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Introduction to gas pipeline hydraulics 
 

This online course on gas pipeline hydraulics covers the steady state analysis of compressible fluid flow 

through pipelines. Mathematical derivations are reduced to a minimum, since the intent is to provide the 

practicing engineer a practical tool to understand and apply the concepts of gas flow in pipes.  In particular, 

we will cover natural gas pipeline transportation including how pipelines are sized for a particular flow rate, 

the pressure required to transport a given volume of gas and the compression horsepower required.  The 

properties of natural gas that affect pipe flow will be reviewed first followed by the concepts of laminar and 

turbulent flow and Reynolds number.  Frictional pressure loss and the method of calculating the friction factor 

using the Moody diagram and the Colebrook and AGA methods will be illustrated with examples.  Several 

other popular flow equations, such as the Weymouth and Panhandle formulas will be introduced and 

explained with example problems.  Increasing pipeline throughput using intermediate compressor stations as 

well as pipe loops will be discussed. The strength requirement of pipes, allowable operating pressure and 

hydrostatic test pressure will be reviewed with reference to the DOT code requirements. Several fully solved 

example problems are used to illustrate the concepts introduced in the various sections of the course.   A 

multiple choice quiz is included at the end of the course. 

 
 

  
1. Properties of Gas 

Gases and liquids are generally referred to as fluids. Gases are classified as compressible fluids because 

unlike liquids, gases are subject to large variations in volume with changes in pressure and temperature.  

Liquids on the other hand are generally considered to be incompressible. Liquid density and volume change 

very little with pressure. However, liquids do show a variation in volume as the temperature changes.  The 

mass of a gas is the quantity of matter and does not change with temperature or pressure.  

 

Mass is measured in slugs or pound mass (lbm) in the U.S. Customary system of units (USCS). In the 

Systeme International (SI) units, mass is measured in kilograms (kg).   Weight is a term that is sometimes 

used synonymously with mass.  Strictly speaking, weight of a substance is a force (vector quantity), while 

mass is a scalar quantity. Weight depends upon the acceleration due to gravity and hence depends upon the 

geographical location. Weight is measured in pounds (lb) or more correctly in pound force (lbf) in the USCS 
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units. In SI units weight is expressed in Newton (N).  If the weight of a substance is 10 lbf,  its mass is said to 

be 10 lbm. The relationship between weight W in lb and mass M in slugs is as follows 

 W = Mg                        (1.1) 

 

Where g is the acceleration due to gravity at the specific location. At sea level, it is equal to 32.2 ft/s2 in 

USCS units and 9.81 m/s2 in SI units. 

 

Volume of a gas is the space occupied by the gas. Gases fill the container that houses the gas. The volume 

of a gas generally varies with temperature and pressure. However, if the gas occupies a fixed volume 

container, increasing the pressure will increase the gas temperature, and vice versa. This is called Charles 

Law for gases.   If the gas is contained in a cylindrical vessel with a piston and a weight is placed on the 

piston, the pressure within the gas is constant equal to the weight on the piston, divided by the piston area. 

Any increase in temperature will also increase the gas volume by the movement of the piston, while the gas 

pressure remains constant.  This is another form of the Charles Law for gases. Charles law will be discussed 

in more detail later in this section.   Volume of a gas is measured in cubic feet (ft3) in the USCS units and 

cubic meters (m3) in SI units.   

 

The density of a gas is defined as the mass per unit volume as follows 

 Density = mass / volume        (1.2) 

 

Therefore density is measured in slug/ft3 or lbm/ft3 in USCS units and in kg/m3 in SI units. Similar to volume, 

gas density also varies with temperature and pressure. Since density is inversely proportional to the volume 

from Eq (1.2), we can conclude that density increases with pressure while the volume decreases. Similarly, 

increase in temperature decreases the density, while volume increases. 

 

Specific weight of a gas refers to the weight per unit volume. It is referred to in lb/ft3 in USCS units and N/m3 

in SI units.   

 Specific weight = weight of gas / volume occupied     (1.3) 

 

The specific weight, like the volume of a gas, varies with the temperature and pressure. 
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If the weight of a certain quantity of gas is 10 lb and the volume occupied is 1000 ft3, the specific weight is 

1000
10

 or 0.01 lb/ft3. On the other hand the density of this gas can be stated as 0.01 lbm/ft3 or 







2.32
01.0

 = 

0.00031 slug/ft3. Therefore, specific weight and density are closely related. Another term, called the specific 

volume is the inverse of the specific weight, expressed in ft3/lb in the USCS units and m3/N in SI units. 

 Specific volume = volume of gas / weight of gas      (1.4) 

 

The specific gravity of a fluid is defined as a ratio of the density of the fluid to that of a standard fluid such as 

water or air at some standard temperature. For liquids, water is the standard of comparison, while for gases 

air is used as the basis.   

 Specific gravity of gas = density of gas / density of air (at the same temperature)    (1.5) 

Being a ratio of similar properties, the specific gravity is dimensionless. 

Thus the specific gravity of a particular gas may be stated as 0.65 relative to air at 60 OF. Sometimes, 

specific gravity is abbreviated to gravity and may be stated as follows: 

Gravity of gas = 0.65 (air = 1.00) 

 

Using molecular weights, we can define the gas gravity as the ratio of the molecular weight of the gas to that 

of air. The molecular weight of air is usually considered to be 29.0 and therefore, the specific gravity of gas 

can be stated as follows: 

 
0.29

MwG =           (1.6) 

Where 

G  = specific gravity of gas, dimensionless 

Mw  = molecular weight of gas 

The specific gravity of a gas like its density varies with temperature and pressure. 

 

Viscosity of a fluid relates to the resistance to flow of the fluid.  Higher the viscosity, more difficult it is to 

flow. The viscosity of a gas is very small compared to that of a liquid. For example, a typical crude oil may 

have a viscosity of 10 centipoise (cP), whereas a sample of natural gas has a viscosity of 0.0019 cP. 

Viscosity may be referred to as absolute or dynamic viscosity measured in cP or kinematic viscosity 

measured in centistokes (cSt). Both these units are SI units, but commonly used even when working with 
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USCS units. Other units of viscosity in USCS units are lb/ft-s for dynamic viscosity and ft2/s for kinematic 

viscosity.  

 

The specific heat of a gas is defined as the quantity of heat required to raise the temperature of one lb of gas 

by one OF. For gases, two specific heats are used: Cp, the specific heat at constant pressure and Cv, the 

specific heat at constant volume. The ratio of the specific heats 
Cv
Cp

 is designated as γ and is an important 

parameter in flow of gases and in expansion  and contraction of gases.    

 

Pressure of a gas must be defined before we get on with the other important properties concerning gas flow. 

Pressure is defined as the force per unit area acting at any point in the gas. Imagine a container of volume V 

occupied by a certain mass of gas M as shown in Fig. 1.1  

 

 

 

 

 

 

 

 

 

                              Fig. 1.1 Pressure in a gas 

 

 The gas is contained within this volume at some temperature T and pressure P and is in equilibrium.  At 

every point within the container there is said to be a constant pressure P.  Since the density of gas, 

compared to that of a liquid, is very small, the pressure of the gas at a point A near the top of the container 

will be the same as that at a point B near the bottom of the container. If the difference in elevations between 

the two points is H, theoretically, the pressure of gas at the bottom point will be higher than that at the top 

point by the additional weight of the column of gas of height H. However, since the gas density is very small, 

this additional pressure is negligible. Therefore we say that the pressure of gas is constant at every point 

within the container.  In USCS units, gas pressure is expressed in lb/in2 or psi and sometimes in lb/ft2 or psf.  

B

A

H
Pressure P

Temperature T
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In SI units, pressure is stated as kilopascal (kPa), megapascal (MPa), bar or kg/cm2.    When dealing with 

gases it is very important to distinguish between gauge pressure and absolute pressure. The absolute 

pressure at any point within the gas is the actual pressure inclusive of the local atmospheric pressure 

(approximately 14.7 psi at sea level). Thus in the example above, if the local atmospheric pressure outside 

the gas container is Patm and the gas pressure in the container as measured by a pressure gauge is Pg,   the 

absolute or total gas pressure in the container is  

 Pabs = Pg + Patm           (1.7) 

The adder to the gauge pressure is also called the base pressure. In USCS units, the gauge pressure is 

denoted by psig while the absolute pressure is stated as psia. Therefore, if the gauge pressure is 200 psig 

and the atmospheric pressure is 14.7 psi, the absolute pressure of the gas is 214.7 psia.  In most equations 

involving flow of gases and the gas laws, absolute pressure is used.  Similar to absolute pressure, we also 

refer to the absolute temperature of gas. The latter is obtained by adding a constant to the gas temperature. 

