4.3 Fired Heater (Furnace)

The Fired Heater (Furnace) operation performs energy and material balances in steady state or dynamic modes to model a direct Fired Heater type furnace. This type of equipment requires a large amount of heat input. Heat is generated by fuel combustion and transferred to process streams. A simplified schematic of a direct Fired Heater is illustrated in the figure below.

In general, a Fired Heater can be divided into three zones:

- Radiant zone
- Convective zone
- Economizer zone

To define the number of zones required by the Fired Heater, enter the number in #External Passes field on Connections page of the Design tab. The Fired Heater operation allows multiple stream connections at tube side in each zone and optional economizer, and convection zone selections. The operation incorporates a single burner model, and a single feed inlet and outlet on the flue gas side.

Fired Heater Steady State Operation

The Fired Heater in steady state is based only on the energy balance and the system is limited to one degree of freedom.

Fuel and air streams: The steady state fired heater supports multiple, simultaneous fuel streams and an independent air stream.

Note: The dynamic mode does not support multiple fuel streams, but uses one combined fuel/air stream. If there are multiple fuel streams defined for steady state, when switching from steady state to dynamics a new stream is created from the sum of the fuel streams and the air stream defined in steady state. When switching back to steady state, one fuel and one air stream is created from the dynamic settings.

Variables supported as possible unknown/calculated variables are:

- Outlet temperature of the process streams
- Flow rate of the process streams
- Flow rate of *one* fuel stream. The ratio fuel/air as well as the fuel compositions should be fully defined by the user.
- Flue gas temperature
- Efficiency

Economizer and Convection Zone - In steady state mode, by default the external passes in the economizer and convection zone are set to zero and the number of external passes in the radiant zone is set to 1. If you set more than one external pass in the radiant zone, the heat energy is divided equally between all the process streams in the radiant zone.

Fired Heater Dynamic Operation

The following are some of the major features of the dynamic Fired Heater operation:

- Flexible connection of process fluid associated in each Fired Heater zone. For example, radiant zone, convective zone, or economizer zone. Different Fired Heater configurations can be modeled or customized using tee, mixer, and heat exchanger unit operations.
- A pressure-flow specification option on each side and pass realistically models flow through Fired Heater operation according to the pressure gradient in the entire pressure network of the plant. Possible flow reversal situations can therefore be modeled.
- A comprehensive heat calculation inclusive of radiant, convective, and conduction heat transfer on radiant zone enables the prediction of process fluid temperature, Fired Heater wall temperature, and flue gas temperature.
- A dynamic model which accounts for energy and material holdups in each zone. Heat transfer in each zone depends on the flue gas properties, tube and Fired Heater wall properties, surface properties of metal, heat loss to the ambient, and the process stream physical properties.
- A combustion model which accounts for imperfect mixing of fuel, and allows automatic flame ignition or extinguished based on the oxygen availability in the fuel air mixture.

Switching Modes

When switching the fired heater to dynamic mode, any fuel streams and the air stream in steady state will be combined into one stream. When switching from dynamic to steady state, a yellow warning message states that only the radiant zone in considered in the steady state heat balance. The combined fuel/ air stream in Dynamics is split into two streams for the fuel and the air.

4-65

4.3.1 Fired Heater Theory

Combustion Reaction

The combustion reaction in the burner model of the Fired Heater performs pure hydrocarbon (C_xH_y) combustion calculations only. The extent of the combustion depends on the availability of oxygen which is usually governed by the air to fuel ratio.

Air to fuel ratio (AF) is defined as follows:

$$AF = \frac{\left(\frac{Mass \ of \ flow \ O_2}{\Sigma \ Mass \ flow \ of \ fue \ l}\right)}{Mass \ Ratio \ of \ O_2 \ in \ Air}$$
(4.19)

You can set the combustion boundaries, such as the maximum *AF* and the minimum *AF*, to control the burner flame. The flame cannot light if the calculated air to fuel ratio falls below the specified minimum air to fuel ratio. The minimum air to fuel ratio and the maximum air to fuel ratio can be found on the Parameters page of the Design tab.

The heat released by the combustion process is the product of molar flowrate, and the heat of formation of the products minus the heat of formation of the reactants at combustion temperature and pressure. In the Fired Heater unit operation, a traditional reaction set for the combustion reactions is not required. You can choose the fuels components (the hydrocarbons and hydrogen) to be considered in the combustion reaction. You can see the mixing efficiency of each fuel component on the Parameter page of the Design tab. 4-66

Heat Transfer

The Fired Heater heat transfer calculations are based on energy balances for each zone. The shell side of the Fired Heater contains five holdups:

- three in the radiant zone
- a convective zone
- an economizer zone holdup as outlined previously in **Figure 4.24**.

For the tube side, each individual stream passing through the respective zones is considered as a single holdup.

Major heat terms underlying the Fired Heater model are illustrated in the figure below.

The heat terms related to the tubeside are illustrated in the figure below.

