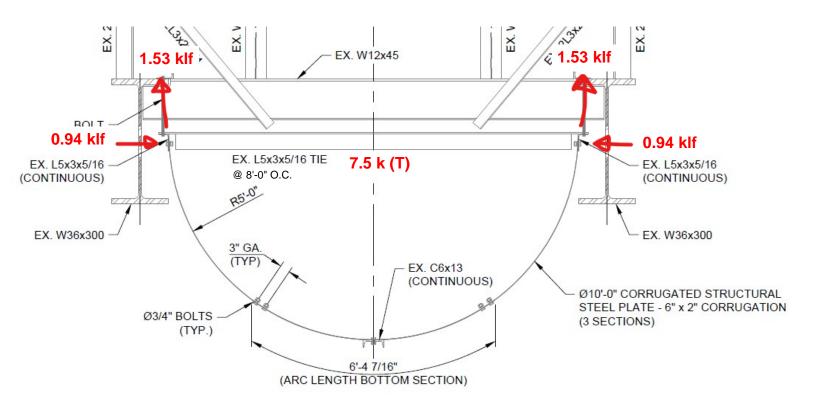
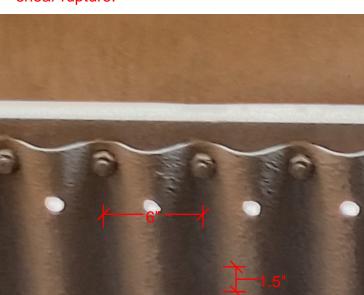
$$\frac{OP/18}{23} (2)$$


$$\frac{OP/18}{23} (2)$$

$$\frac{OP/18}{23} (2)$$

$$\frac{1}{3} COMPUTE FLUID PRESSURE ON 5.44 RABUS FLUME
CORRUGATED STRUCTURAL PLATE.
ASSUME FULL DEPTH SLURRY, $S_{5} = 75^{-16}/43^{-3}$


$$\frac{R_{V}}{R_{V}} = \frac{R_{V}}{R_{V}} = \frac{R_{V}}{R_{V}}$$$$

$$\frac{\partial 7/13}{23} = 2$$
• NET AREA OF CSP IN TENSION (in /ft)
(2) 3/4" BALTS PER FT \Rightarrow (2) 7/8" HOLES PER FT
A hole = $2(7/8")(0.111 in twick) = 0.194 in / 154$
A - A pole = $1.556 = 0.194 = A_{n.k} = 1.362 in / 144$
TENSILE RUPTWRE:
 $\frac{P_{n.}}{52} = \frac{A_{n.k}}{2.0}$
 $\frac{P_{n}}{8} = 30.6 \text{ k/f}$
CONTROLS
FLUME SECTION
 $\frac{+6}{5} + 6^{-1} + 5(1 + 6)(1 + 5)(1 + 6)(1 + 5)(1 + 6)(1 + 5))(1 + 5)(1$

Top connection (flume to continuous angle) - shear rupture:

Section Properties

	TABLE 5. STEEL CONDUITS				
Gage	Thickness (Inches)	6" x 2" Corrugations			
		Area of Section A <u>.</u> Sq. In./Ft.	Radius of Gyration r (Inches)	Section Modulus S In.³/In.	Moment of Inertia I In.4/In.
10	0.140	2.003	0.684	0.0733	0.0781
8	0.170	2.449	0.686	0.0888	0.0962
7	0.188	2.739	0.688	0.0989	0.1080
5	0.218	3.199	0.690	0.1147	0.1269
3	0.249	3.650	0.692	0.1302	0.1462
1	0.280	4.119	0.695	0.1458	0.1658
5/16	0.318	4.671	0.698	0.1640	0.1900
3/8	0.380	5.613	0.704	0.1950	0.2320

	TABLE 7. Chanical properties f Structural plate mat	
<mark>f.</mark> Minimum Tensile Strength (psi)	<mark>f_y Minimum Yield Point (psi)</mark>	E _m Modulus of Elasticity (psi)
45,000	33,000	29 x 106