
isothermal flow can be expressed  
as Equation (29). 

G p
M

RTci i i i= =ρ υ2 2 2
1 � (29)

Where p2i and υ2i are outlet pres-
sure and velocity when the condi-
tions in Equation (30) are true.

Mi
RT
M

i
2

2

1

1= =υ

� (30)
Therefore, the ratio of critical mass 
flux at any pipe length to maximum 
mass flux under isothermal flow is 
given in Equation (31).

G

G

p

p
ci i

max

= 2

1 � (31)

By solving Equation (10) and set-
ting Mi2 equal to one, p2i/p1 can 
be determined. At any pipe length, 
the critical mass flux under adia-
batic flow can be expressed as  
Equation (32). 

G p
M

RTca a a a
a

= =ρ υ γ
2 2 2

2 � (32)

The ratio of critical mass flux 
under adiabatic flow to maximum 
mass flux under isothermal flow is 
shown by Equation (33).
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T
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= 2

1

1

2

γ
� (33)

Based on Equations (14) through 
(17), we arrive at Equation (34).

G

G

Ma

Ma
ca a

amax

= = =β γα
β

γα γ2
1

2 � (34)

At critical flow, Ma2a is equal to 
1, so Equation (34) is simplified  
to Equation (35). 

G
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Ma

Ma
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a
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= =1

2
1γ γ

� (35)

In Equation (35), Ma1a can be cal-
culated by solving Equation (13) at 
any fL/D and setting Ma2a equal to 
one. Equations (31) and (35) are plot-
ted in Figure 8 for three fluids with 
different specific heat ratios. At any 
pipe length, the ratio of critical mass 
flux of adiabatic flow to isothermal 
is given by Equation (36). 
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p
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1
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2
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� (36)

Equation (36) can be simplified 
to Equation (37) since p1/p2a and  
Ma1a equal one when the square 
root of fL/D equals zero.

G

G
ca

ci

= γ
� (37)

At γ = 1.4, Gca/Gci is equal to 
1.183, so the critical mass flux 
under adiabatic flow is 18.3% 
higher than that under isothermal 
flow, which is different from the 
reported value of 12.9% from API 
Standard 521. 

Isothermal  versus  incompressible 
In deciding whether to apply the 
incompressible flow equation for 
compressible fluid flow conditions, 
engineers often rely on certain rules 
of thumb. However, some of these 
rules of thumb can be quite mislead-
ing [9]. In the following section, we 
examine the difference between iso-
thermal and incompressible equa-
tions for pressure-drop calculations.

For an ideal gas flowing through 
a horizontal pipe, Equation (38) 
shows that the total pressure drop 
is the summation of pressure drop 
caused by friction and acceleration. 

Figure 8.  The 
ratio of critical 
mass flux to maxi-
mum mass flux as 
a function of pipe 
length varies with 
specific heat ratio
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∆pTotal = ∆pFriction + ∆pAcceleration 
� (38)

For incompressible flow, the accel-
eration term is negligible. So Equa-
tion (38) becomes Equation (39).

∆ ∆p p f
L

DFriction
m m= = ρ υ 2

2 � (39)

In Equation (39), ρm and υm are 
the averaged density and velocity, 
which are defined in Equations (40) 
and (41), respectively.

ρm

p p M

RT
= +1 2

2 � (40)

1 1
2

1 1
1 2υ

ρ
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G
= = +
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


 � (41)

Moving fL/D to the lefthand 
side in Equation (39) gives  
Equation (42).
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1 2
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Substituting ρm and υm with 
Equation (40) and (41) in Equation 
(42) results in the expression shown 
in Equation (43).
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Equation (43) can be transformed 

to Equation (44) with a known out-
let Mach number Mi2.
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Equations (43) and (44) are the 
incompressible flow equations. Com-
paring with the isothermal equation 
defined in Equation (9), it is seen that 
the natural log term is cancelled out. 
Since pressure drop due to accelera-
tion is negligible for incompressible 
flow, it can be deduced that the natu-
ral log term in Equation (9) accounts 
for acceleration and the first term 
accounts for friction, as illustrated 

in Equation (45).
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The difference between the calcu-
lated pressure using the isothermal 
equations defined by Equations (9) 
and (10) and the incompressible 
equations defined by Equations 
(43) and (44) is shown in Tables 1A 
and 1B for both known inlet and 
outlet conditions. The difference 
is expressed for known outlet and 
inlet conditions by Equations (46)  
and (47), respectively.

