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CHAPTER21
BEAMS CURVED
IN PLAN

Curved beams in an office building.

21.1 INTRODUCTION

Beams curved in plan are used to support curved floors in buildings, balconies, curved ramps and halls, circular
reservoirs, and similar structures. In a curved beam, the center of gravity of the loads acting normal to the plane
of curvature lies outside the line joining its supports. This situation develops torsional moments in the beam, in
addition to bending moments and shearing forces. To maintain the stability of the beam against overturning, the
supports must be fixed or continuous. In this chapter, the design of curved beams subjected to loads normal to the
plane of curvature is presented. Analysis of curved beams subjected to loads in the plane of curvature is usually
discussed in books dealing with mechanics of solids.

Analysis of beams curved in plan was discussed by Wilson and Quereau [1]. They introduced formulas and
coefficients to compute stresses in curved flexural members. Timoshinko [2, 3] also introduced several expressions
for calculating bending stresses in square and rectangular sections. Tables and formulas for the calculation of bending
and torsional moments, shear, and deflections for different cases of loadings on curved beams and rings are presented
by Roark and Young [4].

21.2 UNIFORMLY LOADED CIRCULAR BEAMS

The first case to be considered here is that of a circular beam supported on columns placed at equal distances along
the circumference of the beam and subjected to normal loads. Due to symmetry, the column reactions will be equal,
and each reaction will be equal to the total load on the beam divided by the number of columns. Referring to Fig. 21.1,
consider the part AB between two consecutive columns of the ring beam. The length of the curve AB is r(2𝜃), and
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21.2 Uniformly Loaded Circular Beams 743

Figure 21.1 Circular beam.

the total load on each column is Pu = 𝑤ur(2𝜃), where r is the radius of the ring beam and 𝑤u is the factored load on
the beam per unit length. The center of gravity of the load on AB lies at a distance

x =
(r sin 𝜃

𝜃

)

from the center O. The moment of the load Pu about AB is

MAB = Pu × y = Pu(x − r cos 𝜃) = 𝑤ur(2𝜃)
(r sin 𝜃

𝜃
− r cos 𝜃

)

Consequently, the two reaction moments, MA and MB, are developed at supports A and B, respectively.
The component of the moment at support A about AB is MA sin 𝜃 = MB sin 𝜃. Equating the applied moment, MAB,
to the reaction moments components at A and B,

2MA sin 𝜃 = MAB = 𝑤ur(2𝜃)
(r sin 𝜃

𝜃
− r cos 𝜃

)

MA = MB = 𝑤ur2(1 − 𝜃 cot 𝜃) (21.1)

The shearing force at support A is

VA =
Pu

2
= 𝑤ur𝜃 (21.2)
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744 Chapter 21 Beams Curved in Plan

The shearing force at any point N, VN, is VA − 𝑤u (r𝛼), or

VN = 𝑤ur(𝜃 − a) (21.3)

The load on AN is 𝑤u(r𝛼) and acts at a distance equal to

Z =
r sin 𝛼∕2

𝛼∕2

from the center O. The bending moment at point N on curve AB is equal to the moment of all forces on one side of
O about the radial axis ON.

MN = VA(r sin 𝛼) − MA cos 𝛼 − (load on the curve AN)
(

Z sin
𝛼

2

)

MN = 𝑤ur𝜃(r sin 𝛼) −𝑤ur2(1 − 𝜃 cot 𝜃) cos 𝛼

− (𝑤ur𝛼)
(

r sin 𝛼∕2

𝛼∕2
× sin

𝛼

2

)

= 𝑤ur2
[
𝜃 sin 𝛼 − cos 𝛼 + (𝜃 cot 𝜃 cos 𝛼) − 2 sin2 𝛼

2

]

MN = 𝑤ur2[𝜃 sin 𝛼 + (𝜃 cot 𝜃 sin 𝛼) − 1] (21.4)

(Note that cos 𝛼 = 1 − 2 sin2 𝛼/2.) The torsional moment at any point N on curve AB is equal to the moment of all
forces on one side of N about the tangential axis at N.