Taking Radiant zone as an envelope, the following energy balance equation applies:

$$\frac{d(M_{rad}H_{rad})}{dt} + \frac{d(M_{RPFTube}H_{RPFTube})}{dt}$$

$$= (M_{RPF}H_{RPF})_{IN} - (M_{RPF}H_{RPF})_{OUT} + (M_{FG}H_{FG})_{IN}$$

$$- (M_{FG}H_{FG})_{OUT} - Q_{RadToCTube} - Q_{rad wall sur} - Q_{con wall sur}$$

$$+ Q_{rad wall to tube} - Q_{con to wall} + Q_{reaction}$$
(4.20)

where:

$$\frac{d(M_{rad}H_{rad})}{dt} = \text{energy accumulation in radiant zone holdup}$$
 shell side

4-68

$\frac{d(M_{RPFTube}H_{RPFTube})}{dt}$	= energy	accumulation	in rac	liant zone
--	----------	--------------	--------	------------

process fluid holdup (tube side)

- $(M_{RPF}H_{RPF})_{IN}$ = total heat flow of process fluid entering radiant zone tube
- $(M_{RPF}H_{RPF})_{OUT}$ = total heat flow of process fluid exiting radiant zone tube
- $(M_{FG}H_{FG})_{IN}$ = total heat flow of fuel gas entering radiant zone
- $(M_{FG}H_{FG})_{OUT}$ = total heat flow of fuel gas exiting radiant zone
- *Q_{RadToCTube}* = radiant heat of radiant zone to convective zone's tube bank
- *Q_{rad_wall_sur}* = radiant heat loss of Fired Heater wall in radiant zone to surrounding
- *Q*_{con_wall_sur} = convective heat loss of Fired Heater wall in radiant zone to surrounding
- *Q_{rad_wall_to_tube}* = radiant heat from inner Fired Heater wall to radiant zone's tube bank
- *Q_{rad_flame_wall}* = radiant heat from flue gas flame to inner Fired Heater wall
- *Q*_{con_to_wall} = convective heat from flue gas to Fired Heater inner wall

*Q*_{reaction} = heat of combustion of the flue gas

Radiant Heat Transfer

For a hot object in a large room, the radiant energy emitted is given as:

$$Q_{radiative} = \delta A \varepsilon (T_1^4 - T_2^4)$$
(4.21)

where:

- δ = Stefan-Boltzmann constant, 5.669x10⁻⁸ W/m²K⁴
- ε = emissivity, (0-1), dimensionless
- A = area exposed to radiant heat transfer, m²

 T_1 = temperature of hot surface 1, K

 T_2 = temperature of hot surface 2, K

Convective Heat Transfer

The convective heat transfer taking part between a fluid and a metal is given in the following:

$$Q_{convective} = UA(T_1 - T_2) \tag{4.22}$$

where:

U = overall heat transfer coefficient, W/m²K A = area exposed to convective heat transfer, m² $T_1 = temperature of hot surface 1,K$ $T_2 = temperature of surface 2, K$

The *U* actually varies with flow according to the following *flow-U* relationship if this Flow Scaled method is used:

$$U_{used} = U_{specified} \left(\frac{Mass flow at time t}{Reference Mass flow} \right)^{0.8}$$
(4.23)

where:

 $U_{specified} = U$ value at steady state design conditions.

The ratio of mass flow at time t to reference mass flow is also known as flow scaled factor. The minimum flow scaled factor is the lowest value, which the ratio is anticipated at low flow region. For the Fired Heater operation, the minimum flow scaled factor can be expressed only as a positive value. For example, if the minimum flow scaled factor is +0.001 (0.1%), when this mass flow ratio is achieved, the U_{used} stays as a constant value. Therefore,

$$U_{used} = U_{specified} (0.001)^{0.8}$$
 (4.24)

Conductive Heat Transfer

Conductive heat transfer in a solid surface is given as:

$$Q_{conductive} = -kA \frac{(T_1 - T_2)}{\Delta t}$$
(4.25)

where:

- k = thermal conductivity of the solid material, W/mK
- Δt = thickness of the solid material, m
- A = area exposed to conductive heat transfer, m²
- T_1 = temperature of inner solid surface 1, K
- T_2 = temperature of outer solid surface 2, K

Pressure Drop

The pressure drop across any pass in the Fired Heater unit operation can be determined in one of two ways:

- Specify the pressure drop delta P.
- Define a pressure flow relation for each pass by specifying a k-value

If the pressure flow option is chosen for pressure drop determination in the Fired Heater pass, a *k* value is used to relate the frictional pressure drop and molar flow, *F* through the Fired Heater. This relation is similar to the general valve equation:

$$F = k_{\sqrt{\rho(P_1 - P_2)}}$$
(4.26)

This general flow equation uses the pressure drop across the Fired Heater pass without any static head contribution. The quantity, (P_1-P_2) is defined as the frictional pressure loss which is used to "size" the flow.

The *k* value is calculated based on two criteria:

- If the flow of the system is larger than the value at k_{ref} (k reference flow), the k value remain unchanged. It is recommended that the k reference flow is taken as 40% of steady state design flow for better pressure flow stability at low flow range.
- If the flow of the system is smaller than the *k*_{ref}, the *k* value is given by:

$$k_{used} = k_{user \ specified} \times Factor \tag{4.27}$$

where:

Factor = value is determined by HYSYS internally to take into consideration the flow and pressure drop relationship for low flow regions.

The effect of k_{ref} is to increase the stability by modeling a more linear relationship between flow and pressure. This is also more realistic at low flows.

Minimum Specifications

The following is a list of the minimum specifications required for the Fired Heater operation to solve:

Dynamic Specifications	Description
Connections	At least one radiant zone inlet stream and the respective outlet zone, one burner fuel/air feed stream and one combustion product stream must be defined. There is a minimum of one inlet stream and one outlet stream required per zone. Complete the connections group for each zone of the Design tab.
(Zone) Sizing	The dimensions of the tube and shell in each zone in the Fired Heater must be specified. All information in the Sizing page of the Rating tab must be completed.

Dynamic Specifications	Description
Heat Transfer	For each zone, almost all parameters in the Radiant Zone Properties group and Radiant/Convective/ Economizer Tube Properties groups are required except the Inner/Outer Scaled HX Coefficient.
Nozzle	Nozzle elevation is defaulted to 0. Elevation input is required when static head contribution option in Integrator property view is selected.
Pressure Drop	Either specify an overall delta P or an overall K value for the Fired Heater. Specify the pressure drop calculation method on the Tube Side PF page and Flue Gas PF page of the Dynamics tab.

