Internal Flow Applications 191

I1I.  FRICTION LOSS IN VALVES AND FITTINGS

Evaluation of the friction loss in valves and fittings involves the determination of the appropriate
loss coefficient (Kj), which in turn defines the energy loss per unit mass of fluid:
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where V is (usually) the velocity in the pipe upstream of the fitting or valve. However, this is not
always true and care must be taken to ensure that the value of V that is used is the one that is specified
in the defining equation for K. The actual evaluation of K, is done by determining the friction loss
e, from measurements of the pressure drop across the fitting (elbows, tees, valves, etc.). This is not
straightforward, however, because the pressure in the pipe is influenced by the presence of the fitting
for a considerable distance both upstream and downstream of the fitting. It is not possible, therefore,
to obtain accurate values from measurements taken at pressure taps immediately adjacent to the fit-
ting. The most reliable method is to measure the total pressure drop through a long run of pipe both
with and without the fitting, at the same flow rate, and determine the fitting loss by difference.

There are several “correlation” expressions for K, which are described below (in Sections A
through E) in the order of increasing accuracy. The “3-K” method (see Section E) is recommended
because it accounts directly for the effect of both Reynolds number and fitting size on the loss coef-
ficient and more accurately reflects the effect of fitting diameter than the 2-K method (Section D).
For highly turbulent flow, the Crane method (Section C) agrees well with the 3-K method but is less
accurate at low Reynolds numbers and is not recommended for laminar flow. The loss coefficient and
(L/D),, methods are more approximate but give acceptable results at high Reynolds (fully turbulent
flow) numbers and when losses in valves and fittings are “minor losses” compared to the pipe friction.
They are also appropriate for first estimates in problems that require iterative solutions.

A. Loss COEFFICIENT

Values of K, for various types of valves, fittings, etc., are found tabulated in various textbooks and
handbooks. The assumption that these values are constant for a given type of valve or fitting is not
accurate, however, because in reality the value of K, varies with both the size (scale) of the fitting
and the level of turbulence (Reynolds number). One reason that K, is not the same for all fittings
of the same type (e.g., all 90° elbows) is that all the dimensions of a fitting, such as the diameter
and radius of curvature, do not scale by the same factor for large and small fittings. Most tabulated
values for constant K, values are close to the values of K, from the 3-K method.

B. EqQuivALent L/D METHOD

The basis for the (L/D),, method is the assumption that there is some length of pipe (L,,) that has the
same friction loss as that which occurs in the fitting, at a given (pipe) Reynolds number. Thus, the
fittings are conceptually replaced by the equivalent additional length of pipe that has the same fric-

tion loss as the fitting:
_4fVvN( L
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where f'is the Fanning friction factor in the pipe at the given pipe Reynolds number and relative rough-
ness. This is a convenient concept because it allows the solution of pipe flow problems with fittings to be
carried out in a manner identical to that without fittings if L, is known. Values of (L/D),, are tabulated in
various textbooks and handbooks for a variety of fittings and valves (and are also listed in Table 7.3 here).
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TABLE 7.3
3-K Constants? for Loss Coefficients for Valves and Fittings
Fitting r/D (L/D)., K, K; Ky
Elbows
90° Threaded, standard 1 30 800 0.14 4.0
Threaded, long radius 1.5 16 800 0.071 42
Flanged, welded, bends 1 20 800 0.091 4.0
2 12 800 0.056 3.9
4 14 800 0.066 3.9
6 17 800 0.075 4.2
Mitered
1 weld (90°) 60 1000 0.27 4.0
2 welds (45°) 30 800 0.136 4.1
3 welds (30°) 24 800 0.105 4.2
45° Threaded standard 1 16 500 0.071 4.2
Long radius 1.5 500 0.052 4.0
Mitered
1 weld (45°) 15 500 0.086 4.0
2 welds (22.5°) 12 500 0.052 4.0
180° Threaded, close return bend 1 50 1000  0.23 4.0
Flanged 1 1000 0.12 4.0
All 1.5 1000 0.10 4.0
Tees Through branch (as elbow)
Threaded 1 60 500 0274 4.0
1.5 800 0.14 4.0
Flanged 1 20 800  0.28 4.0
Stub-in branch 1000  0.34 4.0
Run-through threaded 1 20 200 0.091 4.0
Flanged 1 150  0.05 4.0
Stub-in branch 100 O 0
Valves
Angle valve Valve
45° full line size p=1 55 950  0.25 4.0
90° full line size p=1 150 1000 0.69 4.0
Globe valve Standard p=1 340 1500  1.70 3.6
Plug valve Branch flow 90 500 0.41 4.0
Straight through 18 300 0.084 39
Three-way (flow through) 30 300 0.14 4.0
Gate valve Standard =1 8 300  0.037 39
Ball valve Standard p=1 300 0.017 35
Diaphragm Dam type 1000  0.69 4.9
Swing check V... =35[p(lb, /ft})]-""? (ft/s) 100 1500  0.46 4.0
Lift check Vinin = 40[p(1b,,/f3)]712 (ft/s) 600 2000 2.85 3.8

Note: D, is the nominal pipe size in inches.