TN = MA sin 𝛼 − VA × r(1 − cos 𝛼) +𝑤rr𝛼

(
r −

r sin 𝛼∕2

𝛼∕2
× cos 𝛼

2

)

= 𝑤ur2(1 − 𝜃 cot 𝜃) sin 𝛼 −𝑤ur2𝜃(1 − cos 𝛼) +𝑤ur2(𝛼 − sin 𝛼)

Tn = 𝑤ur2(𝛼 − 𝜃 + 𝜃 cos 𝛼 − 𝜃 cot 𝜃 sin 𝛼) (21.5)

To obtain the maximum value of the torsional moment TN, differentiate Eq. 21.5 with respect to 𝛼 and equate
it to 0. This step will give the value of 𝛼 for maximum TN:

sin 𝛼 = 1
𝜃
[sin2 𝜃 ± cos 𝜃

√
𝜃2 − sin2 𝜃] (21.6)

The values of the support moment, midspan moment, the torsional moment, and its angle 𝛼 from the support
can be calculated from Eqs. 21.1 through 21.6. Once the number of supports n is chosen, the angle 𝜃 is known:

2𝜃 = 2𝜋
n

and 𝜃 = 𝜋

n

and the moment coefficients can be calculated as shown in Table 21.1. Note that the angle 𝛼 is half the central angle
between two consecutive columns.

Pu(load on each column) = 𝑤ur(2𝜃) = 𝑤ur
(2𝜋

n

)

Vu(maximum shearing force) =
Pu

2

Negative moment at any support = K1𝑤ur2 (21.7)

Positive moment at midspan = K2𝑤ur2 (21.8)

Maximum torsional moment = K3𝑤ur2 (21.9)
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21.2 Uniformly Loaded Circular Beams 745

Table 21.1 Force Coefficients of Circular Beams

Number of Supports, n 𝜽 = 𝝅
n

K1 K2 K3 𝜶∘ for Tu (max)

4 90 0.215 0.110 0.0330 19.25
5 72 0.136 0.068 0.0176 15.25
6 60 0.093 0.047 0.0094 12.75
8 45 0.052 0.026 0.0040 9.50
9 40 0.042 0.021 0.0029 8.50

10 36 0.034 0.017 0.0019 7.50
12 30 0.024 0.012 0.0012 6.25

Figure 21.2 Forces in a circular beam.

The variation of the shearing force and bending and torsional moments along a typical curved beam AB are
shown in Fig. 21.2.

Example 21.1

Design a circular beam supported on eight equally spaced columns. The centerline of the columns lies on a 40-ft-diameter
circle. The beam carries a uniform dead load of 6 k/ft and a live load of 4 k/ft. Use normal-weight concrete with f ′c = 4 ksi,
fy = 60 ksi, and b = 14 in.
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746 Chapter 21 Beams Curved in Plan

Solution

1. Assume a beam size of 14 × 24 in. The weight of the beam is

14 × 24
12 × 12

(0.150) = 0.35 K∕ft

The factored uniform load is 𝑤u = 1.2(6 + 0.35) + 1.6(5) = 15.7 K/ft
2. Because the beam is symmetrically supported on eight columns, the moments can be calculated by using Eqs.

21.7 through 21.9 and Table 21.1 Negative moment at any support is K1𝑤u r2 = 0.052(15.7)(20)2 = 326.6 K⋅ft.
The positive moment at midspan is K2𝑤u r2 = 0.216(15.7) (20)2 = 163.3 K⋅ft. The maximum torsional moment is
K3 𝑤u r2 = 0.004(15.7)(20)2 = 25.12 K⋅ft. Maximum shear is

Vu =
Pu

2
=

𝑤ur

2

(2𝜋
n

)
= (15.7)(20)

(
𝜋

8

)
= 123.3 K

3. For the section at support, Mu = 326.6 K⋅ft. Let d = 21.5 in.; then

Ru =
Mu

bd2
= 326.6 × 12,000

14(21.5)2
= 605 psi

For f ′c = 4 ksi and fy = 60 ksi, 𝜌 = 0.0126 < 𝜌max = 0.0179, 𝜙 = 0.9:

As = 0.0126 × 14 × 21.5 = 3.8 in.2

4. For the section at midspan, Mu = 163.3 K⋅ft

Ru = 163.3 × 12,000
14(21.5)2

= 303 psi

𝜌 = 0.006 and As = 0.006 × 14 × 21.5 = 1.81 in.2

Use two no. 9 bars.
5. Maximum torsional moment is Tu = 25.12 K⋅ft, and it occurs at an angle 𝛼 = 9.5∘ from the support (Table 21.1).

Shear at the point of maximum torsional moment is equal to the shear at the support minus 𝑤ur𝛼.

Vu = 123.3 − 15.7(20)
( 9.5

180
× 𝜋

)
= 71.24 K

The procedure for calculation of the shear and torsional reinforcement for Tu = 25.12 K⋅ft and Vu = 71.24 K is
similar to Example 15.2

a. Shear reinforcement is required when Vu > 𝜙𝜆
√

f ′c b𝑤d

Assume Av ≥ A𝜈1 min

𝜙Vc = 𝜙

[
2𝜆

√
f ′c +

Nu

6Ag

]
bd = 0.75 ×

[
2 × 1 ×

√
4000 + 0

]
× 14 × 21.5 = 28.6 K

since 𝜙𝜆
√

f ′c b𝑤d = 14.3 K < Vu = 71.24 K.