4.3.2 Fired Heater Property View

There are two ways that you can add a Fired Heater to your simulation:

- Select Flowsheet | Add Operation command from the menu bar. The UnitOps property view appears. You can also access the UnitOps property view by pressing F12.
- 2. Click the **Heat Transfer Equipment** radio button.
- 3. From the list of available unit operations, select **Fired Heater**.
- 4. Click the **Add** button.

OR

1. Select **Flowsheet | Palette** command from the menu bar. The Object Palette appears.

You can also open the Object Palette by pressing F4.

2. Double-click the Fired Heater icon.

Hred Heater: F	H-100	
Design	Name FH-100	Combustion Product
Connections	Used in Dynamics Only	2
Parameters	Econ Zone Inlet Econ Zone Oulet	External
User Variables		
Notes		
	Conv Zone Inlet Conv Zone Outlet	
	<pre></pre>	
	Perfect Zene Inlat Dedicat Zene Outlat	
	3 - << Stream >> -	1
	<u>Fuel Streams</u>	
	Air Feed	Fluid Package
	1	Basis-1
		_ , _

The Fired Heater property view appears.

4.3.3 Design Tab

The Design tab contains the following pages:

- Connections
- Parameters
- User Variables
- Notes

Connections Page

On the Connections page, you can specify the name of the operation, and inlet and outlet streams.

Design Lause Ised in Dynamics Only Image: Conzections Parameters User Variables Conv Zone Inlet EconZone Qulet Image: Conv Zone Inlet Notes Conv Zone Inlet Conv Zone Outlet Image: Conv Zone Inlet Passes Radiant Zone Inlet Conv Zone Outlet Image: Conv Zone Inlet Image: Conv Zone Outlet Image: Conv Zone Inlet Conv Zone Outlet Image: Conv Zone Inlet Image: Conv Zone Outlet Image: Conv Zone Inlet Radiant Zone Outlet Image: Conv Zone Inlet Image: Conv Zone Outlet Image: Conv Zone Inlet Radiant Zone Inlet Radiant Zone Outlet Image: Conv Zone Inlet Image: Conv Zone Inlet Radiant Zone Inlet Radiant Zone Outlet Image: Conv Zone Inlet Image: Conv Zone Inlet Radiant Zone Inlet Radiant Zone Inlet Radiant Zone Inlet Image: Conv Zone Inlet Radiant Zone Inlet Radiant Zone Inlet Radiant Zone Inlet Image: Conv Zone Inlet Air Feed Fluid Package Image: Ima	Design	Name FH-100	Combustion Product
Connections Osed In Cystallics Only Parameters User Variables User Variables Conv Zone Inlet Notes Conv Zone Inlet Conv Zone Inlet Conv Zone Outlet Image: Conv Zone Inlet Radiant Zone Inlet Radiant Zone Inlet Radiant Zone Outlet Image: Conv Zone Inlet Radiant Zone Inlet Image: Conv Zone Inlet Radiant Zone Image:	Design	- Head in Dunamice Only	2
Parameters User Variables User Variables < Notes Conv Zone Inlet Conv Zone Outlet I Radiant Zone Inlet Radiant Zone Outlet I Radiant Zone Inlet Radiant Zone Outlet I I	Connections	Econ Zono Inlot	
User Variables Notes Conv Zone Inlet Conv Zone Dutlet Conv Zone Inlet Radiant Zone Dutlet Radiant Zone Inlet Radiant Zone Outlet Radiant Zone Inlet Radiant Zone Outlet Fuel Streams Fuel Streams Fuel Streams Fluid Package Fluid	Parameters		H External Passes
Notes Conv Zone Inlet Conv Zone Qutlet Image: Conv Zone Inlet Conv Zone Qutlet Image: Conv Zone Qutlet Image: Conv Zone Inlet Radiant Zone Inlet Radiant Zone Qutlet Image: Conv Zone Inlet Radiant Zone Qutlet Image: Conv Zone Qutlet Image: Conv Zone Inlet Radiant Zone Qutlet Image: Conv Zone Qutlet Image: Conv Zone Inlet Radiant Zone Qutlet Image: Conv Zone Qutlet Image: Conv Zone Inlet Radiant Zone Qutlet Image: Conv Zone Qutlet Image: Conv Zone Inlet Radiant Zone Qutlet Image: Conv Zone Qutlet Image: Conv Zone Inlet Radiant Zone Qutlet Image: Conv Zone Qutlet Image: Conv Zone Inlet Radiant Zone Inlet Radiant Zone Qutlet Image: Conv Zone Inlet Radiant Zone Qutlet Image: Conv Zone Qutlet Image: Conv Zone Inlet Radiant Zone Qutlet Image: Conv Zone Qutlet Image: Conv Zone Qutlet Image: Conv Zone Qutlet Image: Conv Zone Qutlet Image: Conv Zone Qutlet Image: Conv Zone Qutlet Image: Conv Zone Qutlet Image: Conv Zone Qutlet Image: Conv Zone Qutlet Image: Conv Zone Qutlet Image: Conv Zone Qutlet Image: Conv Zone Qutlet <t< th=""><th>Liser Variables</th><th></th><th>1 43365</th></t<>	Liser Variables		1 43365
Notes Conv Zone Inlet Conv Zone Outlet Conv Zone Inlet Conv Zone Outlet Image: Conv Zone Outlet Radiant Zone Inlet Radiant Zone Outlet Image: Conv Zone Outlet Radiant Zone Inlet Radiant Zone Outlet Image: Conv Zone Outlet Basis-1 Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone Outlet Image: Conv Zone O			
Lonv Zone Inlet Lonv Zone Utilet Image: Conv Zone Inlet Image: Conv Zone Utilet Radiant Zone Inlet Radiant Zone Outlet Image: Conv Zone Inlet Image: Conv Zone Inlet Radiant Zone Inlet Radiant Zone Outlet Image: Conv Zone Inlet Image: Conv Zone Inlet Image: Conv Zone Inlet Radiant Zone Outlet Image: Conv Zone Inlet Image: Conv Zone Inlet Image: Conv Zone Inlet Radiant Zone Outlet Image: Conv Zone Inlet Image: Conv Zone Inlet Image: Conv Zone Inlet Image: Conv Zo	Notes		
Radiant Zone Inlet Radiant Zone Dutlet Basis-1 Image: Constraint of the second sec		Lonv Zone Inlet Lonv Zone Uutlet	
Radiant Zone Inlet Radiant Zone Outlet 3 << Stream >> Eucl Streams		<pre> << stream >> << stream >></pre>	
Radiant Zone Inlet Radiant Zone Outlet 3 << Stream >> Fuel Streams			
Radiant Zone Inlet Radiant Zone Outlet 3 < Fuel Streams			- I (I) I
3 < <		Radiant Zone Inlet Radiant Zone Outlet	
Eucl Streams		3 × << Stream >> ×	
Fuel Streams			
Let Streams			
Air Feed Fluid Package 1 Fluid Package Design Rating Worksheet Performance Dynamics		<u>Fuel Streams</u>	
Air reed Fluid Eackage Design Rating Worksheet Performance Dynamics		<< Stream >> <	
Design Rating Worksheet Performance Dynamics		AirFeed	- Fluid Package
Design Rating Worksheet Performance Dynamics	ļ		Basis-1
	Besign Bating	Worksheet Performance Dunamics	
	bough Hidding		