For example, in USCS units, the absolute temperature scale is the Rankin scale. In SI units, Kelvin is the 

absolute scale for temperature. The temperature in OF or OC can be converted to absolute units as follows: 

 OR = OF + 460            (1.8) 

 K = OC + 273            (1.9) 

Note that degrees Rankin is denoted by OR whereas for degrees Kelvin, the degree symbol is dropped. Thus 

it is common to refer to the absolute temperature of a gas at 80 OF as   (80 + 460) = 540 OR and if the gas 

were at 20 OC, the corresponding absolute temperature will be (20 +  273) = 293 K.  In most calculations 

involving gas properties and gas flow, the absolute temperature is used.   

 

The Compressibility factor, Z is a dimensionless parameter less than 1.00 that represents the deviation of 

a real gas from an ideal gas. Hence it is also referred to as the gas deviation factor.   At low pressures and 

temperatures Z is nearly equal to 1.00 whereas at higher pressures and temperatures it may range between 

0.75 and 0.90. The actual value of Z at any temperature and pressure must be calculated taking into account 

the composition of the gas and its critical temperature and pressure. Several graphical and analytical 

methods are available to calculate Z. Among these, the Standing-Katz, AGA and CNGA methods are quite 

popular.  The critical temperature and the critical pressure of a gas are important parameters that affect the 

compressibility factor and are defined as follows. 
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The critical temperature of a pure gas is that temperature above which the gas cannot be compressed into a 

liquid, however much the pressure.  The critical pressure is the minimum pressure required at the critical 

temperature of the gas to compress it into a liquid.   

 

As an example, consider pure methane gas with a critical temperature of 343 OR and critical pressure of 666 

psia.  

The reduced temperature of a gas is defined as the ratio of the gas temperature to its critical temperature, 

both being expressed in absolute units (OR or K). It is therefore a dimensionless number. 

Similarly, the reduced pressure is a dimensionless number defined as the ratio of the absolute pressure of 

gas to its critical pressure.  

Therefore we can state the following: 

  
c

r T
TT =          (1.10) 

  
c

r P
PP =          (1.11) 

Where 

P = pressure of gas, psia 

T  = temperature of gas, OR 

Tr = reduced temperature, dimensionless 

Pr = reduced pressure, dimensionless 

Tc  = critical temperature, OR 

Pc  = critical pressure, psia  

Using the preceding equations, the reduced temperature and reduced pressure of a sample of methane gas 

at 70OF and 1200 psia pressure can be calculated as follows 

5452.1
343

46070 =+=rT    

and       

8018.1
666

1200 ==rP     

For natural gas mixtures, the terms pseudo-critical temperature and pseudo-critical pressure are used. The 

calculation methodology will be explained shortly. Similarly we can calculate the pseudo-reduced 
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temperature and pseudo-reduced pressure of a natural gas mixture, knowing its pseudo-critical temperature 

and pseudo-critical pressure. 

The Standing-Katz chart, Fig. 1.2 can be used to determine the compressibility factor of a gas at any 

temperature and pressure, once the reduced pressure and temperature are calculated knowing the critical 

properties. 

 

 

 

 

 

 

                                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                           Fig. 1.2 Compressibility factor chart 
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Using the example above, the compressibility factor of the gas at 70 F and 1200 psia  is found from the 

Standing-Katz chart,  Fig. 1.2 as   Z = 0.850 approximately.  

Another analytical method of calculating the compressibility factor of a gas is using the CNGA equation as 

follows:   

 
( )























+

=

825.3

785.110344400
1

1

f

G
avg

T
P

Z        (1.12) 

Where 

Pavg  = Gas pressure, psig. 

Tf      = Gas temperature, OR 

G    = Gas gravity (air = 1.00) 

 

The CNGA equation for compressibility factor is valid when the average gas pressure Pavg  is greater than 

100 psig. For pressures less than 100 psig, compressibility factor is taken as 1.00. It must be noted that the 

pressure used in the CNGA equation is the gauge pressure, not the absolute pressure. 

 

Example 1 

Calculate the compressibility factor of a sample of natural gas (gravity = 0.6) at 80 F and 1000 psig using the 

CNGA equation.  

Solution 

From the Eq. (1.12), the compressibility factor is  

 

( )






















+
×+

=
×

825.3

6.0785.1

)46080(
1034440010001

1Z = 0.8746 

The CNGA method of calculating the compressibility, though approximate, is accurate enough for most gas 

pipeline hydraulics work.  

 

The heating value of a gas is expressed in Btu/ft3.  It represents the quantity of heat in Btu (British Thermal 

Unit) generated by the complete combustion of one cubic foot of  the gas with air at constant pressure at a 
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fixed temperature of  60 F.  Two values of the heating value of a gas are used: Gross heating value and Net 

heating value.  The gross heating value is also called the higher heating value (HHV) and the net heating 

value is called the lower heating value (LHV). The difference in the two values represents the latent heat of 

vaporization of the water at standard temperature when complete combustion of the gas occurs. 

 

 

Natural gas mixtures 

Natural gas generally consists of a mixture of several hydrocarbons, such as methane, ethane, etc.  Methane 

is the predominant component in natural gas.  Sometimes small amounts of non-hydrocarbon elements, 

such as nitrogen (N2), carbon-dioxide (CO2) and hydrogen sulfide (H2S) are also found. The properties of a 

natural gas mixture can be calculated from the corresponding properties of the components in the mixture. 

Kay�s rule is generally used to calculate the properties of a gas mixture, and will be explained next.  

 

Example 2 

A natural gas mixture consists of the following components.  

Component  Mole Percent Molecular weight 

Methane C1      85   16.01 

Ethane    C2       10  30.07 

Propane  C3        5  44.10 

                  ________ 

Total                100 

Calculate the specific gravity of this natural gas mixture. 

 

Solution 

Using Kay�s rule for a gas mixture, we can calculate the average molecular weight of the gas, from the 

component molecular weights given. By dividing the molecular weight by the molecular weight of air, we can 

determine the specific gravity of the gas mixture.  The average molecular weight per Kay�s rule is calculated 

using a weighted average. 

( ) ( ) ( ) 846.1810.4405.007.3010.004.1685.0 =×+×+×=M  

Therefore, the specific gravity of the gas mixture is  using Eq. (1.6)  
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6499.0
29
846.18 ==G  

 

Example 3 

Calculate the pseudo critical temperature and the pseudo critical pressure of a natural gas mixture containing 

85 percent of methane (C1), 10 percent ethane (C2) and 5 percent propane (C3) 

The critical temperatures and critical pressures of C1, C2 and C3 are as follows 

Component  Critical Temperature, OR Critical Pressure, psia 

C1    343    666 

C2    550    707 

C3    666    617 

What is the reduced temperature and reduced pressure of this gas mixture at 80 OF and 1000 psia? 

 

Solution 

Kay�s rule can be applied to calculate the pseudo-critical temperature and pseudo-critical pressure of the gas 

mixture from those of the component gases as follows: 

Tpc  = (0.85 x 343) + (0.10 x 550) + (0.05 x 666) = 379.85 OR 

and 

 Ppc  = (0.85 x 666) + (0.10 x 707) + (0.05 x 617) = 667.65  psia 

Therefore, the pseudo critical properties of the gas mixture are 

pseudo-critical temperature  = 379.85 OR 

and  

the pseudo critical pressure =  667.65  psia 

From Eq. (1.10) and (1.11), we calculate the pseudo-reduced temperature and the pseudo-reduced pressure 

as follows: 

42.1
85.379
46080 =+=prT  

498.1
65.667

1000 ==prP  

Being ratios, both the above values are dimensionless. 
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If the gas composition is not known, the pseudo-critical properties may be calculated approximately from the 

gas gravity as follows 

 GTpc 344.307491.170 +=         (1.13)

 GPpc 718.58604.709 −=         (1.14) 

Where G is the gas gravity and other symbols are defined before.  Note that Equations 1.13 and 1.14 are 

applicable to natural gas only. 

 

Example 4 

Calculate the pseudo critical temperature and pseudo critical pressure for a natural gas mixture containing 

85 percent methane, 10 percent ethane and 5 percent propane, using the approximate method.  

 

Solution 

In Example 2, we calculated the gas gravity for this mixture as  0.6499 

Using Eq. (1.13) and (1.14) the pseudo critical properties  are calculated as follows 

 

Tpc = 170.491 + 307.344 x (0.6499) = 370.23 OR 

Ppc = 709.604 - 58.718 x (0.6499)   = 671.44 psia 

 

In a previous example, we calculated the pseudo-critical properties using the more accurate method as 

379.85 OR and 667.65 psia.  Comparing these with the approximate method using the gas gravity, we find 

that the values are within 2.5 percent for the pseudo critical temperature and within 0.6 percent for the 

pseudo critical pressure. 