Shear reinforcement is required.
b. Torsional reinforcement is required when

Tu > Ta = 𝜙𝜆
√

f ′c

(
A2

cp

Pcp

)

Acp = x0y0 = 14 × 24 = 336 in.2

Pcp = 2(x0 + y0) = 2(14 + 24) = 76 in.

Ta = 0.75 × 1 ×
√

4000

(
3362

76

)
= 70.5 K ⋅ in.

since Tu = 25.12 K ⋅ ft = 301.4 K ⋅ in. > Ta



Hassoun c21.tex V1 - 01/14/2020 9:28 P.M. Page 747

�

� �

�

21.2 Uniformly Loaded Circular Beams 747

Therefore, torsional reinforcement is required.
c. Design for shear:

i. Vu = 𝜙Vc + 𝜙Vs and 𝜙Vc = 28.6 K. Then 71.24 = 28.6 + 0.75 Vs, so Vs = 56.8 K.

ii. Maximum Vs = 8
√

f ′c bd = 8
√

4000(14 × 21.5) = 152.3 K > Vu.

iii. A𝜈

S
=

Vs

fyd
= 56.8

60 × 21.5
= 0.044 in.2∕in. (2 legs)

A𝜈

2 S
= 0.022 in.2∕in. (one leg)

d. Check for A𝜈 ≥ A𝜈1 min

A𝜈1 min

s
= 0.75

√
f ′c

(
b𝑤
fyt

)
≥ 50

(
b𝑤
fyt

)

= 0.75 ×
√

4000 ×
( 14

60000

)
≥ 50 ×

( 14
60000

)

= 0.011 in.2∕in. ≥ 0.012 in.2∕in.

A𝜈1 min

s
= 0.012 in.2∕in.

Since
A𝜈

2 S
= 0.022 in.2∕in.

A𝜈

s
= 0.044 in.2∕in. >

A𝜈1 min

s

Therefore, A𝜈 ≥ A𝜈1 min. Hence check is ok.
e. Design for torsion:

i. Choose no. 4 stirrups and a 1.5-in. concrete cover:

x1 = 14 − 3.5 = 10.5 in. y1 = 24 − 3.5 = 20.5 in.

A0 h = x1y1 = 10.5(20.5) = 215.25 in.2

A0 = 0.85A0 h = 183 in.2

ph = 2(x1 + y1) = 2(10.5 + 20.5) = 62 in.

For 𝜃 = 45∘, cot 𝜃 = 1.0.
ii. Check the adequacy of the size of the section using Eq. 15.21:

√√√√√
(

Vu

b𝑤d

)2

+

(
Tu ph

1.7A2
0 h

)2

≤ 𝜙

(
Vc

b𝑤d
+ 8

√
f ′c

)

𝜙Vc = 28.6 K Vc = 38.12 K

Left-hand side =

√(
71,240

14 × 21.5

)2

+
[

301,400 × 62

1.7(215.25)2

]2

= 335 psi

Right-hand side = 0.75

(
38,120

14 × 21.5
+ 8

√
4000

)
= 558 psi > 335 psi

The section is adequate.
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748 Chapter 21 Beams Curved in Plan

iii. Determine the required closed stirrups due to Tu from:

At

S
=

Tn

2A0 fy cot 𝜃
, Tn =

Tn

𝜙
, 𝜙 = 0.75, cot 𝜃 = 1.0

= 301.4
0.75 × 2 × 183 × 60

= 0.0183 in.2∕in. (one leg)

iv. The total area of one leg stirrup is 0.022 + 0.0183 = 0.04 in.2/in. For no. 4 stirrups, area of one leg = 0.2 in.2.
Spacing of closed stirrups is 0.2/0.04 = 5.0 in., say, 5.5 in.

Minimum S =
ph

8
= 62

8
= 7.75 in. > 5.0 in.

Minimum
A𝑣t

S
=

50b𝑤
fy

= 50(14)
60,000

= 0.0117 in.2∕in.

This is less than the At/s provided. Use no. 4 closed stirrups spaced at 5.5 in.
f. Longitudinal bars Al equal (At/s) ph (fyv/fyl) cot2 𝜃 (Eq. 15.27).