Object	Description
Econ Zone Inlet/ Outlet	You can specify multiple inlet and outlet streams for the Economizer zone. (Dynamics only.)
	To add stream connections to Econ zone and Conv zone, enter the desired number in the corresponding External Passes field and then attach the streams.
Conv Zone Inlet/ Outlet	You can specify multiple inlet and outlet streams for the Convective zone. (Dynamics only.)
Radiant Zone Inlet/ Outlet	You can specify multiple inlet and outlet streams for the Radiant zone.
Fuel Streams	Specifies the stream or streams to be used for the burner fuel.
Air Feed	Source for the burner air. Note: If you switch to dynamics mode, all fuel streams and air will be combined in one stream named "Air/Fuel Mix".
Combustion Product	The stream that contains the products from the combustion.
# External Passes	Defines the number of zones required by the Fired Heater
Fluid Package	The associated fluid package

Parameters Page

The Parameters page is used to specify the Fired Heater combustion options.

Design Connections Parameters User Variables Notes	Combustion Options Steady State Parameters Flame Is Out Efficiency Light Extinguish Combustion Boundaries Excess Air Percent Min. Air Fuel Ratio 1.000 Calc. Air Fuel Ratio <empty> Max. Air Fuel Ratio <empty> V Flame Should Auto Light When Inside Boundary</empty></empty>	
= n : [n :		

This page is divided into parameter groups.

Object	Description
Flame Status	Toggles between a lit flame and an extinguished flame.
Combustion Boundaries	Sets the combustion boundary based on a range of air fuel ratios.
Efficiency	Sets a steady state efficiency percentage. The heater will heat all the radiant zone streams equally using energy from the combustion. If the efficiency is 0, then all the energy from the combustion will go into heating the flue gas. If the efficiency is 100%, then all the energy will go to heating the radiant zone process streams and the flue gas stream will not be heated.
Excess Air Percent	HYSYS calculates the required Air flow using a percentage value.
Oxygen	Specifies the oxygen mixing efficiency.
Fuels	Selects the components present in your fuel as well as set their mixing efficiencies.

User Variables Page

The User Variables page enables you to create and implement your own user variables for the current operation.

Notes Page

The Notes page provides a text editor that allows you to record any comments or information regarding the specific unit operation, or the simulation case in general.

4.3.4 Rating Tab

The Rating tab contains the following pages:

- Sizing
- Nozzles
- Heat Transfer

Each page is discussed in the following sections.

Sizing Page

On the Sizing page, you can specify the geometry of the radiant, convective, and economizer zones in the Fired Heater.