 

Gas Laws 

The compressibility of a gas was introduced earlier and we defined it as a dimensionless number close to 1.0 

that also represents how far a real gas deviates from an ideal gas. Ideal gases or perfect gases obey Boyles 

and Charles law and have pressure, temperature and volume related by the ideal gas equation.  These laws 

for ideal gases are as follows: 
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Boyles Law defines the variation of  pressure of a given mass of gas with its volume when the temperature is 

held constant.  The relationship between pressure P and volume V is 

 PV = constant           (1.15) 

Or  

 P1V1 = P2V2          (1.16) 

Where P1, V1 are the initial conditions and P2, V2 are the final conditions of a gas when temperature is held 

constant. This is also called isothermal conditions. 

Boyles law applies only when the gas temperature is constant. Thus if a given mass of gas has an initial 

pressure of 100 psia and a volume of 10 ft3, with the temperature remaining constant at 80 F and the 

pressure increases to 200 psia, the corresponding volume of gas becomes 

Final volume =  =×
200

10100
 5 ft3 

Charles law applies to variations in pressure-temperature and volume-temperature, when the volume and 

pressures are held constant.  Thus keeping the volume constant, the pressure versus temperature 

relationship according to Charles law is as follows: 

 =
T
P

 constant          (1.17) 

Or  

 
2

2

1

1

T
P

T
P =           (1.18) 

Similarly if the pressure is held constant, the volume varies directly as the temperature as follows: 

 =
T
V

 constant          (1.19) 

Or  

 
2

2

1

1

T
V

T
V

=           (1.20) 

Where P1, V1 and T1 are the initial conditions and P2, V2 and T2 are the final conditions. It must be noted that 

pressures and temperatures must be in absolute units.  

 

Example 5 
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A given mass of gas is at an initial condition of 80 F, 100 psia and 10 ft3.  If the final conditions are 100 psia 

and 100 F, what is the final gas volume? 

 

Solution 

Since the pressure remains constant, we can apply Charles law, Eq. 1.20 

46010046080
10 2

+
=

+
V

 

Solving for the final volume, V2 

V2 = 10.37 ft3 

 

The Ideal Gas equation, or the Perfect Gas Equation, as it is sometimes called combines Boyle�s law and 

Charles law and is stated as follows: 

 PV = nRT          (1.21) 

Where 

P  = gas pressure, psia 

V  = gas volume, ft3 

n  = number of lb moles of gas (mass/molecular weight) 

R  = universal gas constant, psia ft3/lb mole OR 

T  = gas temperature, OR  

The universal gas constant R is equal to 10.73 psia ft3/lb mole OR in USCS units.   

If m is the mass of gas and M its molecular weight, 

 
M
mn =           (1.22) 

Therefore, the ideal gas equation becomes 

 
M
mRTPV =           (1.23) 

 

The constant R is the same for all ideal gases and therefore it is referred to as the universal gas constant. 

The ideal gas equation discussed above is accurate only at low pressures.  Because, in practice most gas 

pipelines operate at pressures higher than atmospheric pressures, the ideal gas equation must be modified   
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when applied to real gases, by including the effect of gas compressibility.  Thus, when applied to real gases, 

the compressibility factor or gas deviation factor is used in Eq. (1.21) as follows. 

  PV =  ZnRT          (1.24) 

where Z is the gas compressibility factor at the given pressure and temperature. 

 

 

Example 6 

Calculate the volume of a 10 lb mass of gas (Gravity = 0.6) at 500 psig and 80F, assuming the 

compressibility factor as 0.895. The molecular weight of air may be taken as 29 and the base pressure is 

14.7 psia. 

Solution 

The number of lb moles n is calculated using Eq. (1.22). The molecular weight of the gas  

M = 0.6 x 29 = 17.4 

Therefore 5747.0
4.17

10 ==n  lb mole 

Using the real gas Eq. (1.24) 

(500 + 14.7) V = 0.895 x 0.5747 x 10.73 x (80 + 460) 

Therefore,  V = 5.79 ft3 
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2. Pressure Drop Due To Friction 

The Bernoulli�s equation essentially states the principle of conservation of energy.  In a flowing fluid (gas or 

liquid) the total energy of the fluid remains constant.  The various components of the fluid energy are 

transformed from one form to another, but no energy is lost as the fluid flows in a pipeline.  Consider an 

upstream location A and downstream location B in a pipe transporting a gas, at a flow rate of Q as shown in 

Fig. 2.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                      Fig 2.1 Energy of gas in pipe flow 

 

At point A, the gas has a certain pressure PA , density ρ A , and temperature T A,.  Also the elevation of point A 

above a certain datum is Z A.    Similarly, the corresponding values for the downstream location B are P B, ρ B, 

TB and ZB. If the pressures and elevations at A and B were the same, there would be no �driving force� and 

hence no gas flow.  Due to the difference in pressures and elevations, gas flows from point A to point B.  The 

reason for the pressure difference in a flowing gas is partly due to the elevation difference and more due to 

the friction between the flowing gas and the pipe wall.  As the internal roughness of the pipe increases the 

friction increases. The velocity of the gas, which is proportional to the volume flow rate Q, also changes 

depending upon the cross sectional area of the pipe and the pressures and temperature of the gas. By the 

principle of conservation of mass, the same mass of gas flows at A as it does at B, if no volumes of gas are 

Elevation Datum

ΖΒ

Pressure PA

A

B

ΖΑ

Pressure PB

Flow Q

Velocity VA

Velocity VB

density ρB

density ρA
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taken out or introduced into the pipe between points A and B.  Therefore, if VA and VB represent the gas 

velocities at points A and B, we can state the following for the principle of conservation of mass.  

 Mass flow = AAVAρA   = ABVBρB          (2.1) 

In the above equation the product of the area A and Velocity V represents the volume flow rate and by 

multiplying the result by the density ρ  we get the mass flow rate at any cross section of the pipe. If the pipe 

cross section is the same throughout (constant diameter pipeline), the mass flow equation reduces to  

 VAρA   = VBρB            (2.2) 

 

Referring to Fig 2.1, for the flow of gas in a pipeline, the energy of a unit mass of gas at A may be 

represented by three components: 

 Pressure energy 
A

AP
ρ         (2.3)  

 Kinetic  energy  
g

VA
2

2

        (2.4) 

 Potential energy  Z A         (2.5) 

 

All energy components have been converted to units of fluid head in feet and g is the acceleration due to 

gravity.  Its value at sea level is 32.2 ft/s2 in USCS units and 9.81 m/s2 in SI units. 

 

If the frictional energy loss (in ft of head) in the pipeline from point A to point B is hf  we can write the energy 

conservation equation or the Bernoulli�s equation  as follows 

 fB
B

B

B
A

A

A

A hZ
g
VP

Z
g
VP

+++=++
22

22

ρρ
                              (2.6) 

The term hf is also called the pressure loss due to friction between point A and B. Starting with the Bernoulli�s 

equation, researchers have developed a formula for calculating the pressure drop in a gas pipeline, taking 

into account the pipe diameter, length, elevations along the pipe, gas flow rate and the gravity and 

compressibility of the gas. This basic equation is referred to as the Fundamental Flow Equation, also known 

as the General Flow equation.  
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As gas flows through a pipeline, its pressure decreases and the gas expands.  In addition to the gas 

properties, such as gravity and viscosity, the pipe inside diameter and pipe internal roughness influence the 

pressure versus flow rate. Since the volume flow rate Q can vary with the gas pressure and temperature, we 

must refer to some standard volume flow rate, based on standard conditions, such as 60 F and 14.7 psia 

pressure.  Thus the gas flow rate Q will be referred to as standard ft3/day or SCFD.  Variations of this are 

million standard ft3/day or MMSCFD and standard ft3/h or SCFH. In SI units gas flow rate in a pipeline is 

stated in standard m3/hr or standard m3/day. 

Pressure P1

Length L

Pressure P2
Flow Q

1 2

Elevation H1
Elevation H2

D

 

                      Fig 2.2 Steady state flow in a gas pipeline 

 

Referring to Fig 2.2, for a pipe segment of length L and inside diameter D, the upstream pressure is P1 and 

the downstream pressure P2 are related to the flow rate and gas properties as follows, in USCS units. 

 5.2

5.0
2

2
2

154.77 D
LZfGT
PP

P
TQ

fb

b









 −








=        (2.7) 

where 

Q  = gas flow rate, standard, ft3/day (SCFD) 

L       = pipe length, mi 

D    = inside diameter of pipe, in.  

P1    = upstream pressure, psia. 

P2    = downstream pressure, psia. 

Pb   = base pressure, psia (usually 14.7 psia) 

Tb = base temperature, OR  (usually 60+460 = 540 OR) 
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Tf     = average flowing temperature of gas, OR  

G     = gas specific gravity (Air = 1.00) 

Z    = gas compressibility factor at the flowing temperature and pressure, dimensionless 

f = friction factor, dimensionless 

 

The General Flow Equation, in SI units is as follows 

 
( ) 5.2

5.0
2

2
2

13101494.1 D
LZfGT
PP

P
T

Q
fb

b











 −








×= −       (2.8) 

where 

Q  = gas flow rate, standard, ft3/day (m3/day ) 

L       = pipe length, km 

D    = inside diameter pipe, mm.  