Al = 0.018(62)
(60

60

)
= 1.13 in.2

Min.Al =
5
√

f ′c Acp

fyl
−
(

At

S

)
ph

( fy𝑣
fyl

)

=
(5
√

4000)(336)
60,000

− 0.018(62)
(60

60

)
= 0.64 in.2 < 1.0

Use Al = 1.13 in.2, with one-third at the top, one-third at middepth, and one-third at the bottom, or 0.33 in.2 in each
location. For the section at the support, As = 3.8 in.2 + 0.38 = 4.18 in.2 Choose two no. 10 and two no. 9 bars (As = 4.53 in.2)
as top bars. At middepth, use two no. 4 bars (As = 0.4 in.2). Extend two no. 9 bars of the midspan section to the support.
At middepth use two no. 4 bars (A = 0.4 in.2). Details of the section are shown in Fig. 21.3.

Circular beams in an office building.
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Figure 21.3 Example 21.1.

21.3 SEMICIRCULAR BEAM FIXED AT END SUPPORTS

If a semicircular beam supports a concrete slab, as shown in Fig. 21.4, the ratio of the length to the width of the
slab is 2r/r = 2, and the slab is considered a one-way slab. The beam will be subjected to a distributed load, which
causes torsional moments in addition to the bending moments and shearing forces. The structural analysis of the
curved beam can be performed in steps as follows.

1. Load on beam: The load on the curved beam will be proportional to its distance from the support AB. If the
uniform load on the slab equals 𝑤 psf, the load on the curved beam at any section N is equal to half the load
on the area NCDE (Fig. 21.4). The lengths are CN = r sin 𝜃, OC = r cos 𝜃, and CD = (d/d𝜃)(r cos 𝜃) = (r sin
𝜃 d𝜃), and the arc NE is r d𝜃.
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750 Chapter 21 Beams Curved in Plan

Figure 21.4 Semicircular beam fixed at the supports.

The load on the curved beam per unit length is equal to

𝑤′ = 𝑤(r sin 𝜃)r sin 𝜃 d𝜃
2(r d𝜃)

= 𝑤r sin2𝜃

2
(21.10)

2. Shearing force at A: For a uniform symmetrical load on the slab, the shearing force at A is equal to

VA = VB =
∫

𝜋∕2

0

(
𝑤r
2

sin2𝜃

)
(r d𝜃) = 𝑤r2

2

[
𝜃

2
− 1

4
sin 2𝜃

]

=
(
𝜋

8

)
𝑤r2 = 0.39𝑤r2 (21.11)

3. Bending moment at A: Taking moments about the line AB, the bending moment at A is equal to

MA = MB =
∫

𝜋∕2

0
𝑤′(r d𝜃) × (r sin 𝜃)

=
∫

𝜋∕2

0

(
𝑤r
2

sin2𝜃

)
(r sin 𝜃)(r d𝜃) = −𝑤r3

3
(21.12)
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21.3 Semicircular Beam Fixed at End Supports 751

4. Torsional moment at support A. TA can be obtained by differentiating the strain energy of the beam with respect
to TA and equating it to 0. Considering that TA is acting clockwise at A, then the bending moment at any section
N is calculated as follows:

MN = VA(r sin 𝜃) − MA cos 𝜃 + TA sin 𝜃 −
∫

𝜃

0

(
𝑤r
2

sin2 𝜃

)
(r d𝛼) × r sin (𝜃 − 𝛼)

MN = 𝑤r3
[
𝜋

8
sin 𝜃 −

(1
6

)
(1 + cos2 𝜃)

]
+ TA sin 𝜃 (21.13)

The torsional moment at any station N on the curved beam is equal to

Tn = −VAr(1 − cos 𝜃) + MA sin 𝜃 + TA cos 𝜃 +
∫

𝜋∕2

0

(
𝑤r
2

sin2𝛼

)
(r d𝛼)

× r[1 − cos(𝜃 − a)]

TN = 𝑤r3
[
𝜋

8
(cos 𝜃 − 1) + 𝜃

4
+ 1

24
sin2𝜃

]
+ TA cos 𝜃 (21.14)

The strain energy is

U =
∫

M2
Nds

2 EI
+
∫

T2
Nds

2 GJ
(21.15)

where
ds = r d𝜃
G = modulus of rigidity
E = modulus of elasticity
I = moment of inertia of section
J = rotational constant of section
= polar moment of inertia

To obtain TA, differentiate U with respect to TA:

𝛿U

𝛿TA
=
∫

MN

EI
×

dMN

dTA
(r d𝜃) +

∫

TN

GJ
×

dTN

dTA
× (r d𝜃) = 0

dMN

dTA
= sin 𝜃 and

dTN

dTA
= cos 𝜃

Therefore,

𝛿U

𝛿TA
= r

EI∫

𝜋∕2

0
sin 𝜃

{
𝑤r3

[
𝜋

8
sin 𝜃 − 1

6

(
1 + cos2 𝜃

)]
+ TA sin 𝜃

}
d𝜃

+ r
GJ∫

𝜋∕2

0

{
𝑤r3

[
𝜋

8
(cos 𝜃 − 1) + 𝜃

4
+ 1

24
sin2𝜃

]
+ TA cos 𝜃

}
cos 𝜃 × d𝜃 = 0

after integration

r
EI

[
𝑤r3

(
𝜋2

32
− 2

9

)
+ TA

(
𝜋

4

)]
+ r

GJ

[
𝑤r3

(
𝜋2

32
− 2

9

)
+ TA

(
𝜋

4

)]
= 0

Let EI/GJ = 𝜆; then

TA

(
𝜋

4

)
(1 + 𝜆) = 𝑤r3

[(
2
9
− 𝜋2

32

)
+ 𝜆

(
2
9
− 𝜋2

32

)]

= 𝑤r3

(
2
9
− 𝜋2

32

)
(1 + 𝜆) = −0.0862𝑤r3(1 + 𝜆)

Therefore,
TA = −0.11𝑤r3 (21.16)
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Table 21.2 Values of K′ and 𝜆 for Different Values of y/x

y/x 0.5 1.0 1.1 1.2 1.25 1.3 1.4 1.5 1.6
K′ 0.473 0.141 0.154 0.166 0.172 0.177 0.187 0.196 0.204
𝜆 0.102 1.37 1.52 1.68 1.76 1.85 2.03 2.22 2.43
y/x 1.7 1.75 2.0 2.5 3.0 4.0 5.0 6.0 10
K′ 0.211 0.214 0.229 0.249 0.263 0.281 0.291 0.300 0.312
𝜆 2.65 2.77 3.39 4.86 6.63 11.03 16.5 23.3 62.1

Substituting the value of TA in Eq. 21.13, the bending moment at any point N is equal to

MN = 𝑤r3
[
𝜋

8
sin 𝜃 − 1

6

(
1 + cos2 𝜃

)
− 0.11sin 𝜃

]
(21.17)

Substituting the value of TA in Eq. 21.14,

TN = 𝑤r3
[
𝜋

8
(cos 𝜃 − 1) + 𝜃

4
+ 1

24
sin 2𝜃 − 0.11 cos 𝜃

]
(21.18)

5. The value of G/E for concrete may be assumed to be equal to 0.43. The value of J for a circular section is
(𝜋/2)r4, whereas J for a square section of side x is equal to 0.141x4. For a rectangular section with short and
long sides x and y, respectively, J can be calculated as follows:

J = K′ × y3 (21.19)

The values of K′ are calculated as follows:

K′ = 1
16

[
16
3

− 3.36
x
y

(
1 − x4

12y4

)]
(21.20)

whereas

𝜆 = EI
GJ

=
( 1

0.43

)(
xy3

12

)(
1

K′yx3

)
= 1

5.16 K′

(y

x

)2

Values of K′ and 𝜆 are both shown in Table 21.2.

Example 21.2

Determine the factored bending and torsional moments in sections C and D of the 10-ft-radius semicircular beam ADCB
shown in Fig. 21.5. The beam is part of a floor slab that carries a uniform factored load of 304 psf (including self-weight).

Figure 21.5 Example 21.2.

Solution

1. Factored load 𝑤u = 304 psf.
2. For the section at C, 𝜃 = 𝜋/2 and 𝑤u r3 = 0.304(10)3 = 304. From Eq. 21.17,

Mc = 304
[
𝜋

8
sin

𝜋

2
− 1

6

(
1 + cos2 𝜋

2

)
− 0.11sin

𝜋

2

]
= 35.3 K ⋅ ft
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From Eq. 21.18,

Tc = 304
[
𝜋

8

(
cos

𝜋

2
− 1

)
+ 𝜋

8
+ 1

24
sin𝜋 − 0.11 cos

𝜋

2

]
= 0

3. For the section at D, 𝜃 = 𝜋/4.

MD = 304
[
𝜋

8
sin

𝜋

4
− 1

6

(
1 + cos2 𝜋

4

)
− 0.11sin

𝜋

4

]
= −15.2 K ⋅ ft

TD = 304
[
𝜋

8

(
cos

𝜋

4
− 1

)
+ 𝜋

16
+ 1

24
sin

𝜋

2
− 0.11 cos

𝜋

4

]
= 13.7 K ⋅ ft

4. Maximum shearing force occurs at the supports.

VA = 0.39𝑤ur2 = 0.39(0.304)(100) = 11.9 K

Maximum positive moment occurs at C, whereas the maximum negative moment occurs at the supports.