4-77

Sizing Nozzles Tube Properties Heat Transfer Stream Pass xd_P1_In xd_P2_In xd_P3_In xd_P4_In Tube Inner Diameter [R] 0.5300 0.5300 0.5300 0.5300 Tube Duter Diameter [R] 0.5521 0.5521 0.5521 Tube Thickness [R] 1.104e-002 1.104e-002 1.104e-002 H Tubes per External Pass 12 12 12 12 Tube Length [R] 45.00 45.00 45.00 45.00 Tube Length [R] 936.6 336.6 336.6 11.93.6 Tube Inner Area [R2] 939.1 839.1 839.1 19.1 Tube Inner Volume [R3] 119.1 119.1 119.1 119.1 Shell Inner Diameter [R] 40.00 Shell Inner Area [R2] 3220 Shell Outer Diameter [R] 0.5000 Shell Net Volume [R3] 3.142e+004	Rating	Zone Badiative C. Conv	vective C	Economizer			
Nozzles Idge T repetitios Heat Transfer Stream Pass Idge T repetitios Tube Inner Diameter [t] 0.5300 0.5300 0.5300 Tube Outer Diameter [t] 0.5521 0.5521 0.5521 Tube Thickness [t] 1.104e-002 1.104e-002 1.104e-002 How Thickness [t] 1.104e-002 1.104e-002 1.104e-002 How Encloses 1.104e-002 1.104e-002 1.104e-002 How Encloses 1.104e-01 1.104e-002 1.104e-002 How Encloses 1.104e-002 1.104e-002 1.104e-002 How Encloses 1.104e-002 1.104e-002 1.104e-002 How Encloses 1.104e-002 1.104e-002 1.104e-002 How Encloses 3.99.1 89.9.1 89.9.1 Tube Unter Area (tt2) 936.6 936.6 936.6 Tube Inner Volume [t3] 119.1 119.1 119.1 Shell Properties 1.104e-002 1.104e-002 3.142e+004 Wall Thickness [t] 0.5000 Shell Net Volume [tt3] 3.142e+004 </th <th>Sizing</th> <th>-Tube Properties</th> <th></th> <th>200110111201</th> <th></th> <th></th> <th></th>	Sizing	-Tube Properties		200110111201			
Transfer Tube Inner Diameter [it] 0.5300 0.5300 0.5300 0.5300 Tube Outer Diameter [it] 0.5521 0.5521 0.5521 0.5521 Tube Thickness [it] 1.104e-002 1.104e-002 1.104e-002 If Tube Length [it] 45.00 45.00 45.00 Tube Unter Area [it2] 899.1 899.1 899.1 Tube Unter Area [it2] 936.6 936.6 936.6 Tube Inner Volume [it3] 119.1 119.1 119.1 Shell Properties Shell Inner Area [it2] 3220 Shell Outer Diameter [it] 41.00 Shell Net Volume [it3] 3.090e+004 Vall Thickness [it] 0.5000 25.00 Shell Net Volume [it3] 3.142e+004	Nozzles	Stream Pass	lad P1 In ⇒	ad P2 In ⇒	ad P3 In 🗉	ad P4 In ∞	
Tube Duter Diameter (R) 0.5521 0.5521 0.5521 Tube Thickness (R) 1.104e-002 1.104e-002 1.104e-002 #Tube Sper External Pass 1.2 1.2 1.2 Tube Length (R) 45.00 45.00 45.00 Tube Uner Area (R2) 936.6 936.6 936.6 Tube Inner Volume (R3) 119.1 119.1 119.1 Shell Properties Shell Inner Diameter (R) 40.00 Wall Thickness (R) 0.5000 20.20 Zone Height (R) 25.00 3.142e+004	Heat Transfer	Tube Inner Diameter [ft]	0.5300	0.5300	0.5300	0.5300	
Tube Thickness [t] 1.104e-002 1.104e-002 1.104e-002 # Tubes per External Pass 12 12 12 12 Tube Length [t] 45.00 45.00 45.00 45.00 Tube Inner Area [t2] 936.6 936.6 936.6 936.6 Tube Inner Volume [t3] 119.1 119.1 119.1 119.1 Shell Properties Shell Inner Diameter [t] 40.00 Shell Outer Area [t2] 3220 Wall Thickness [t] 0.5000 5hell Net Volume [t3] 3.090e+004 Shell Net Volume [t3] 3.142e+004		Tube Outer Diameter [ft]	0.5521	0.5521	0.5521	0.5521	
# Tubes per External Pass 12 12 12 12 12 Tube Length [ft] 45:00 45:00 45:00 45:00 12		Tube Thickness [ft]	1.104e-002	1.104e-002	1.104e-002	1.104e-002	
Tube Length [ft] 45.00 45.00 45.00 Tube Inner Area [ft2] 899.1 899.1 899.1 Tube Uter Area [ft2] 936.6 936.6 936.6 Tube Inner Volume [ft3] 119.1 119.1 119.1 Shell Properties Shell Inner Diameter [ft] 40.00 Shell Outer Area [ft2] 3142 Shell Outer Area [ft2] 3220 Wall Thickness [ft] 0.5000 Zone Height [ft] 25.00		# Tubes per External Pass	12	12	12	12	
Tube Inner Area [ft2] 899.1 899.1 899.1 899.1 899.1 Tube Outer Area [ft2] 936.6 936.6 936.6 936.6 936.6 936.6 110.1 119.1		Tube Length [ft]	45.00	45.00	45.00	45.00	
Tube Duter Area [ft2] 936.6<		Tube Inner Area [ft2]	899.1	899.1	899.1	899.1	
Tube Inner Volume [ft3] 119.1 119.1 119.1 119.1 Shell Properties Shell Inner Diameter [ft] 40.00 Shell Inner Area [ft2] 3142 Shell Outer Diameter [ft] 41.00 Shell Outer Area [ft2] 3220 Wall Thickness [ft] 0.5000 Shell Net Volume [ft3] 3.090e+004 Zone Height [ft] 25.00 Shell Total Volume [ft3] 3.142e+004		Tube Outer Area [ft2]	936.6	936.6	936.6	936.6	
Shell Properties Shell Inner Diameter [tt] 40.00 Shell Outer Diameter [tt] 41.00 Wall Thickness [tt] 0.5000 Zone Height [tt] 25.00		Tube Inner Volume [ft3]	119.1	119.1	119.1	119.1	
		Shell Properties Shell Inner Diameter (ft) Shell Outer Diameter (ft) Wall Thickness (ft) Zone Height (ft)	40.00 41.00 0.5000 25.00	Shell In Shell C Shell N Shell T	nner Area [ft2] luter Area [ft2] let Volume (Ho otal Volume [ft	ldup) [ft 3.090 3] 3.142	3142 3220 0e+004 2e+004

From the Zone group on the Sizing page, you can choose between Radiative, Convective, and Economizer zone property views by selecting the appropriate radio button. These property views contain information regarding the tube and shell properties. To edit or enter parameters within these property views, click the individual cell and make the necessary changes. The figure below shows an example of the Fired Heater setup with one radiant zone/firebox only with four tube passes. This is the simplest type.

The figure below shows an example of the Fired Heater setup with a radiant, convective and economizer section.