P1    = upstream pressure, kPa (absolute). 

P2    = downstream pressure, kPa (absolute). 

Pb   = base pressure, kPa (absolute). 

Tb = base temperature, K   

Tf     = average flowing temperature of gas, K  

G     = gas specific gravity (air = 1.00) 

Z    = gas compressibility factor at the flowing temperature and pressure, dimensionless 

f = friction factor, dimensionless 

The pressures in the above equation may also be in MPa or Bar as long as the same consistent unit is used 

throughout. Always use absolute pressures, not gauge pressures. 

 

In the preceding equations, we have assumed that for the pipe segment, of length L,   from upstream point 1 

to the downstream point 2, the flowing gas temperature (Tf ) is constant. In other words, isothermal flow is 

assumed. This may not be true in reality, since there will be heat transfer between the gas in the pipeline and 

the surrounding soil, if the pipe is buried. If the pipe is above ground the heat transfer will be between the 

gas and the ambient air. In any case, for simplicity, we will assume that there is isothermal gas flow in the 

pipeline. The friction factor f in Eq. (2.8) is referred to as the Darcy friction factor and depends upon the 

internal condition (rough or smooth) of the pipe and whether the flow is laminar or turbulent.  Laminar and  
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turbulent flow, along with the Reynolds number will be discussed shortly. The value of f is generally 

determined graphically from the Moody diagram (Fig. 2.3) or analytically from the Colebrook-White equation 

as will be explained in the next section.                                                           

 

Effect of pipe elevations 

So far, we have neglected the effect of elevation difference between the upstream and downstream locations 

of the pipe. If the elevations H1 and H2 are included, the General Flow equation becomes as follows 

 5.2

5.0
2

2
2

154.77 D
ZfLGT
PeP

P
TQ

ef

s

b

b





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


 −








=        (2.9) 

Where the equivalent length Le  and the term es   depend upon the elevation difference (H2 - H1).  

In SI units, the corrected equation is 

 
( ) 5.2

5.0
2

2
2

13101494.1 D
LZfGT
PeP

P
TQ

f

s

b

b











 −








×= −       (2.10) 

TThhee  tteerrmm  Le  and es  aarree  rreellaatteedd  aass  ffoolllloowwss::    

  
( )
s
eLL
s

e
1−=                     ((22..1111))  

The dimensionless, elevation adjustment parameter s varies with the gas properties, the gas flowing 

temperature and the elevation difference. It is calculated as follows 

 








 −=
ZT
HHGs

f

120375.0                                           (2.12) 

Where 

s = elevation adjustment parameter, dimensionless  

H1 = upstream elevation, ft  

H2 = downstream elevation, ft 

 

 

In SI units the corresponding equation is 

 








 −=
ZT
HHGs

f

120684.0                                                                                      (2.13) 
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Where  H1  and H2  are expressed in  meters. 

 

The General Flow equation can be used for calculating the flow rate in a gas pipeline, given the upstream 

and downstream pressures. Alternatively, it can be used to calculate the pressure drop for a given flow rate.  

An example will illustrate this.   

 

Example 7 

Calculate the flow rate through a 10 mile long gas pipeline, NPS 20, 0.375 inch wall thickness, transporting 

gas, with a gravity of 0.6 and a compressibility factor of 0.85. The inlet and outlet pressures are 1000 psig 

and 800 psig respectively.  Base temperature and pressure are 60F and 14.7 psia.  Gas flowing temperature 

is 70F. Neglect elevation effects and assume friction factor f = 0.02 

 

Solution 

The inside diameter of the pipe is    

D = 20 � 2 x 0.375 = 19.25 in. 

The gas flowing temperature is  

Tf    = 70+460 = 530 R 

Using the General Flow equation (2.7), we get 

   5.2

5.022

25.19
02.085.0105306.0

7.8147.1014
7.14
4606054.77 











××××
−







 +=Q       

Therefore Q = 380,987,188 SCFD or 380.99 MMSCFD 

 

Another form of the General Flow equation uses the Transmission factor F instead of the friction factor f. 

These parameters are related by the equation  

 
f

F 2=                                   (2.14) 

 

From Eq (2.14) we see that if the friction factor f = 0.02, the transmission factor F = 14.14. 
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Thus while the friction factor is a number less than 1.00, the transmission factor is a number between 10 and 

20. Using the transmission factor F instead of the friction factor f, and considering the elevation difference, 

the General Flow equation (2.9) becomes 
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The corresponding equation in SI units is 
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Upon examining the General Flow equation, we see that the gas flow rate in a pipeline is approximately 

proportional to the square root of difference in squares of the upstream and downstream pressures or  

( )2
2

2
1 PP − .  In comparison, in liquid flow through pipes, the flow rate is directly proportional to the square 

root of the pressure difference or ( )21 PP − .  This is a very important feature of gas flow in pipes. The 

result of this is that the pressure gradient in a gas pipeline is slightly curved, compared to a straight line in 

liquid flow.  Also in a gas pipeline, reduction in upstream or downstream pressure at the same flow rate will 

not be reflected to the same extent throughout the pipeline, unlike liquid flow.  Suppose the upstream 

pressure and downstream pressures are 1000 and 800 psia respectively at a certain flow rate in a gas 

pipeline. By keeping the flow rate the same, a 100 psia reduction in upstream pressure will not result in 

exactly 100 psia reduction in the downstream pressure, due to the Q versus ( )2
2

2
1 PP −  relationship in gas 

flow.  In a liquid pipeline, on the other hand, a 100 psia reduction in upstream pressure will result in exactly 

100 psia reduction in the downstream pressure. 

 

Other interesting observations from the General Flow equation are as follows.  The higher the gas gravity 

and compressibility factor, the lower will be the flow rate, other items remaining the same. Similarly, longer 

the pipe segment, lower will be the gas flow rate.  Obviously, larger the pipe diameter, greater will be the flow 

rate.  Hotter gas flowing temperature causes reduction in flow rate.  This is in stark contrast to liquid flow in 

pipes, where the higher temperature causes reduction in the liquid gravity and viscosity and hence increase 
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the flow rate for a given pressure drop. In gas flow, we find that cooler temperatures cause increase in flow 

rate. Thus summer flow rates are lower than winter flow rates in gas pipelines. 

 

Several other flow equations or pressure drop formulas for gas flow in pipes are commonly used. Among 

these Panhandle A, Panhandle B and Weymouth equations have found their place in the gas pipeline 

industry.  The General Flow equation however is the most popular one and the friction factor f is calculated 

either using the Colebrook equation or the AGA formulas.  Before we discuss the other flow equations, we 

will review the different types of flows, Reynolds number and how the friction factor is calculated using the 

Colebrook-White equation or the AGA method.  

 

The flow through a pipeline may be classified as laminar, turbulent or critical flow depending upon the value 

of a dimensionless parameter called the Reynolds number. The Reynolds number depends upon the gas 

properties, pipe diameter and flow velocity and is defined as follows. 

 
µ

ρVD=Re           (2.17) 

 
where 
 
Re = Reynolds number, dimensionless 
 
V = average gas velocity, ft/s 

D     = pipe inside diameter, ft 

ρ     = gas density, lb/ft3               
 
µ    = gas viscosity, lb/ft-s                           
 
 
In terms of the more commonly used units in the gas pipeline industry, the following formula for Reynolds 

number is more appropriate, in USCS units 

 
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µ
0004778.0Re         (2.18) 

where 
 
Pb   = base pressure, psia  

Tb   = base temperature, OR  

G   = gas specific gravity 

Q    = gas flow rate, standard ft3/day (SCFD) 
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D    = pipe inside diameter, in. 

µ     = gas viscosity, lb/ft-s 

 

The corresponding version in SI units is as follows 

 
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
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


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b
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5134.0Re         (2.19)  

where 
 
Pb    = base pressure, kPa  

Tb  = base temperature, K  

G   = gas specific gravity 

Q    = gas flow rate, standard m3/day 

D    = pipe inside diameter, mm 

µ     = gas viscosity, Poise 

 

The flow in a gas pipeline is considered to be laminar flow when the Reynolds number is below 2000.  

Turbulent flow is said to exist when the Reynolds number is greater than 4000. When the Reynolds numbers 

is between 2000 and 4000, the flow is called critical flow, or undefined flow. 