MA = −
𝑤ur3

3
= −304

3
= 101.3 K ⋅ ft

5. Design the critical sections for shear, bending, and torsional moments, as explained in Example 21.1.

21.4 FIXED-END SEMICIRCULAR BEAM UNDER UNIFORM LOADING

The previous section dealt with a semicircular beam fixed at both ends and subjected to a variable distributed load.
If the load is uniform, then the beam will be subjected to a uniformly distributed load 𝑤 K/ft, as shown in Fig. 21.6.
The forces in the curved beam can be determined as follows:

1. Shearing force at A:

VA = VB =
∫

𝜋∕2

0
𝑤r d𝜃 = 𝑤r

𝜋

2
= 1.57𝑤r (21.21)

2. Bending moment at A:

MA = MB =
∫

𝜋∕2

0
𝑤(r d𝜃) × (r sin 𝜃) = 𝑤r2 (21.22)

3. Bending moment at any section N on the curved beam when the torsional moment at A (TA) acts clockwise:

MN = VA(r sin 𝜃) − MA cos 𝜃 + TA sin 𝜃 −
∫

𝜃

0
(𝑤r d𝛼)[r sin(𝜃 − a)]

= 𝜋

2
𝑤r2sin 𝜃 −𝑤r2cos 𝜃 + TA sin 𝜃 − [𝑤r2 −𝑤r2cos 𝜃]

MN = 𝑤r2
[
𝜋

2
sin 𝜃 − 1

]
+ TA sin 𝜃 (21.23)

4. Torsional moment at any section N:

TN = −VAr(1 − cos 𝜃) + MA sin 𝜃 + TA cos 𝜃 +
∫

𝜃

0
(𝑤r d𝛼)r[1 − cos(𝜃 − 𝛼)]

= −𝜋

2
𝑤r2 + 𝜋

2
𝑤r2 cos 𝜃 + TA cos 𝜃 + MA sin 𝜃 +𝑤r2𝜃 −𝑤r2 sin 𝜃

Substitute MA = 𝑤r2:

TN = 𝑤r2
[
𝜋

2
cos 𝜃 − 𝜋

2
+ 𝜃

]
+ TA cos 𝜃 (21.24)

5. The strain energy expression was given in the previous section:

U =
∫

M2
Nds

2 EI
+
∫

T2
Nds

2 GJ
(21.25)



Hassoun c21.tex V1 - 01/14/2020 9:28 P.M. Page 754

�

� �

�

754 Chapter 21 Beams Curved in Plan

Figure 21.6 Semicircular beam under uniform load.

To obtain TA, differentiate U with respect to TA:

𝛿U

𝛿TA
=
∫

MN

EI
×

dMN

dTA
(r d𝜃) +

∫

TN

GJ
×

dTN

dTA
× (r d𝜃) = 0

dMN

dTA
= sin 𝜃 and

dTN

dTA
= cos 𝜃 (from the preceding equations)

𝛿U

𝛿TA
= r

EI∫

𝜋∕2

0

[
𝑤r2

(
𝜋

2
sin − 1

)
+ TA sin 𝜃

]
sin 𝜃 d𝜃

+ r
GJ∫

𝜋∕2

0

[
𝑤r2

(
𝜋

2
cos 𝜃 − 𝜋

2
+ 𝜃

)
+ TA cos 𝜃

]
cos 𝜃 d𝜃 = 0
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The integration of the preceding equation produces the following:

𝛿U
𝛿TA

= r
EI

[
𝑤r2

(
𝜋2

8
− 1

)
+ 𝜋

4
TA

]
+ r

GJ

[
𝑤r2

(
𝜋2

8
− 1

)
+ 𝜋

4
TA

]
= 0

and

r

[
𝑤r2

(
𝜋2

8
− 1

)
+ 𝜋

4
TA

] ( EI
GJ

+ 1
)
= 0

Because EI/GJ is not equal to zero,

𝑤r2

(
𝜋2

8
− 1

)
+ 𝜋

4
TA = 0

and

TA = −𝑤r2
( 4
𝜋

)(
𝜋2

8
− 1

)
= −0.3𝑤r2 (21.26)

6. Substitute TA in Eq. 21.23:

MN = 𝑤r2
[(

𝜋

2
sin 𝜃 − 1

)
−
(
𝜋

2
− 4

𝜋

)
sin 𝜃

]

= 𝑤r2
( 4
𝜋

sin 𝜃 − 1
)