Tube Properties Group

The Tube Properties group displays the following information regarding the dimension of the tube:

- stream pass
- tube inner diameter, D_{in}
- tube outer diameter, D_{out}
- tube thickness
- # tubes per external pass
- tube length, L
- tube inner area
- tube outer area
- tube inner volume

A pass in the Fired Heater is defined as a path where the process fluid flows through a distinctive inlet nozzle and outlet nozzle.

Figure 4.33

The figure below illustrates the various dimensions of the tube and shell.

Shell Properties Group

The Shell Properties group displays the following information regarding the dimension of the shell:

- shell inner diameter, D_{sin}
- shell outer diameter, D_{sout}
- wall thickness, t_s
- zone height, H
- shell inner area
- shell outer area
- shell net volume

shell total volume

Nozzles Page

The information provided in the Nozzles page is applicable only in Dynamic mode. You can define the base elevation to ground level of the Fired Heater in the Nozzles page.

Heat Transfer Page

The information provided in the Heat Loss page is applicable only in Dynamic mode. This page displays the radiant heat transfer properties, heat transfer coefficients of the Fired Heater wall and tube, and shell area, tube area, and volume in each individual zone.

Rating	Zone C. Radiation C. Compating C	F			
Sizina	• hadiative C convective C	Economizer			
Maarlan	<u>R</u> adiant Zone Properties				
INOZZIES	Zone to Wall Emissivity	0.2	20		
Heat Transfer	Zone to Wall U [Btu/hr-ft2-F]	0.00	00 00		
	Outer Wall to Surroundings Emissivity	0.0	16		
	Badiant Tube Properties	0.00			
	Duter Wall to Surroundings U [Btu/hr-ft2+] Radiant Tube Properties	0.00	ad P2 In	ad P3 In	ad P4 ▲
	Utter Wall to Surroundings U [Btur/hrH2+] Radiant Tube Properties Tube Feed Stream Zone to Tube Emissivitys	0.00 3d_P1_in 0.220	uu _ ▼ sd_P2_In → 0.220	sd_P3_In → 0.220	3d_P4_▲
	Radiant Tube Properties Tube Feed Stream Zone to Tube Emissivitys Wall to Tube Emissivitys	0.00 3d_P1_In 0.220 0.220	3d_P2_In 0.220 0.220	3d_P3_In 0.220 0.220	3d_P4_▲
	Utter Wall to Surroundings U [Btu/hr/H2+] Radiant Tube Properties Tube Feed Stream Zone to Tube Emissivitys Wall to Tube Emissivitys Ulter HX Coeff Method	0.00 3d_P1_In = 0.220 0.220 Flow Sca =	¥d_P2_In 0.220 0.220 Flow Sca →	3d_P3_In → 0.220 0.220 Flow Sca →	sd_P4_▲
	Utter Wall to Surroundings U [Btu/hr/H2+] Radiant Tube Properties Tube Feed Stream Zone to Tube Emissivitys Wall to Tube Emissivitys Wall to Tube Emissivitys Inner HX Coeff Method Tube to Fluid HX Coefficient [Btu/hr/f2-F]	3d_P1_In = 0.220 0.220 Flow Sca = 1680	ad_P2_In 0.220 0.220 Flow Sca 1680	ad_P3_In → 0.220 0.220 Flow Sca → 1680	ad_P4_▲
	Utter Wall to Surroundings U [Btu/hr/H2+] Radiant Tube Properties Tube Feed Stream Zone to Tube Emissivitys Wall to Tube Emissivitys Wall to Tube Emissivitys Tube to Fluid HX Coefficient [Btu/hr/ft2+] Tube to Fluid HX Coefficient [Btu/hr/ft2+] Tube to Fluid HX Reference Flow [Ib/hr]	0.00 3d_P1_In = 0.220 0.220 Flow Scz ⇒ 1680 1.467e+005	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	id_P3_In ≤ 0.220 0.220 Flow Scc ≤ 1680 1.467e+005	3d_P4_▲
	Utter Wall to Surroundings U [Btu/hr/t2+] Radiant Tube Properties Tube Feed Stream Zone to Tube Emissivitys Wall to Tube Emissivitys Wall to Tube Emissivitys Inner HX Coeff Method Tube to Fluid HX Coefficient (Btu/hr/t2-F) Tube to Fluid HX Reference Flow (Ib/hr) Tube to Fluid HX Metere Flow (Ib/hr)	0.00 3d_P1_In 0.220 0.220 Flow Sca 1.680 1.467e+005 1.000e-003	id_P2_In → 0.220 0.220 Flow Scz → 1680 1.467e+005 1.000e-003	xd_P3_In → 0.220 0.220 Flow Scz → 1680 1.467e+005 1.000e-003	3d_P4_▲ Flow S 1.467e 1.000e

HYSYS accounts for the convective, conduction, and radiative heat transfer in the radiant zone. For the convective heat transfer calculation, you have two options:

• **User Specified**. You can specify the heat transfer coefficient of the inner tube and the outer tube.

• **Flow Scaled**. The heat transfer coefficient is scaled based on a specified flow.

The scaled heat transfer coefficient is defined by **Equation** (4.23).

The same equation applies to the outer tube heat transfer coefficient calculation. Currently, the heat transfer coefficient *U* must be user specified. HYSYS calculates the heat transfer coefficient from the geometry/configuration of the Fired Heater. The radiant box or the fire box is assumed cylindrical in geometry.

Radiant Zone Properties Group

The following table describes each parameter listed in the Radiant Zone group.

Radiant Zone Parameter	Description
Zone to Wall Emissivity	Emissivity of flue gas. HYSYS uses a constant value.
Zone to Wall U	Convective heat transfer coefficient of the radiative zone to the Fired Heater inner wall.
Outer Wall to Surrounding Emissivity	Emissivity of the Fired Heater outer wall.
Outer Wall to Surroundings U	Convective heat transfer coefficient of the Fired Heater outer wall to ambient.
Furnace Wall Conductivity/ Specific Heat/Wall Density	These are user specified properties of a single layer of Fired Heater wall.