Therefore 

 Re <= 2000        Flow is laminar  

 Re >   4000       Flow is turbulent 

And  Re > 2000 and Re <= 4000    Flow is critical flow 

 

In practice, most gas pipelines operate at flow rates that produce high Reynolds numbers and therefore in 

the turbulent flow regime.  Actually, the turbulent flow regime is further divided into three regions known as 

smooth pipe flow, fully rough pipe flow and transition flow. This is illustrated in the Moody diagram shown in 

Fig 2.3 
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     Fig. 2.3 Moody diagram 

 

When the flow is laminar, the friction factor f, used in the General Flow equation is calculated easily from the 

following equation 

 
Re
64=f                                 ((22..2200))  

Therefore, if the Reynolds number is 1800, the friction factor becomes 

 0356.0
1800

64 ==f           

 

When the flow is turbulent, the friction factor depends not only on the Reynolds number, but also on the 

inside diameter of the pipe and the internal pipe roughness.  Obviously, the friction factor is higher with 

rougher pipe, compared to a smooth pipe. The popular equation, known as the Colebrook-White equation, 
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sometimes simply called the Colebrook equation can be used to calculate the friction factor for turbulent flow 

as follows. 

 









+−=

fD
eLog

f Re
51.2

7.3
21

10         (2.21) 

where 

f     = friction factor, dimensionless 

D    = pipe inside diameter, in. 

e    = absolute internal roughness of pipe, in. 

Re    = Reynolds number of flow, dimensionless 

The dimensionless ratio 
D
e

    is also known as the relative roughness of pipe. 

The absolute roughness e varies with the internal condition of the pipe. For bare steel pipe a roughness 

value of 0.0007 inch (700 micro-inches) may be used. For internal coated pipe e ranges from 100 to 300 

micro-inches.  It can be seen from Eq. (2.21) that the calculation of the friction factor f from the Colebrook-

White equation is not straightforward. It requires a trial and error solution since f appears on both sides of the 

equation. First an initial value of f (such as f = 0.02) is assumed and substituted on the right hand side of the 

Eq. (2.21). This gives us a new approximation for f, which is then substituted on the right hand side of the 

equation, resulting in a better approximation, and so on.  Three or four trials will yield a fairly accurate value 

of f. This will be illustrated in an example next. 

 

First we will illustrate the calculation of the friction factor using the Moody diagram. Suppose the Reynolds 

number calculated is Re = 2 million and the relative roughness e/D = 0.0004. Using these two values, we go 

to the Moody diagram and locate the 2 million figure on the horizontal scale. Going vertically from that point 

until we reach the curves of constant relative roughness, we locate the curve for e/D = 0.0004. From the 

point of intersection, we go horizontally to the left and read the value of the friction factor f as f = 0.016. 

In the next example, the calculation of f using the Colebrook equation will be explained. 
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Example 8 

A gas pipeline, NPS 24 with 0.500 in. wall thickness transports  250 MMSCFD of natural gas having a 

specific gravity of  0.65 and a viscosity of  0.000008 lb/ft-s.  Calculate the value of Reynolds number and the 

Colebrook-White friction factor, based on a pipe roughness of 700 micro-inches. The base temperature and 

base pressure are 60 F and 14.73 psia respectively. What is the corresponding transmission factor F? 

 

Solution   

Inside diameter of pipe = 24 � 2 x 0.5 = 23.0 in. 

Base temperature = 60 + 460 = 520 OR 

Using Eq. (2.18), the Reynolds number is  



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



×
××
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



=

23000008.0
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73.140004778.0Re

6

 = 11,953,115 

Therefore the flow is in the turbulent region. 

From Eq. (2.21), we calculate the friction factor as follows 

Relative roughness = 
D
e

 = 
23

10700 6−×
 =  0.0000304 



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




+−=

f
Log

f 115,953,11
51.2
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10  

First assume f = 0.02  and calculate a better approximation from above as 


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




+−=

02.0115,953,11
51.2

7.3
0000304.021

10Log
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 = 10.0264 or f = 0.0099 

Therefore f = 0.0099 is a better approximation 

Next using this value, we get the next better approximation as  


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
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+−=
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7.3
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Solving for f we get f = 0.0101 

The next trial yields f = 0.0101, which is the same as the last calculated value. 

Hence the solution for the friction factor is f = 0.0101 

The corresponding transmission factor F is calculated from Eq. (2.14) as  
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  95.19
0101.0
2 ==F                            

 

Another popular correlation for the transmission factor (and hence the friction factor) is the AGA equation. It 

is also referred to as the AGA NB-13 method. Using the AGA method, the transmission factor F is calculated 

in two steps.   First the transmission factor is calculated for the rough pipe law.   Next F is calculated based 

upon the smooth pipe law.  These two zones refer to the Moody diagram discussed earlier.  The smaller of 

the two values calculated is the AGA transmission factor.  This factor is then used in the General Flow 

equation to calculate the pressure drop. The method of calculation is as follows. 

 

Using the rough pipe law, AGA recommends the following formula for F for a given pipe diameter and 

roughness. It is calculated independent of the Reynolds number. 

 





=
e
DLogF 7.34 10            (2.22) 

This calculation for the rough pipe regime is also called the Von Karman rough pipe flow equation. 

Next, F is calculated for the partially turbulent zone using the following equations, taking into account   the 

Reynolds number,  the pipe drag factor and the Von Karman smooth pipe transmission factor Ft.  
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and 
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t F

LogF            (2.24) 

where 

Ft
   = Von Karman smooth pipe transmission factor 

Df     = pipe drag factor 

The value of Ft must be calculated from Eq. (2.24) by trial and error. 

The pipe drag factor Df   is a dimensionless parameter that is a function of the Bend Index (BI) of the pipe. 
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The bend index  depends upon the number of bends and fittings in the pipe  The BI is calculated by adding 

all the angles and bends in the pipe segment, and dividing the total by the total length of the pipe segment. 

The drag factor Df  generally ranges between 0.90 and 0.99 and can be found from the Table 1 

 

Table 1  Bend index and drag factor   
    
  Bend Index- degrees per mile 
  Extremely low Average  Extremely high 
  5o to 10o 60o to 80o 200o to 300o 
        
Bare steel 0.975 - 0.973 0.960 - 0.956 0.930 - 0.900 
Plastic lined 0.979 - 0.976 0.964 - 0.960 0.936 - 0.910 
Pig Burnished 0.982 - 0.980 0.968 - 0.965 0.944 - 0.920 
Sand-Blasted 0.985 - 0.983 0.976 - 0.970 0.951 - 0.930 
        
    
Note: The drag factors above are based on 40 ft joints of pipelines and 
mainline   valves at 10 mile spacing 

 

Additional data on the bend index and drag factor may be found in the AGA NB-13 Committee Report. 

An example using the AGA transmission factor will be illustrated next. 

 
Example 9 
 
A natural gas pipeline NPS 24 with 0.500 in. wall thickness transports gas at 250 MMSCFD. 

Calculate the AGA transmission factor and friction factor. The gas gravity and viscosity are 0.59 and 

0.000008 lb/ft-sec.  Assume bare steel pipe with an absolute pipe roughness is 750 micro-inches and a bend 

index of 60O,  

Base pressure = 14.7 psia and base temperature = 60 OF 

 
Solution   
 

Pipe inside diameter = 24 � 2 x 0.5 = 23.0 in. 

Base temperature = 60 + 460 = 520 OR 

First calculate the Reynolds number from Eq. (2.18)  

=
××

××××=
520000008.00.23

7.1459.0102500004778.0Re
6

10,827,653 

Next we will calculate the transmission factor for the fully turbulent flow using the rough pipe law Eq. (2.22) 
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
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Next, for the smooth pipe zone, the Von Karman transmission factor is calculated from Eq. (2.24) as 

 6.0653,827,104 10 −
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Solving for Ft  by trial and error, 

Ft = 22.16 

The bend index of 60O gives a drag factor Df  of  0.96, from Table 1 

Therefore, the transmission factor  for the partially turbulent flow zone is from Eq. (2.23) 


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16.224125.1
653,827,1096.04 10LogF   = 21.27      

Therefore, choosing the smaller of the two values calculated above, the AGA transmission factor is 

F = 20.22 

 

 

The corresponding friction factor f is found from Eq. (2.14)  

22.202 =
f

     

Therefore,    f = 0.0098 

 

Average pipeline pressure 

The gas compressibility factor Z used in the General Flow equation is based upon the flowing temperature 

and the average pipe pressure. The average pressure may be approximated as the arithmetic average   

2
21 PP +

 of the upstream and downstream pressures P1 and P2.  However, a more accurate average pipe 

pressure is usually calculated as follows 

 
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The preceding equation may also be written as 
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Since the pressures used in the General Flow equation are in absolute units, all gauge pressures must be 

converted to absolute pressures, when calculating the average pressure from Eq. (2.25) and (2.26). As an  

example,  if the upstream and downstream pressures are 1200 psia and 1000 psia respectively, the average 

pressure in the pipe segment is 






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 ×−+=

2200
1000120010001200

3
2

avgP = 1103.03 psia 

If we used the arithmetic average, this becomes 

( )10001200
2
1 +=avgP  = 1100 psia 

 
 
Velocity of gas in pipe flow 
 
The velocity of gas flow in a pipeline under steady state flow can be calculated by considering the volume 

flow rate and pipe diameter.  In a liquid pipeline, under steady flow, the average flow velocity remains 

constant throughout the pipeline, as long as the inside diameter does not change.  However, in a gas 

pipeline, due to compressibility effects, pressure and temperature variation, the average gas velocity will vary 

along the pipeline, even if the pipe inside diameter remains the same.   The average velocity in a gas 

pipeline at any location along the pipeline is a function of the flow rate, gas compressibility factor, pipe 

diameter, pressure and temperature, as indicated in the equation below. 