(21.27)

TN = 𝑤r2
[(

𝜋

2
cos 𝜃 + 𝜃 − 𝜋

2

)
−
(
𝜋

2
− 4

𝜋

)
cos 𝜃

]

= 𝑤r2
(
𝜃 − 𝜋

2
+ 4

𝜋
cos 𝜃

)
(21.28)

The values of the bending and torsional moments at any section N are independent of 𝜆 (1 = EI/GJ).
7. Bending and torsional moments at midspan, section C, can be found by substituting 𝜃 = 𝜋/2 in Eqs. 21.27

and 21.28:

Mc = 𝑤r2
( 4
𝜋
− 1

)
= 0.273𝑤r2 (21.29)

Tc = 𝑤r2
(
𝜋

2
− 𝜋

2
+ 0

)
= 0 (21.30)

21.5 CIRCULAR BEAM SUBJECTED TO UNIFORM LOADING

The previous section dealt with a semicircular beam subjected to a uniformly distributed load. The forces acting on
the beam at any section vary with the intensity of load, the span (or the radius of the circular beam), and the angle
𝛼 measured from the centerline axis of the beam.

Considering the general case of a circular beam fixed at both ends and subjected to a uniform load 𝑤 (K/ft),
as shown in Fig. 21.7, the bending and torsional moments can be calculated from the following expressions:

1. The moment at the centerline of the beam, Mc, can be derived using the strain energy expression, Eq. 21.25,
and can be expressed as follows:

Mc =
𝑤r2

K4
[𝜆(K1 + K2 − K3) + (K1 − K2)] (21.31)
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where
𝜆 = EI/GJ

K1 = 2(2 sin 𝜃–𝜃)
K2 = 2 sin 𝜃 cos 𝜃 = sin 2𝜃
K3 = 4𝜃 cos 𝜃
K4 = 2𝜃(𝜆 + 1)–(𝜆–1) sin 2𝜃
2𝜃 = total central angle of the ends of the beam, angle AOB (Fig. 19)

The torsional moment at the centerline section, Tc, is 0.

Curved-beam bridge, Washington, D.C.

2. The moment at any section N on the curved beam where ON makes an angle 𝛼 with the centerline axis
(Fig. 21.7) is

MN = Mc cos 𝛼 −𝑤r2(1 − cos 𝛼) (21.32)

3. The torsional moment at any section N on the curved beam as a function of the angle 𝛼 was derived earlier:

TN = Mc sin 𝛼 −𝑤r2(𝛼 − sin 𝛼) (21.33)

4. To compute the bending moment and torsional moment at the supports, substitute 𝜃 for 𝛼 in the preceding
equations:

MA = Mc cos 𝜃 −𝑤r2(1 − cos 𝜃) (21.34)

TA = Mc sin 𝜃 −𝑤r2(𝜃 − sin 𝜃) (21.35)
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Figure 21.7 Circular beam subjected to uniform load, showing the bending moment diagram (BMD) and
the torsional moment diagram (TMD).
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Example 21.3

A curved beam has a quarter-circle shape in plan with a 10 ft radius. The beam has a rectangular section with the ratio of
the long to the short side of 2.0 and is subjected to a factored load of 8 K/ft. Determine the bending and torsional moments
at the centerline of the beam, supports, and maximum values.

Solution

1. For a rectangular section with y/x = 2, 𝜆 = EI/GJ = 3.39 (Table 21.2).
2. The bending and torsional moments can be calculated using Eqs. 21.31 through 21.35 for 𝜃 = 𝜋/4. From Eq. 21.31,

K1 = 2
(

2sin
𝜋

4
− 𝜋

4

)
= 1.2576

K2 = sin
𝜋

2
= 1.0

K3 = 4
(
𝜋

4

)
cos

𝜋

4
= 2.2214

K4 = 2
(
𝜋

4

)
(3.39 + 1) − (3.39 − 1)sin

𝜋

2
= 4.506

Mc =
𝑤r2

4.506
[3.39(1.2576 + 1.0 − 2.2214) + (1.2576 − 1.0)]

= 0.0844𝑤r2

For 𝑤 = 8 K⋅ft and r = 10 ft, Mc = 64 K⋅ft; Tc = 0
3. MN = Mc cos 𝛼−𝑤r2 (1−cos 𝛼) = 𝑤r2(1.08 cos 𝛼−1)

TN = Mcsin 𝛼 −𝑤r2(𝛼 − sin 𝛼) = 𝑤r2(1.08 sin 𝛼 − 𝛼)

For the moments at the supports, 𝛼 = 𝜃 = 𝜋/4.