The Radiant, Convective, and Economizer Tube Properties groups all contain similar parameters, which are described in the following table.

Tube Properties	Description
Zone to Tube Emissivity	Emissivity of flue gas at radiant/convective zone to the tube in radiant/convective zone respectively.
Wall to Tube Emissivity	Radiant zone Fired Heater wall emissivity to the radiant zone tubes.

Tube Properties	Description
Inner HX Coeff Method	There are two options to calculate the Heat transfer coefficient in the tube: User Specified or Flow Scaled.
	Flow Scaled provides a more realistic HX calculation where:
	$U_{used} = U_{specified} \left(\frac{mass}{mass_{ref}}\right)^{0.8}$
Tube to Fluid HX Coefficient	Heat transfer coefficient of the tube to the process fluid.
Tube to Fluid HX Reference Flow	Mass flow at which the tube to fluid HX coefficient is based on. Usually the ideal steady state flow is recommended as input.
Tube to Fluid HX Minimum Scale Factor	The ratio of mass flow of the process fluid to the reference mass flow in the tube. The valve ranges from a value of zero to one. If the process flow in the tube becomes less than the scale factor, the heat transfer coefficient used is smaller than U specified.
Inner Scaled HX Coefficient	The HX coefficient obtained if the Flow Scaled (U _{used}) method is applied to perform the calculation.
Tube C _p , Density, Conductivity	Metal properties of the tube in their respective zones.
Outer HX Coefficient Method	Method used to calculate the shell side HX coefficient. Two options available: User Specified or Flow Scaled.
Zone to Tube HX Coefficient	HX coefficient in the radiative/convective/ economizer or flue gas zones to the respective tubes.
Zone to Tube HX Reference Flow	Mass flow of the flue gas at which the outer HX coefficient is based upon. This is usually designed using the ideal steady state flow of the flue gas.
Zone to Tube HX Minimum Scale	Mass ratio of flue gas flow to the flue gas reference mass flow. This value ranges from zero to one.
Factor	If the process flow in the tubes is less than this value, the HX coefficient used is set to zero.
Outer Scaled U	The actual HX coefficient used in the calculation if the Flow Scaled option is selected.

In general the Tube to Fluid HX Coefficient is always shown in a common Fired Heater flowsheet, however, the Zone to Wall U and Outer Wall to Surroundings U are usually unknown. The Outer wall to Surroundings U can be easily estimated from the Fired Heater convective heat loss calculation, **Equation (4.22)** if the total heat loss via Fired Heater wall is known. The total heat loss is normally expressed as a percentage of total Fired Heater duty. A 3-5% heat loss is an acceptable estimate.

Estimating Zone to Wall U requires trial and error techniques. Enter a value of U then observe the temperature profile of the flue gas exiting the radiant zone.

4.3.5 Worksheet Tab

The Worksheet tab contains a summary of the information contained in the stream property view for all the streams attached to the heat exchanger unit operation.

To view the stream parameters broken down per stream phase, open the Worksheet tab of the stream property view.

```
The PF Specs page is relevant to dynamics cases only.
```

4.3.6 Performance Tab

The performance tab contains tables which highlight the calculated temperature, duty, and pressure of the Fired Heater operation.

B - Duty Economizer Fee(Inlet Temp Outlet Temp Tube Inner Temp'ube Outer Temp B - Process Fluid Image: Temperatures B - Flue Gas Image: Temperatures B - Flue Gas Image: Temperatures Image: Temperatures Image: Temperatures Image: Temperatures <t< th=""><th>Performance</th><th> Process Side Ten</th><th>nperatures</th><th></th><th></th><th></th></t<>	Performance	Process Side Ten	nperatures			
Rad Zone Feed Inlet Temp Outlet Temp Tube Inner Temp Tube Outer Temp Rad_P1_In 264.5 C 329.5 C 333.9 C 337.0 C	Process Fluid Process Fluid Prossures Pressures Press	conomizer Fee(Inlet Temp	Outlet Temp	Tube Inner Temp	ube Outer Temp
Rad Zone Feed Inlet Temp Outlet Temp Tube Inner Temp ube Outer Temp Rad_P1_In 264.5 C 329.5 C 333.9 C 337.0 C Rad_P2_In 264.5 C 329.5 C 333.9 C 337.0 C		Convective Feed	Inlet Temp	Outlet Temp	Tube Inner Temp	ube Outer Temp
Rad_P1_In 264.5 C 329.5 C 333.9 C 337.0 C Rad_P2_In 264.5 C 329.5 C 333.9 C 337.0 C		Rad Zone Feed	Inlet Temp	Outlet Temp	Tube Inner Temp	ube Outer Temp
Rad_P2_in 264.5 C 329.5 C 333.9 C 337.0 C		Rad_P1_In	264.5 C	329.5 C	333.9 C	337.0 C
		Rad_P2_In	264.5 C	329.5 C	333.9 C	337.0 C
Rad_P3_in 264.5 C 329.5 C 333.9 C 337.0 C		Rad_P3_In	264.5 C	329.5 C	333.9 C	337.0 C
Kaa_P4_in 264.5 C 329.5 C 333.9 C 337.0 C	۱ <u> </u>	Kad_P4_In	264.5 C	329.5 C	333.9 C	337.0 C

Duty Page

The Duty page displays the results of the Fired Heater energy balance calculation. The Duty page contains three levels/ branches: Radiant Zone, Convective Zone, and Economizer Zone.