   
























= 2002122.0

D
Q

P
TZ

T
PV b

b

b        (2.27) 

Where 

V  = Average gas velocity, ft/s 

Qb  = gas flow rate, standard  ft3/day (SCFD)  

D    = inside diameter of pipe, in. 

Pb   = base pressure, psia 

Tb   = base temperature, OR  

P    = gas  pressure, psia. 
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T      = gas temperature, OR  

Z     = gas compressibility factor at pipeline conditions, dimensionless 

 

It can be seen from the velocity equation that the higher the pressure, the lower the velocity and vice versa. 

The corresponding equation for the velocity in SI units is as follows 
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Where 

V  = gas velocity, m/s 

Qb  = gas flow rate, standard m3/day  

D    = inside diameter of pipe, mm 

Pb   = base pressure, kPa 

Tb   = base temperature, K 

P    = gas pressure, kPa.  

T      =  gas temperature, K  

Z    = gas compressibility factor at pipeline conditions, dimensionless 

 

In the SI version of the equation, the pressures may be in any one consistent set of units, such as kPa, MPa 

or Bar. 

 

Erosional velocity 

The erosional velocity represents the upper limit of gas velocity in a pipeline. As the gas velocity increases, 

vibration and noise result. Higher velocities also cause erosion of the pipe wall over a long time period. The 

erosional velocity Vmax may be calculated approximately as follows 

GP
ZRTV
29

100max =           (2.29) 

Where 

Z = gas compressibility factor, dimensionless 

R = gas constant = 10.73 ft3 psia/lb-moleR 

T = gas temperature, 0R 
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G = gas gravity (air = 1.00) 

P = gas pressure, psia 

 

Example 10 

A natural gas pipeline NPS 20 with 0.500 in. wall thickness transports natural gas (specific gravity = 0.65) at 

a flow rate of 200 MMSCFD at an inlet temperature of 70 F. Calculate the gas velocity at inlet and outlet of 

the pipe, assuming isothermal flow. The inlet pressure is 1200 psig and the outlet pressure is 900 psig. The 

base pressure is 14.7 psia and the base temperature is 60 F.   Use average compressibility factor of  0.95.   

Also, calculate the erosional velocity for this pipeline. 

 

Solution 

From Eq. (2.27) the gas velocity at the pipe inlet pressure of 1200 psig is 
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 = 13.78 ft/s 

Similarly, the gas velocity at the outlet pressure of 900 psig can be calculated using proportions from Eq. 

(2.27) 

7.914
7.121478.132 ×=V    = 18.30 ft/s 

Finally, the erosional velocity can be calculated using  Eq. (2.29) 

7.121465.029
53073.1095.0100max ××

××=u  = 48.57 ft/s 

 

Weymouth Equation  

The Weymouth equation is used for calculating flows and pressures in high pressure gas  gathering systems.  

It does not use a friction factor or a transmission factor directly, but uses a pipeline efficiency factor.  

However, we can calculate the transmission factor by comparing the Weymouth equation with the General 

Flow equation. 

The Weymouth equation, in USCS units, is as follows 
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Where E  is the pipeline efficiency, expressed as a decimal value less than or equal to 1.0.  

All other terms have been defined previously under the General Flow equation. 

Comparing the Weymouth equation with General Flow equation, the Weymouth transmission factor in USCS 

units may be calculated from the following equation.  

 F = 11.18(D)1/6          (2.31)  

In SI units, the Weymouth equation is expressed as follows 
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Where all symbols have been defined previously. 

 

In SI units, the  corresponding Weymouth transmission factor is  

 F = 6.521 (D)1/6          (2.33) 

 

 
Panhandle Equations   

The Panhandle A and the Panhandle B Equations  have been used by many natural gas pipeline companies, 

including a pipeline efficiency factor, instead of considering the pipe roughness.  These equations have been 

successfully used for Reynolds numbers in the range of 4 million to 40 million. The more common version of 

Panhandle A equation is as follows 
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Where  E is the pipeline efficiency, a decimal value less than 1.0  and all other symbols have 

been defined before under General Flow equation. 

 

In SI Units, the Panhandle A equation is stated as follows 
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All symbols have been previously defined.  It must be noted that in the preceding SI version, all pressures 

are in kPa. If MPa or Bar is used, the constant in Eq.(2.35) will be different. 

 
 
Panhandle B Equation 
 
The Panhandle B Equation, sometimes called the revised Panhandle equation is used by many gas 

transmission companies. It is found to be fairly accurate in turbulenet flow for Reynolds numbers between 4 

million and 40 million.   It is expressed as follows, in USCS units. 
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Where  all symbols are the same as defined for the Panhandle A equation (2.34). 

 
The corresponding equation in SI units is as follows 
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Where  all symbols are the same as defined for the Panhandle A equation (2.35). 

 
Example 11 
 
Calculate the outlet pressure in a natural gas pipeline, NPS 18 with 0.250 in. wall thickness, 20 miles long, 

using the Panhandle A and B  Equations.  The gas flow rate is 150 MMSCFD at a flowing temperature of 70 

F. The inlet pressure is 1000 psig and the gas gravity and viscosity are 0.6 and  0.000008 lb/ft-sec 

respectively.  Assume base pressure = 14.7 psia and base temperature = 60 OF.  Assume that the 

compressibility factor Z = 0.85 throughout and  the pipeline efficiency is  0.95.  Compare the results using the 

Weymouth Equation. Neglect elevation effects 

 

Solution 

Inside diameter D = 18 � 2 x 0.250 = 17.50 in 

Gas flowing temperature Tf = 70 + 460 = 530 OR 

Upstream pressure P1 = 1000 + 14.7 = 1014.7 psia 

Base temperature Tb = 60 + 460 = 520 OR  

Base pressure Pb = 14.7 psia 

Using the Panhandle A Eq. (2.34), we get 
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Solving   P2 = 970.81 psia 

Using the Panhandle B Eq. (2.36), we get 
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Solving for the outlet pressure P2 , we get 
P2 = 971.81 psia  

Thus both Panhandle A and B give results that are quite close.  
 
 
Next using the Weymouth Eq. (2.30) we get 
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Solving for the outlet pressure P2 , we get 
 

P2 = 946.24 psia  

  
It can be seen that the outlet pressure calculated using the Weymouth equation is the smallest value. Hence 

we conclude that for the same flow rate, Weymouth gives a higher pressure drop compared to Panhandle A 

and Panhandle B equation. Therefore, Weymouth is considered  to be more conservative than the other two 

flow equations. 
 
The IGT Equation  

This is another flow equation for natural gas pipelines, proposed by the Institute of Gas Technology. It is 

frequently used in gas distribution piping systems.  
In USCS units, the IGT equation is as follows. 
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Where  µ  is the  gas viscosity in lb/ft-s and all other symbols have been defined previously. 

In SI units the IGT equation is as follows 
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Where  µ   is the gas viscosity in Poise and all other symbols have been defined before. 
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3. Pressures and Piping System 

In the previous sections we discussed how the pressure drop is related to the gas flow rate in a pipeline. We 

calculated flow rates, for short pipe segments, from given upstream and downstream pressures using the 

General Flow equation as well as Panhandle A, B and Weymouth equation.  In a long pipeline the pressures 

along the pipeline may be calculated considering the pipeline sub-divided into short segments and by 

calculating the pressure drop in each segment. If we do not do this and consider the pipeline as one long 

segment, the results will be inaccurate due to the nature of the relationship between pressures and flow 

rates.  To accurately calculate the pressures in a long gas pipeline, we have to use some sort of a computer 

program, because subdividing the pipeline into segments and calculating the pressures in each segment will 

become a laborious and time consuming process.  Furthermore, if we consider heat transfer effects, the 

calculations will be even more complex. We will illustrate the method of calculating pressures by sub-dividing 

the pipeline, using a simple example.  In this example we will first calculate the pressures by considering the 

pipeline as one segment. Next we will sub-divide the pipeline into two segments and repeat the calculations. 