MA = 𝑤r2
(

1.08 cos
𝜋

4
− 1

)
= −0.236𝑤r2

= −0.236 × 8 × (10)2 = −189 K ⋅ ft

TA = 𝑤r2
(

1.08 sin
𝜋

4
− 𝜋

4

)
= 0.022𝑤r2 = −17.4 K ⋅ ft

For MN = 0, 1.08 cos 𝛼−1 = 0, or cos 𝛼 = 0.926 and 𝛼 = 22.2∘ = 0.387 rad. To calculate TN,max, let dTN/d𝛼 = 0,
or 1.08 cos 𝛼–1 = 0. Then cos 𝛼 = 0.926 and 𝛼 = 22.2∘.

TN(max) = 𝑤r2(1.08 sin 22.2 − 0.387) = 0.0211𝑤r2

TN,max = 0.0211 − 800 = 16.85 K ⋅ ft

21.6 CIRCULAR BEAM SUBJECTED TO A CONCENTRATED LOAD AT MIDSPAN

If a concentrated load is applied at the midspan of a circular beam, the resulting moments vary with the magnitude of
the load, the span, and the coefficient 𝜆 = EI/GJ. Considering the general case of a circular beam fixed at both ends
and subjected to a concentrated load P at midspan (Fig. 21.8), the bending and torsional moments can be calculated
from the following expressions:
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Figure 21.8 Circular beam subjected to a concentrated load at midspan, showing the bending moment
diagram (BMD) and the torsional moment diagram (TMD).

1. The moment at the centerline of the beam, section C, can be expressed as follows:

Mc =
𝜆(2 − 2 cos 𝜃 − sin2 𝜃) + sin2 𝜃

2𝜃(𝜆 + 1) − (𝜆 − 1)sin 2𝜃
(Pr)

Mc =
Pr
K3

(𝜆K1 + K2) (21.36)

where
𝜆 = EI/GJ

K1 = (2−2 cos 𝜃−sin2𝜃)
K2 = sin2𝜃

K3 = 2𝜃(𝜆 + 1)−(𝜆−1) sin2𝜃

The torsional moment at the centerline is Tc = 0.
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2. The bending and torsional moments at any section N on the curved beam where ON makes an angle 𝛼 with
the centerline axis are calculated as follows:

MN = Mc cos 𝛼 −
(P

2
r
)

sin 𝛼 (21.37)

TN = Mc sin 𝛼 −
(P

2
r
)
(1 − cos 𝛼) (21.38)

3. To compute the bending and torsional moments at the supports, substitute 𝜃 for 𝛼.

MA = Mc cos 𝜃 −
(P

2
r
)

sin 𝜃 (21.39)

TA = Mc sin 𝜃 −
(P

2
r
)
(1 − cos 𝜃) (21.40)

Example 21.4

Determine the bending and torsional moments of the quarter-circle beam of Example 21.3 if 𝜆= 1.0 with the beam subjected
to a concentrated load at midspan of P = 20 K.

Solution

1. Given: 𝜆 = 1.0 and 𝜃 = 𝜋/4. Therefore,

Mc =
(Pr

2

)(1 − cos 𝜃
𝜃

)

(Eq. 21.36) and Tc = 0. For 𝜃 = 𝜋/4,

Mc = 0.187 Pr = 0.187(20 × 10) = 37.4 K ⋅ ft

2. From Eq. 21.39 and Eq. 21.40,

MA = 0.187 Pr cos
𝜋

4
− Pr

2
sin

𝜋

4
= −0.22 Pr

= −0.22 × (200) = −44 K ⋅ ft

TA = 0.187 Pr sin
𝜋

4
− 0.5 Pr

(
1 − cos

𝜋

4

)
= −0.0142 Pr

= −0.0142 × 200 = −2.84 K ⋅ ft

3. MN = 0 when

Mc cos 𝛼 − Pr
2

sin 𝛼 = 0

0.187 Pr cos 𝛼 − 0.5 Pr sin 𝛼 = 0

tan𝛼 = 0.374 and 𝛼 = 20.5∘ (Eq. 21.37)

Tn = 0 when Mc sin𝛼−(P/2) r(1−cos𝛼) = 0 (Eq. 21.38), from which 𝛼 = 37.7∘.
4. To compute Tmax, let dTN/d𝛼 = 0 (Eq. 21.38).

0.187 Pr cos 𝛼 − 0.5 Pr sin 𝛼 = 0, tan 𝛼 = 0.374

and 𝛼 = 20.5∘. Substitute 𝛼 = 20.5∘ in Eq. 21.38 to get Tmax = 0.035Pr = 7 K⋅ft.