@ K= +K,| 1+ K(;’S .
NRe Dn.
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The method assumes that (1) sizes of all fittings of a given type can be scaled by the corresponding pipe
diameter (D), and (2) the influence of turbulence level (i.e., Reynolds number) on the friction loss in the fit-
ting is identical to that in the pipe (because the pipe f value is used to determine the fitting loss). Neither of
these assumptions is accurate (as pointed out earlier), although the approximation provided by this method
gives reasonable results at high turbulence levels (fully turbulent flow), especially if fitting losses are minor
when compared to the total pipe friction loss.

C. CRANE METHOD

The method given in the Crane Technical Paper 410 (1991) is a modification of the afore-
mentioned methods. It is equivalent to the (L/D),, method except that it recognizes that there
is generally a higher degree of turbulence in the fitting than in the pipe at a given (pipe)
Reynolds number. This is accounted for by always using the “fully turbulent” value for f
(e.g., f7) in the expression for the friction loss in the fitting, regardless of the actual Reynolds
number in the pipe, that is,

KV’ L
er =fTV where K_f=4fT(D) (7.35)
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The value of f; can be calculated from the Colebrook equation (Equation 6.40), for example,
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It = log3ADIR)}
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in which € is the pipe roughness (0.0018 in. for new commercial steel). This is a two-constant model
[frand (L/D),,], and values of these constants are tabulated in the Crane paper for a wide variety of
fittings, valves, etc. This method gives satisfactory results for high turbulence levels (fully turbulent
flow) but is less accurate at low Reynolds numbers and does not scale well with pipe size.

D. 2-K (HooPer) METHOD

The 2-K method by Hooper (1981, 1988) was based on experimental data from a variety of valves
and fittings over a wide range of Reynolds numbers. The effect of both the Reynolds number and
scale (fitting size) is reflected in the expression for the loss coefficient:

2
er= %, where K ; = K1+Kw(

1+ j (7.37)

Here, ID,, is the internal diameter (in inches) of the pipe that contains the fitting. This method is
valid over a much wider range of Reynolds numbers than the other methods. However, the effect
of pipe size (e.g., 1/ID,,) in Equation 7.37 does not accurately reflect the scaling with pipe size,

as discussed below in Section E.

E. 3-K (DARBY) METHOD

Although the 2-K method applies over a wide range of Reynolds numbers, the scaling term (1/
ID) does not accurately reflect data over a wide range of sizes for valves and fittings, as reported
in a variety of sources (Crane, 1991; CCPS, 1998; Perry and Green, 2007; Darby, 2001; and refer-
ences cited therein). Specifically, all the preceding methods tend to underpredict the friction loss for
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fittings of larger diameters. Darby (2001) has evaluated data from the literature for various valves
and fittings and found that they can be represented more accurately by the following “3-K”” equation:

NRe

Kf=K1+K{1+ Ig‘é J (7.38)
Note that D, ;, is the nominal diameter, in inches. The values of the 3 K’s (K|, K}, and K) are given
in Table 7.3 (along with representative values of (L/D),,) for various valves and fittings. These values
were determined from combinations of literature values from the references listed earlier and were
all found to accurately follow the scaling law given in Equation 7.38. The values of K, are mostly
those of the Hooper 2-K method, and the values of K; were mostly determined from the Crane data.
However, since there is no single comprehensive data set for many fittings over a wide range of sizes
and Reynolds numbers, some estimation was necessary for some values.

Values of K, are all very close to 4.0, and this value can be used to scale known values of K,
for a given pipe size to apply to other sizes. This method is the most accurate of the methods
described for all Reynolds numbers and fitting sizes. Tables 7.4 and 7.5 list values for K| for expan-
sions and contractions and entrance and exit conditions, respectively (Hooper, 1981). The definition
of K, (i.e., K;= 2e,/V?) involves the kinetic energy of the fluid, V*/2. For sections that undergo area
changes (e.g., pipe entrance, exit, expansions, or contractions), the entering and leaving velocities
will be different. Because the value of the velocity used with the definition of K is arbitrary, it is
very important to know which velocity is the reference value for a given loss coefficient. Values
of K, are usually based on the larger velocity entering or leaving the fitting (through the smaller
cross section), but this should be verified if any doubt exists.