 

Example 12 

A natural gas pipeline, AB is 100 mi long and is NPS16, 0.250 in. wall thickness. The elevation differences 

may be neglected and the pipeline assumed to be along a flat elevation profile. The gas flow rate is 100 

MMSCFD. It is required to determine the pressure at the inlet A, considering a fixed delivery pressure of 

1000 psig at the terminus B.  The gas gravity and viscosity are 0.6 and 0.000008 lb/ft-s respectively.  The 

gas flowing temperature is 70 F throughout.  The base temperature and pressure are 60 F and 14.7 psia 

respectively. Use CNGA method for calculating the compressibility factor. Assume transmission factor F = 

20.0 and use  the General Flow equation for calculating the pressures. 

 

Solution: 

The inside diameter of the pipeline is  

D = 16-2x0.250 = 15.5 in. 

For the compressibility factor, we need to know the gas temperature and the average pressure. Since we do 

not know the upstream pressure at A, we cannot calculate an accurate average pressure.  We will assume 

that the average pressure is 1200 psig,  since the pressure at B is 1000 psig. The approximate 

compressibility factor will be calculated using this pressure from Eq. (1.12) 
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Therefore,        Z =   0.8440 

This value can be adjusted after we calculate the actual pressures. 

Using the General Flow equation, Eq. (2.7) considering the pipeline as one 100 mile long segment, the 

pressure at the inlet A can be calculated as follows 
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Solving for the pressure at A, we get 

P1 = 1195.14 psia  or  1180.44 psig. 

Based on this upstream pressure and the downstream pressure of 1000 psig at B, the average pressure 

becomes, from Eq. (2.26) 
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avgP   = 1107.38 psia or 1092.68 psig 

This compares with the average pressure of 1200 psig we initially used to calculate Z. Therefore, a more 

correct value of Z can be re-calculated using the average pressure calculation above. 

Strictly speaking we must re-calculate Z based on the new average pressure of 1092.68 psig and then re-

calculate the pressure at A using the General Flow equation. The process must be repeated until successive 

values of Z are within a small tolerance, such as 0.01. This is left as an exercise for the reader. 
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A B

NPS 16 pipeline 100 miles long

1000 psig

Flow

C

50 miles

 

Fig. 3.1   Sub-dividing pipeline  

 

Next we will sub-divide the 100 mi pipeline into two equal 50 mi segments. We will first calculate the 

upstream pressure of the second 50 mi segment based on a downstream pressure of 1000 psig at B. This 

will establish the pressure at the mid point of the 100 mi pipeline. Then, based on this mid-point pressure we 

will calculate the pressure required at A, for the first 50 mi segment. Since the pressure at A was calculated 

earlier as approximately 1180 psig, we will assume an average pressure of the second 50 mi segment to be 

approximately 1050 psig. 

Calculating the compressibility factor Z 
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Therefore,        Z =   0.8608 

 

Applying the General Flow equation for the second 50 mi segment  
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Solving for the pressure at  the mid point C, we get 

P1 = 1110.38 psia  or  1095.68 psig. 
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As before, the average gas pressure in the second segment must be calculated based on the above 

pressure and the pressure at B and the value of Z recalculated. We will skip that step for now and proceed 

with the first 50 mi segment. 

 

Applying the General Flow equation for the first 50 mi segment  
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Note that we have also assumed the same value for Z as before. 

Solving for the pressure at  A, we get 

P1 =    1198.45  psia  or   1183.75  psig. 

 

It is seen that the pressure at A is 1180 psig when we calculate based on the pipeline as one single 100 mi 

segment. Compared to this, the pressure at A is 1184 psig when we subdivide the pipeline into two 50 mi 

segments.  Subdividing the pipeline into four equal 25 mile segments will result in a more accurate solution.  

This shows the importance of sub-dividing the pipeline into short segments, for obtaining accurate results. As 

mentioned earlier, some type of hydraulic simulation program should be used to quickly and accurately 

calculate the pressures in a gas pipeline. One such commercial software is GASMOD, published by SYSTEK 

Technologies, Inc. (www.systek.us). Using this hydraulic model, the heat transfer effects may also be 

modeled. 

 

The total pressure required at the inlet of a gas pipeline may be calculated easily using the method illustrated 

in the previous example. Similarly, given the inlet and outlet pressures, we can calculate the gas flow rate in 

the pipeline using the General Flow equation, Panhandle or Weymouth equations. 

Next, we will now look at gas pipelines with intermediate flow injections and deliveries. 

 

As we increase the flow rate through a gas pipeline, if we keep the same delivery pressure at the pipeline 

terminus, the pressure at the pipeline inlet will increase.  Suppose the inlet pressure of 1400 psig  results in a 

delivery pressure of 900 psig. If the MAOP (maximum allowable operating pressure) uof the pipeline is 1440 

psig, we cannot increase the inlet pressure above that, as flow rate increases. Therefore, we need to install  
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intermediate compressor stations as illustrated in the preceding discussions.  Suppose the flow rate increase 

results in the inlet pressure of 1500 psig and we do not want to install an intermediate compressor station.  

We could install a parallel loop for a certain length of the pipeline to reduce the total pressure drop in the 

pipeline such that the inlet pressure will be limited to the MAOP.  The length of pipe that needs to be looped 

can be calculated using the theory of parallel pipes discussed in the next section.  By installing a pipe loop 

we are effectively increasing the diameter of the pipeline for a certain segment of the line. This increase in 

diameter will decrease the pipeline pressure drop and hence bring the inlet pressure down below the 1500 

psig required at the higher flow rate. 

Looping a section of the pipeline is thus regarded as a viable option to increase pipeline throughput. In 

comparison with the installation of an intermediate compressor station, looping requires incremental capital 

investment but insignificant increase in operating cost. In contrast, a new compressor station will not only 

require additional capital investment, but also add significant operation and maintenance costs. 

 

Example 13 

Consider a pipeline shown in Fig 3.2 where the gas enters the pipeline at A at 100 MMSCFD and at some 

point B, 20 MMSCFD is delivered to a customer. The remaining 80 MMSCFD continues to a point C where 

an additional volume of 50 MMSCFD is injected into the pipeline.  From that point the total volume of 130 

MMSCFD continues to the end of the pipeline at D, where it is delivered to an industrial plant at a pressure of 

800 psig. 

 

 

 

 

 

 

 

  Figure 3.2  Pipeline with injection and deliveries 

 

We would analyze the pipeline pressures required at A, B and C for this system as follows. Suppose the 

desired delivery pressure at the terminus D is given as 500 psig. Using this pressure as the downstream 

BA D

100 MMSCFD

20 MMSCFD

NPS 16

80 MMSCFD 130 MMSCFD

C

50 MMSCFD
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pressure for the pipe segment CD, we will calculate the upstream pressure required at C to transport 130 

MMSCFD through the pipe CD. Assuming the pipe diameter for CD is known, we use the General Flow 

equation to calculate the pressure at C. Once we know the pressure at C, we consider the next pipe segment 

BC and using the General Flow equation calculate the upstream pressure required at B to transport 80 

MMSCFD through the pipe segment BC.  Similarly, we finally calculate the upstream pressure required at A 

to transport 100 MMSCFD through the pipe segment AB. 

 

Due to the different flow rates in the pipes AB, BC and CD the required diameters for these pipe segments 

will not be the same. The largest diameter will be for the CD that transports the greatest volume and the 

smallest diameter will be for the segment BC that flows the least volume.  

 

Sometimes, we have to calculate the minimum diameters of these pipe segments, required to handle these 

flow rates, given both the upstream and downstream pressures at A and D.  In that case we choose an initial 

size for AB, based upon allowable gas velocities and starting from the end A, calculate the downstream 

pressures at points B, C and D in succession, using the General Flow equation.  The pipe sizes are adjusted 

as needed until we are able to arrive at the correct delivery pressure at D.   

 

When pipes of different  diameters are connected together end to end, they  are referred to as series pipes.  

If the flow rate is the same throughout the system, we can simplify calculations by converting the entire 

system into one long piece of pipe with the some same  uniform diameter, using the equivalent length 

concept.    We  calculate the equivalent length of each pipe segment (for the same pressure drop) based on 

a fixed base diameter. For example a pipe of diameter D1 and length L1 will be converted to an equivalent 

length Le1 of some base diameter D.  This will be based on the same pressure drop in both pipes. Similarly 

the remaining pipe segments, such as the pipe diameter D2 and length L2 will be  converted to a 

corresponding equivalent length Le2 of diameter D.  Continuing the process we have the entire piping system 

reduced to the following total equivalent length of the same diameter D. 

 Total equivalent length = Le1 +  Le2  +  Le3 +�.. 

The base diameter D may be one of the segment diameters.  For example, we may pick the base diameter 

to be D1.  Therefore the equivalent length becomes 

 Total equivalent length = L1 +  Le2  +  Le3 +�.. 
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From the General Flow equation,  we see that the pressure drop versus the pipe diameter relationship is 

such that  ( )2
2

2
1 PP −   is  inversely proportional to the fifth power of the diameter and  directly proportional to 

the pipe length.  Therefore, we can state the following 

  5D
CLPsq =∆           (3.1) 

Where  

∆Psq =   (P1 
2 � P2

2) for pipe segment.  