For known outlet conditions: 

η =
−p p

p
isothermal incompressible

isoth

1 1

1

( ) ( )

( eermal )

%× 100
�(46)

For known inlet conditions:

η =
−p p

p
incompressible isothermal

isoth

2 2

2

( ) ( )

( eermal )

%× 100
�(47)

It can be seen from Table 1 that 
η depends on both pressure drop  
(p2/p1) and Mach number (Mi). At 
certain Mi values, η is at its maxi-
mum at p2/p1 values of around 0.7–
0.8 and gradually decreases with 
p2/p1. However, η might not be prac-
tically correct when p2/p1 is very 
small since it requires immense 
energy to maintain constant tem-
perature. The values with a differ-
ence larger than 1% are highlighted 
in green in Table 1. Since Equations 
(43) and (44) do not contain natural 
log terms, we can very quickly size 
compressible fluid pipe with known 
error as shown in Table 1. Detailed 
below are the steps for calculating 

Table 1A.  Mach Number at pipe outlet (Mi2 )

p
2/
p

1(
in
c
o
m
p
re
ss
ib
le
)

0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.01 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 0.02% 0.02% 0.03% 0.04% 0.05%

0.05 0.00% 0.00% 0.01% 0.03% 0.07% 0.12% 0.19% 0.27% 0.37% 0.48% 0.60% 0.74%

0.1 0.00% 0.01% 0.02% 0.09% 0.21% 0.37% 0.57% 0.82% 1.11% 1.45% 1.83% 2.25%

0.2 0.00% 0.02% 0.06% 0.26% 0.58% 1.02% 1.59% 2.27% 3.07% 3.97% 4.98% 6.08%

0.3 0.00% 0.03% 0.11% 0.43% 0.97% 1.71% 2.66% 3.80% 5.12% 6.61% 8.26% 10.04%

0.4 0.00% 0.04% 0.15% 0.59% 1.31% 2.32% 3.61% 5.15% 6.95% 8.97% 11.21% 13.61%

0.5 0.00% 0.04% 0.17% 0.69% 1.56% 2.77% 4.31% 6.19% 8.38% 10.86% 13.61% 16.59%

0.6 0.00% 0.05% 0.18% 0.74% 1.67% 2.98% 4.68% 6.77% 9.26% 12.12% 15.33% 18.84%

0.7 0.00% 0.04% 0.18% 0.71% 1.60% 2.90% 4.61% 6.77% 9.42% 12.56% 16.18% 20.21%

0.8 0.00% 0.04% 0.14% 0.58% 1.34% 2.45% 3.97% 5.98% 8.56% 11.81% 15.76% 20.38%

0.9 0.00% 0.02% 0.09% 0.35% 0.82% 1.53% 2.56% 4.01% 6.07% 8.96% 12.99% 18.30%

0.91 0.00% 0.02% 0.08% 0.32% 0.75% 1.41% 2.36% 3.72% 5.68% 8.48% 12.47% 17.85%

0.92 0.00% 0.02% 0.07% 0.29% 0.68% 1.28% 2.15% 3.42% 5.25% 7.94% 11.88% 17.34%

0.93 0.00% 0.02% 0.06% 0.26% 0.61% 1.14% 1.93% 3.09% 4.79% 7.34% 11.20% 16.73%

0.94 0.00% 0.01% 0.06% 0.23% 0.53% 1.00% 1.70% 2.73% 4.28% 6.67% 10.41% 16.02%

0.95 0.00% 0.01% 0.05% 0.19% 0.45% 0.85% 1.46% 2.35% 3.73% 5.91% 9.50% 15.16%

0.96 0.00% 0.01% 0.04% 0.16% 0.37% 0.70% 1.20% 1.95% 3.12% 5.06% 8.41% 14.12%

0.97 0.00% 0.01% 0.03% 0.12% 0.28% 0.53% 0.92% 1.51% 2.46% 4.08% 7.10% 12.79%

0.98 0.00% 0.00% 0.02% 0.08% 0.19% 0.36% 0.63% 1.05% 1.72% 2.94% 5.45% 11.03%

0.99 0.00% 0.00% 0.01% 0.04% 0.10% 0.19% 0.32% 0.54% 0.91% 1.61% 3.27% 8.37%

0.992 0.00% 0.00% 0.01% 0.03% 0.08% 0.15% 0.26% 0.44% 0.73% 1.31% 2.73% 7.63%

0.995 0.00% 0.00% 0.01% 0.02% 0.05% 0.09% 0.16% 0.28% 0.47% 0.84% 1.84% 6.23%