A note is in order regarding the exit loss coefficient, which is listed in Table 7.5 as equal to 1.0.
Actually, if the fluid exits the pipe in a free jet into unconfined space, the loss coefficient is zero
because the velocity of the fluid exiting the pipe is close to that of the fluid inside the pipe and thus
the kinetic energy change is zero. However, when the fluid exits into a confined space so that the
fluid leaving the pipe immediately mixes with the same fluid in the receiving vessel, the kinetic
energy is dissipated as friction loss in the mixing process so the velocity goes to zero, and thus the
loss coefficient is 1.0. In this case, the change in the kinetic energy and the friction loss at the exit
cancel out.

IV.  NON-NEWTONIAN FLUIDS

There are insufficient data in the literature to enable reliable correlation or prediction of friction
loss in valves and fittings for non-Newtonian fluids. As a first approximation, however, it can be
assumed that a correlation similar to the 3-K method should apply to non-Newtonian fluids if the
(Newtonian) Reynolds number in Equation 7.38 could be replaced by a single corresponding dimen-
sionless group that adequately incorporates the influence of the non-Newtonian properties. For the
power law and Bingham plastic fluid models, two rheological parameters are required to describe
the viscous properties, which generally results in two corresponding dimensionless groups (Ng, ,;
and n for the power law and N, and N, for the Bingham plastic). However, it is possible to define an
“effective viscosity” for a non-Newtonian fluid model that has the same significance in the Reynolds
number as the viscosity has for a Newtonian fluid and incorporates all of the appropriate parameters
for that model, which then can be used to define an equivalent non-Newtonian Reynolds number
(see Darby and Forsyth, 1992). For a Newtonian fluid, the Reynolds number can be rearranged as
follows:

2 2

DVp _ pV~ _pV
1) wvi/D  <,/8

Nge = (7.39)
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TABLE 7.4
Loss Coefficients for Expansions and Contractions

K to be used with upstream velocity head, Vi2/2.p=dID

Contraction

—> D 0 ‘d

0 < 45°
Nget < 2500:

K,=16(12+ 160 [a—l}sine
NRe.l B 2

N, > 2500:

K, :1.6[0.6+1.92ﬁ]{1gfz}3in2

0> 45°
Nget < 2500:

172
K,=[12+ 160 {a—l}[sme}
NRe,l B 2

N, >2500:
1— 2 0 172
Kf=[0.6+1.92f1][ BP ]{smz}

Expansion

>

0 < 45°
Ni,., <4000:

K, =5.2(1—B4)sing
Ng,, >4000:
2 .0
Ky =2.6(1+321)(1-p*) sin
0> 45°
Ng,, <4000:
K,;=2(1-p*)

Ni,., >4000:
K, =(1+32£)(1-p*)

Source: Hooper, W.B., “Calculate head Loss Caused by Change in Pipe Size”, Chem. Eng., 95,
pp- 89-92, 1988.
Note: Ny, is the upstream Reynolds number, and f; is the pipe friction factor at this Reynolds
number.
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TABLE 7.5
Loss Coefficients for Pipe Entrance and Exit

K;=K,/Ng, + K.,

Entrance W
Inward projecting (Borda)

K,=160,K, =10

=
Flush (rounded) rld K,
K, =160 0 (sharp) 0.5

o~ r 0.02 0.28

0.04 0.24

= d 0.06 0.15

0.10 0.09

0.15 and up 0.04

For pipe exit:
K, = 1.0 for all geometries

K =0
_B2)1-B*
Orifice: K, = 2['3?‘1 (1B (1B :%
p=D,D,
K, =0

Source: Hooper, W.B., “The 2-K Method Predicts Head Loss
in Pipe Fittings” Chem. Eng., 88, pp. 96—-100, 1981.

Introducing t,, = m[(8V/D)(3n + 1)/4n]" for the power law model results in

(7-3n)y H(2-1) n
2" 7pQ ( n J (7.40)

NRepi = - -
P mmCTI DU 3n 41

which is identical to the expression derived in Chapter 6 (see Equation 6.71).
For the Bingham plastic, replacing t,, for the Newtonian fluid in Equation 7.39 with t, + ..y,
and using the approximation y,, = 8V/D, the corresponding expression for the Reynolds number is

4Qp — NRe
mDu, (1+ 7D, /320u,) 1+ Npy/8Nk.

(7.41)

N Resp =

The ratio Ny, /N, = Dt,/Vp,, is also called the Bingham number (V). Darby and Forsyth (1992)
showed experimentally that mass transfer in Newtonian and non-Newtonian fluids can be correlated
by this method. That is, the same dimensionless correlation can be applied to both Newtonian and
non-Newtonian fluids when the Newtonian Reynolds number is replaced by either Equation 7.40 for
the power law fluid or Equation 7.41 for the Bingham plastic model. As a first approximation, therefore,
we may assume that the same method would apply to friction loss in valves and fittings as described
by the 3-K model, Equation 7.38. This approach is in agreement with the scant literature data on fitting
losses with power law and Bingham plastic fluids (see, e.g., Chhabra and Richardson, 2008).



