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SEC. 2.3 SINGLE-DEGREE-OF-FREEDOM SYSTEMS 15

For a system with n springs in series, the expression for an equivalent spring
is

k, = (2-22)

The parallel spring arrangement in Fig. 2-8b must satisfy the condition of
equal displacement in each spring and the sum of the forces in each spring
must equal the weight W:

W =P + P, =zk, + zk, (2-23)

Thus, for parallel springs,
k= =k + ky (2:24)
ZS

In general, a system with # parallel springs has an equivalent spring constant
given by

ky=ki+ky+- +k, (2-25)

Free Vibrations—With Damping

f'an element is added to the spring-mass system in the above analysis
in order to dissipate energy, a system is obtained which more closely behaves
like a real system. The simplest mathematical element is the viscous damper
or dashpot shown schematically in Fig. 2-9a. The force in the dashpot is
directly proportional to velocity Z and has a value computed from the viscous
damping coefficient ¢ having units of 1b/(in./sec). Thus. the dashpot exerts
a force which acts to oppose the motion of the mass.

Z,

cz

r\)|7r

o

n

I;\'

N

=
I'\)IN

figure 2-9. Single-degree-of-free-
dom system with viscous damp- .
ing. (a) (b}
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16 VIBRATION OF ELEMENTARY SYSTEMS CHAP. 2

For free vibrations of the system in Fig. 2-9, the differential equation of
motion may be obtained by making use of Newton’s second law and measur-
ing displacement from the rest position. A positive displacement will pro-
duce a spring force acting on the mass in the negative direction (restoring
force) and a positive velocity will produce a damping force acting in the
negative direction, all shown in Fig. 2-9b. Summation of vertical forces
leads to

mi+cZ4+kz=0 (2-26)

for free vibrations. If we let z = exp (Bt),
mp2+cf+k=0 227

which has the following solutions for j:
B = L [—c + & — akm] (2-282)
2m

Bs = 1 [—c— \/02 — 4km] (2-28b)
2m

Three possible cases must be considered for the above equations, depending
upon whether the roots are real, complex, or equal.

CASE 1: ¢® > 4km. For this case the two roots of Eq. (2-27) are real as well
as negative and the solution to Eq. (2-26) is

z = Cyexp (1) + Cyexp (By1) (2-29)

Since $, and B, are both negative, z will decrease exponentially without change in
sign, as shown on Fig. 2-10a. In this case no oscillations will occur and the system
is said to be overdamped.

CASE 2: ¢® = 4km. This condition is only of mathematical significance, since
the equality must be fulfilled in order for the roots of Eq. (2-27) to be equal. The
solution is

z = (C; + Cyb) exp (— ZCT;) (2-30)

This case is similar to the overdamped case except that it is possible for the sign
of z to change once as in Fig. 2-10b. The value of ¢ required to satisfy the above
condition is called the critical damping coefficient, c,, and Eq. (2-30) represents
the critically damped case. Thus,

¢, = 2km (2-31)
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Figure 2-10. Free vibrations of a (¢} ; ;EZ S~ t
viscously damped system. (a) \/’/V____\./—__
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Overdamped. (b) Critically damp- -
ed. (c) Underdamped. =

The damping ratio, D, will be defined by

D= = (2-32)

4
CASE 3: ¢ < 4km. For systems with damping less than critical damping,
the roots of Eq. (2-27) will be complex conjugates. By introducing the relationship
for c,, the roots f; and j, become

By = wa(—D + i1 — D? (2-33a)
By = wp(—D — i1 — D? (2-33b)

Substitution of Eqgs. (2-33) into Eq. (2-29) and conversion to trigonometric form
with the aid of Euler’s formula, exp i = cos 6 -+ isin 0, gives

z = exp (— o, DH(Cysin w,,t\/ 1 — D? + C,cos cont\/ 1 — D% (2-349)

where C3 and C, are arbitrary constants. Equation (2-34) indicates that the motion
will be oscillatory and the decay in amplitude with time will be proportional to
exp (—w,Dt), as shown by the dashed curves in Fig. 2-10c. Examination of Eq.
(2-34) shows that the frequency of free vibrations is less than the undamped natural
circular frequency and that as D — 1, the frequency approaches zero. The natural
circular frequency for damped oscillation in terms of the undamped natural circular

frequency is given by
wg = o1 — D? (2-35)
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and will be called the damped natural circular frequency. For systems with less than
40 per cent critical damping, the reduction in natural frequency is less than 10 per
cent. For greater values of damping, the reduction in natural frequency is more
pronounced.

Referring to Fig. 2-10, the amplitudes of two successive peaks of oscillation
are indicated by z, and z,. These will occur at times #; and £,, respectively. Evaluat-
ing Eq. (2-34) at ¢; and 1, we get

zy = exp (—,D4)(Cysin wgty + Cycos wyty) (2-36a)

zy = exp (—w, Dt,)(Cysin wyty + Cy €Os w4ty) (2-36b)
However, t, = t; + 2n/w;. Thus, wst, = wat, + 27 and hence
sin wgty, = sin (wgt; + 27) = sin wgt;

Thus, the ratio of peak amplitudes is given by

Zy 27
— =exp [—w,D(t; — ty)] = exp (w,,D —) (2-37)
Zy Dg

Substitution of Eq. (2-35) gives

Zy ( 27D ) (2 38)
= =exp | ———— -
n P\

The logarithmic decrement is defined as the natural logarithm of two successive
amplitudes of motion, or

s—m2__20 (2-39)
— n — T ——— -
z 1 — D?

It can be seen that one of the properties of viscous damping is that the decay of
vibrations is such that the amplitude of any two successive peaks is a constant ratio.
Thus the logarithmic decrement can be obtained from any two peak amplitudes
z; and z,,, from the relationship

6 ==-In—2 (2-40)

It is also important to note that if the peak amplitude of vibration is plotted on a
logarithmic scale against the cycle number on an arithmetic scale, the points will
fall on a straight line if the damping is of the viscous type as assumed in Eq. (2-26).