0.999 0.00% 0.00% 0.00% 0.00% 0.01% 0.02% 0.03% 0.06% 0.10% 0.18% 0.41% 2.99%

p p

p
isothermal incompressible

isother

1 1

1

( ) ( )

(

−

mmal )

% %× ≥100 1

(a) Calculated inlet pressure difference (at known outlet conditions) between using the incompressible and iso-
thermal equations (η >1% is highlighted green)
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p2 using Equations (43) and (44). 
By rearranging Equation (44), we 
arrive at Equation (48), an expres-
sion for p2/p1. 
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p f
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Miincomp
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1
2
2

1

1





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=
+

� (48)

For given pipe characteristics 
(length, diameter and roughness), 
fluid flowrate, Mi2 and p2, fL/D 
is first calculated — f can be read 
from a Moody diagram or calcu-
lated with various equations. Next, 
we must calculate p2/p1 using 
Equation (48). Afterwards, we de-
termine η from Table 1A based on 
Mi2 and p2/p1(incomp.). If η is ac-
ceptable, then p1 is reported as the 
final result. If η is not acceptable, 
the isothermal expression in Equa-
tion (10) must be used to re-calcu-

late p2/p1(isothermal) and report a 
new p1 value.

Modified incompressible flow
From Table 1 and Equations (43) 
and (44), it can be seen that the iso-
thermal flow equation is more con-
servative than the incompressible 
equation because the latter does 
not include the acceleration term. 
Here, we present a modified incom-
pressible equation to account for the 
missing acceleration term in Equa-
tions (43) and (44). Equation (49) 
defines fa, the acceleration factor, 
where υm and pm are averaged ve-
locity and pressure.

f
G

pa
m

m

= υ

� (49)
The total pressure drop and pressure 
drop due to friction can be linked as 
in Equation (50) below [2].

∆
∆
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Further expanding Equation (49) 
gives Equations (51) and (52).
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The pressure drop due to friction 
is expressed in Equation (39). By 
substituting υm and pm, Equation 
(39) becomes Equation (53). 
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Inserting Equations (51) and 
(53) into Equation (50) yields  
Equation (54).
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Moving fL/D to the lefthand 
side brings us to the expressions in 
Equations (55) and (56).
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With known outlet conditions, Equa-
tions (55) becomes Equation (56).
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Table 1b.  Mach Number at pipe inlet  (Mi1 )
0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p
2/
p

1(
in
c
o
m
p
re
ss
ib
le
)