- If you select **Radiant Zone** from the tree browser, the following four levels/branches containing information regarding the Tube Duty results and Zone Duty results appear:
 - Overall
 - Holdup
 - Tubes
 - Wall
- If you select the **Convective Zone** from the tree browser, the following parameters from the Tube Duty Results group and the Zone Duty Results group appear:

Figure 4.37	
Performance □ Duty ① Radiant Zone Convective Z □ Economizer Z ⊡ Process Fluid ① Flue Gas	Tube Duty Results Conv Zone Feeds Radiant Duty : Flame To Tubes [kJ/h] Convective Duty : Flue Gas To Tubes [k, Total Duty To Tubes [kJ/h] Total Duty To Process Fluid [kJ/h]
	Zone Duty Results Radiant To Convective Zone Duty 0.0000 Total Convective Zone Duty 0.0000

• If you select the **Economizer Zone** from the tree browser, the following parameters from the Tube Duty results group and Zone Duty results group appear:

Figure 4.38	
Performance Duty Duty Bradiant Zone Convective Z Convective Z Process Fluid Price Gas	Tube Duty Results Econ Zone Feeds Total Duty to Tubes (Convective) [ki/] Total Duty to Process Fluid [ki/h]

Process Fluid Page

The Process Fluid page contains two sub-pages:

- Temperatures
- Pressures

In the Temperatures sub-page, the following parameters appear:

- Inlet Temp, Inlet stream process fluid temperature
- Outlet Temp, Outlet stream process fluid temperature
- Tube Inner Temp, Tube inner wall temperature

In the Pressures sub-page, the following parameters appear:

- Inlet pressure, inlet stream pressure
- Friction Delta P, friction pressure drop across the tube
- Static Head Delta P, static pressure of the stream
- Outlet Pressure, outlet stream pressure

Flue Gas Page

The Flue Gas page contains the following sub-pages:

- Temperatures
- Pressures
- Flows

On the Temperatures sub-page, you can view your flue gas temperature and Fired Heater inner/outer wall temperatures.

Similarly, the Pressures sub-page displays the flue gas pressures, frictional delta P, and static head delta P. The Flow sub-page displays the flue gas molar/mass flow.

4.3.7 Dynamics Tab

The Dynamics tab contains information pertaining to pressure specifications for he dynamic calculations. The information is sorted into the following pages:

- Tube Side PF
- Flue Gas PF
- Holdup

Tube Side PF Page

The Tube Side PF page allows you to specify how the pressure drop in each pass is calculated.

Dynamics	Process Side Pressur	re Flow Specificatio	ns			
Tube Side PF	Inlet Stream	K Values	Use K's	k Reference flow	Use Delta P	D
Flue Gas PF	Econ_PF_IN)	<empty></empty>		<empty></empty>	N	
Holdup						_
noidup						-
		K Values	llee K'e	k Beference flow	Lloa Dalta P	D
	Con PE In	<pre></pre>	0361/3	<pre></pre>		
		(angl)				
		K Values	Use K's	k Reference flow	Use Delta P	
	Rad_P1_In	<empty></empty>		<empty></empty>	<u> </u>	
	Rad_P2_In	<empty></empty>		<empty></empty>	<u> </u>	
	Rad_P3_in	<empty> </empty>		<empty></empty>	I ∕	١
					Calculate	e K's

The following table outlines the tube side PF options available on this page.

Option	Description
Use K's?	If this checkbox is selected, the K method is used to calculate Delta P across the pass.
Use Delta P Spec?	If this checkbox is selected, the pressure drop is fixed at this specified value.
Calculate K's	If this button is clicked, HYSYS calculates the K required to maintain a specified Delta P across a defined flow condition.

Flue Gas PF Page

On the Flue Gas PF page, you can specify how the pressure drop in each pass is calculated.

	Use PF K's?	k	k Reference flow	Use Delta P Spec?	
Radiant Zone - Flue Gas 0		4.661e+005	<empty></empty>		1
Radiant Zone - Flue Gas 1		4.661e+005	<empty></empty>		7
Radiant Zone - Flue Gas 2		4.661e+005	<empty></empty>		4
Convective Zone - Flue Gas		3.108e+005	<empty></empty>	V	
Economizer Zone - Flue Ga:		<empty></empty>	<empty></empty>	N	

The following table outlines the tube side PF options available on this page.

Option	Description
Use PF K's	If this checkbox is selected, the K method is used to calculate Delta P across the pass.
Use Delta P	If this checkbox is selected, the pressure drop is fixed at this specified value.
Calculate K's	If this button is clicked, HYSYS calculates the K required to maintain a specified Delta P across a defined flow condition.

Holdup Page

The Holdup page contains information regarding each stream's holdup properties and composition. The Individual Holdups group contains two drop-down lists (Zone and Holdup) that enable you to select and view information on individual zone and holdup section.

Stream	Rad_P1_In	•					
Phase	Accumulation	Moles	Volume				
Vapo	ur 0.1929	2.8716	3.3735				
Liqu	id -0.0000	0.0000	0.0000				
Aqueo	45 0.0000	0.0000	0.0000				
To	al 0.1929	2.8716	3.3735				
–Individual Holdu Zone	os Holdu	p					

4.4 Heat Exchanger

The Heat Exchanger performs two-sided energy and material balance calculations. The Heat Exchanger is very flexible, and can solve for temperatures, pressures, heat flows (including heat loss and heat leak), material stream flows, or UA.

Additional Heat Exchanger models, such as TASC and STX, are also available. Contact your local AspenTech representative for details.

In HYSYS, you can choose the Heat Exchanger Model for your analysis. Your choices include an End Point analysis design model, an ideal (Ft=1) counter-current Weighted design model, a steady state rating method, and a dynamic rating method for use in dynamic simulations. The dynamic rating method is available as either a Basic or Detailed model, and can also be used in Steady State mode for Heat Exchanger rating. The unit operation also allows the use of third party Heat Exchanger design methods via OLE Extensibility.