Metal Form Deck Catenary Action - Max Tension

Sagging Cable Analysis

Calculate sag length, reactions, resultant force, and angle of force for sagged cable. (Source: Engineering Toolbox Cable Loads)

Inputs

h = 0.5 in Sag Distance (Deflection)

Results (per 1 ft of deck width)

$$\begin{split} R_{y} &:= 0.5 \cdot w \cdot L = 0.3 \, \frac{kip}{ft} & \text{Vertical Reaction} \\ R_{x} &:= \frac{w \cdot L^{2}}{8 \cdot h} = 13.2 \, \frac{kip}{ft} & \text{Horizontal Reaction} \\ R_{T} &:= \sqrt{R_{y}^{2} + R_{x}^{2}} = 13.2 \, \frac{kip}{ft} & \text{Resultant Force (Max Tension)} \\ \theta &:= \operatorname{atan} \left(\frac{R_{y}}{R_{x}} \right) = 1.4 \, deg & \text{Angle of Resultant Force from Horizontal} \\ s &:= L + \left(\frac{8 \cdot h^{2}}{3 \cdot L} \right) = 7 \, ft & \text{Approximate Sagged Cable Length} \end{split}$$

Deck Screw Strength

#10 deck screw

$d \coloneqq 0.182 \ in$	Screw body diameter
$A_b \coloneqq \pi \cdot (0.5 \ d)^2 = 0.026 \ in^2$	Screw area
$F_{allow} := 0.4 \cdot (33 \ ksi) = 13.2 \ ksi$	Allowable shear stress
$R_{allow} \coloneqq F_{allow} \bullet A_b = 0.343 \ kip$	Allowable shear strength
$rac{R_{allow}}{R_T}\!=\!0.311~in$	Required screw spacing for catenary tension force

Form Deck Tensile Strength

$l \coloneqq 16 \frac{in}{ft}$ $t \coloneqq 0.0474 in$	Form deck length of corrugated material for 1 ft of deck width Form deck thickness (20 gage)
$A_{deck} \! \coloneqq \! l \! \cdot \! t \! = \! 0.758 \frac{in^2}{ft}$	Form deck area per ft of width
$F_y \coloneqq 50 \ ksi$	Form deck yield strength

$P_{allow} \coloneqq$	$A_{deck} \cdot F_y$	- 22 7	kip
	1.67	- 22.1	ft

Form deck allowable tensile strength per ft of width