0.01 — — — — — — — — — — —

0.05 15.56% — — — — — — — — — —

0.1 2.41% — — — — — — — — — —

0.2 0.41% 12.97% — — — — — — — — —

0.3 0.13% 3.63% 20.26% — — — — — — — —

0.4 0.06% 1.49% 6.77% — — — — — — — —

0.5 0.03% 0.71% 3.02% 17.26% — — — — — — —

0.6 0.01% 0.36% 1.49% 7.14% 26.14% — — — — — —

0.7 0.01% 0.18% 0.75% 3.34% 9.36% 29.04% — — — — —

0.8 0.00% 0.09% 0.36% 1.52% 3.89% 8.66% 22.34% — — — —

0.9 0.00% 0.03% 0.13% 0.55% 1.35% 2.72% 5.19% 10.71% — — —

0.91 0.00% 0.03% 0.12% 0.48% 1.17% 2.35% 4.44% 8.81% — — —

0.92 0.00% 0.02% 0.10% 0.42% 1.01% 2.01% 3.75% 7.23% 21.16% — —

0.93 0.00% 0.02% 0.08% 0.35% 0.85% 1.70% 3.13% 5.88% 14.05% — —

0.94 0.00% 0.02% 0.07% 0.29% 0.71% 1.40% 2.56% 4.71% 10.16% — —

0.95 0.00% 0.01% 0.06% 0.24% 0.57% 1.13% 2.04% 3.68% 7.43% — —

0.96 0.00% 0.01% 0.04% 0.19% 0.44% 0.87% 1.56% 2.78% 5.33% — —

0.97 0.00% 0.01% 0.03% 0.14% 0.32% 0.63% 1.13% 1.97% 3.63% 9.12% —

0.98 0.00% 0.01% 0.02% 0.09% 0.21% 0.41% 0.72% 1.24% 2.23% 4.78% —

0.99 0.00% 0.00% 0.01% 0.04% 0.10% 0.20% 0.35% 0.59% 1.03% 2.03% —

0.992 0.00% 0.00% 0.01% 0.03% 0.08% 0.16% 0.27% 0.47% 0.81% 1.58% 5.37%

0.995 0.00% 0.00% 0.01% 0.02% 0.05% 0.10% 0.17% 0.29% 0.50% 0.95% 2.66%

0.999 0.00% 0.00% 0.00% 0.00% 0.01% 0.02% 0.03% 0.06% 0.10% 0.18% 0.44%

p p

p
isothermal incompressible

isother

2 2

2
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−

mmal )

% %× ≥100 1

(b) Calculated outlet pressure difference (at known inlet conditions) between using the incompressible and isother-
mal equations (η >1% is highlighted green)



Equation (56) is the modified incom-
pressible flow equation. Comparing 
Equation (56) with Equation (43), it 
can be seen that the second term on 
the righthand side accounts for ac-
celeration. Equation (56) and Equa-
tion (10) are plotted in Figure 9, 
which shows the solid and dashed 
lines overlapping each other at all 
chosen values for the Mach num-
ber. Therefore, the modified in-
compressible flow equation can be 
used to size pipes where fluid flow  
is compressible.

Conclusions
Based on the derivations in this ar-
ticle, some important conclusions 
can be made:
1. For pipe sizing with compressible 
fluids, the isothermal flow equation 
is preferable since it gives a more 
conservative pressure drop esti-
mate in the scope of practical engi-
neering design. 

2. When considering whether it is 
acceptable to use the incompress-
ible equation to size gas pipes, both 
pressure drop and Mach number 
should be considered. 
3. For a given pipe length and 

diameter, the critical mass flux 
under adiabatic conditions is 
larger than that under isother-
mal conditions. The maximum 
ratio between critical mass flux 
under adiabatic and isothermal 
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Figure 9.  Comparison of isothermal and incompressible flow under the same inlet 
conditions shows that is it acceptable to use the modified incompressible flow equa-
tion to size compressible fluid flow systems

condition is  equal to the square 
root of γ.
4. Under adiabatic flow, specific 
heat ratio has significant effect on 
pressure drop, but the effect of mo-
lecular weight is negligible.

With these conclusions in mind 
and the equations derived in this 
article, engineers can begin to make 
educated assumptions when they 
are asked to size and determine pres-
sure drop for pipes with compressible  
fluid flow.	 ■ 

Edited by Mary Page Bailey
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