P1, P2   = Upstream and downstream pressures of pipe segment, psia. 

C   =  A constant  

L = pipe segment length 

D  = pipe segment inside diameter  

Therefore for the equivalent length calculations, we can state that for the second segment 
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And for the third pipe segment the equivalent length is  
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Therefore the total equivalent length Le for all pipe segments in terms of diameter D1 can be stated as 
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We are thus able to reduce the series pipe system to one of fixed diameter of an equivalent length. The 

analysis then would be easy since all pipe sizes will be the same. However, if the flow rates are different in 

each section, there is really no benefit in calculating the equivalent length, since we have to consider each 

segment separately and apply the General Flow equation for each flow rate. Therefore the equivalent length 

approach is useful only if the flow rate is the same throughout the series piping system. 
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Pipes may also be connected in parallel as shown in Fig  3.3  This is also called a looped system. We will 

next discuss how the pressures and flow rates are calculated in parallel piping systems. 

 

 

 

 

 

 

                                                          

      Fig. 3.3 Parallel pipes 

 

In Fig 3.3  we have a pipe segment AB   connected to two other pipes(BCE and BDE)  in parallel, forming a 

loop.  The two pipes rejoin at E to form a single pipe segment EF. We can replace the two pipe segments 

BCE and BDE by one pipe segment of some length Le and diameter De.  This will be based on the same 

pressure drop through the equivalent piece of pipe as the individual pipes BCE and BDE.  The flow rate Q 

through AB is split into two flows Q1 and Q2 as shown in the figure, such that Q1 + Q2 = Q. 

Since B and E are the common junctions for each of the parallel pipes, there is a common pressure drop ∆P 

for each pipe BCE or BDE. Therefore the flow rate Q1 through  pipe BCE results in pressure drop ∆P just as  

the flow rate Q2 through  pipe BDE results in the same pressure drop ∆P . The equivalent pipe of length Le 

and diameter De must also have the same drop ∆P at the total flow Q, in order to completely replace the two 

pipe loops.  Using this principle, and noting the pressure versus diameter relationship from the General Flow 

equation, we can calculate the equivalent diameter De based on setting Le equal to the length of one of the 

loops BCE or BDE. 

Another approach to solving the flows and pressures in a looped system is to calculate the flows Q1 and Q2 

based on the fact that the flows should total Q and the fact that there is a common pressure drop  ∆P across 

the two parallel segments. 

Using the General Flow equation, for common   ∆P, we can state that  
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Where L1 and L2 are the two pipe segment lengths for BCE and BDE and D1 and D2 are the corresponding 

inside diameters. 

Simplifying the preceding equation, we get. 
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Also 

 Q = Q1 + Q2          (3.7) 

Using the two preceding equations, we can solve for the two flows Q1 and Q2. Once we know these flow 

rates, the pressure drop in each of the pipe loops BCE or BDE can be calculated. 

 
Looping a gas pipeline:   

Looping a gas pipeline effectively increases the pipe diameter, and hence results in increased throughput 

capability. If a 50 mile section of NPS 16 pipeline, 0.250 inch wall thickness is looped using an identical pipe 

size, the equivalent diameter De and length Le are related as follows from equation (3.5)   
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By setting the length L1, L2 and Le to equal 50 miles, the equivalent diameter De may be calculated, using 

Eq. (3.6) and (3.7), after some simplification as follows: 
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Since the loop diameters are the same, D1 = D2 = 15.5 in 

Solving for the equivalent diameter, we get 
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Or De = 20.45 in. 

Compared to the unlooped pipe, the looped pipeline will have an increased capacity of approximately  

     QL/Q = (20.45/15.5)2.5 = 2.0          
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We have thus demonstrated that by looping the pipeline the throughput can be increased to twice the original 

value. Suppose instead of looping the NPS 16 pipe with an identical diameter pipe, we looped it with NPS 20 

pipe with a wall thickness of 0.375 inch, the equivalent diameter becomes  

     De = 23.13 inch 

And the increased capacity ratio becomes  

     QL/Q = (23.13/15.5)2.5 = 2.72 

Thus by looping the NPS 16 pipe with a NPS 20 pipe, the capacity can be increased to 2.72 times the 

original throughput. This method of increasing pipeline capacity by looping involves initial capital investment 

but no increased HP such as that when we install a compressor.  Thus we can compare the cost of looping a 

pipeline with installing additional compressor stations. 

 

4. Compressor Stations and HP 

Compressor stations provide the pressure required to transport the gas in a pipeline from one location to 

another.  Suppose that a 20 mile long pipeline requires 1000 psig pressure at the pipe inlet A to deliver the 

gas at  100 MMSCFD flow rate to the terminus B  at 900 psig.  If the gas at A is at 800 psig pressure, it 

needs to be compressed to 1000 psig using a compressor located at A.  The compressor is said to provide a 

compression ratio of  
7.14800
7.141000

+
+

   = 1.25. Note that pressures must be converted to the absolute 

pressures and hence the reason for adding 14.7, the base pressure, to the given pressures.  We say that the 

compressor suction pressure is 814.7 psia and the discharge pressure is 1014.7 psia.  Suppose the gas inlet 

temperature on the compressor suction side is 80 F.  Because of the compression process, the gas 

temperature at the compressor discharge will increase, just like the discharge pressure.  If the compression 

process is adiabatic or isentropic, pressure versus volume will obey the adiabatic compression equation as 

follows 

  PVγ    = constant         (4.1) 

 

Where γ is the ratio of the specific heats (Cp/Cv) of the gas.  This ratio is approximately 1.29 for natural gas. 

Using the above equation in conjunction with the ideal gas equation, we can write a relationship between the 

pressure P and the temperature T for the compression process, as follows 
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         (4.2) 

If the suction conditions are represented by the subscript 1 and the discharge conditions by the subscript 2, 

the discharge temperature of the compressed gas can be calculated as follows 
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Where all temperatures are in  OR and the pressures are in psia. 

Taking into account the compressibility of the gas, the temperature ratio above becomes 

 
γ

γ 1

1

2

2

1

1

2

−

















=








P
P

Z
Z

T
T

         (4.4) 

Where Z1    and Z2  are   gas compressibility factors at suction and discharge conditions, respectively. 

When the compression process is polytropic, we use the polytropic coefficient n instead of  g and the 

temperature ratio then becomes 
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Horsepower required 

The compressors compress the natural gas and raises its pressure (and its temperature )  to the level 

required to ensure that the gas will be transported from point A to point B, such that the required outlet 

pressure can be maintained.  The higher the outlet pressure at B, the higher will be the pressure required at 

A.  This will cause the compressors to work harder.  The energy input to the gas by the compressors will 

depend upon the compression ratio and gas flow rate, among other factors.  From the energy input to the 

gas, we can calculate the horsepower (HP) needed. 

The following equation may be used to calculate the compressor HP. 
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    (4.6) 

Where 

HP  = compression horsepower  

γ  =   Cp/Cv  the ratio of specific heats of gas 
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Q = gas flow rate, MMSCFD 

T1 = suction temperature of gas, OR 

P1 =suction pressure of gas, psia 

P2 = discharge pressure of gas, psia 

Z1 = compressibility of gas at suction conditions, dimensionless  

Z2 = compressibility of gas at discharge conditions, dimensionless  

ηa = compressor adiabatic (isentropic) efficiency, decimal value  

 

In SI units, the compressor Power required is as follows 
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     (4.7) 

Where 

Power  = compression Power, kW  

Q = gas flow rate, Mm3/day 

T1 = suction temperature of gas, K 

P1 = suction pressure of gas, kPa 

P2 = discharge pressure of gas, kPa 

Other symbols are the same as defined previously. 

The adiabatic efficiency, also called the isentropic efficiency, is approximately  0.75 to 0.85.  Taking into 

account a mechanical efficiency ηm    of the compressor driver, the Brake Horsepower (BHP) required may be 

calculated as follows 

 
m

HPBHP
η

=               (4.8) 

The mechanical efficiency ηm   of the driver generally varies from 0.95 to 0.98.  By multiplying the two 

efficiencies, we get the overall efficiency ηo as follows 

 ηo  = ηa  x ηm            (4.9) 

 

The adiabatic efficiency can be calculated, knowing the actual discharge temperature of the gas, suction and 

discharge pressures and the compressibility factors, using the following equation. 
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Suppose the inlet temperature of the gas at the compressor suction is 70 F and the suction and discharge 

pressures are 900 psia and 1200 psia respectively.  If the compressor discharge temperature is 250 F,   the 

compressor adiabatic efficiency may be calculated using the preceding equation. Assuming  γ = 1.4 and the 

compressibility factors as Z1 = 1.0 and Z2 = 0.85 
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Example 14 

Calculate the compression HP required  to adiabatically compress natural gas at 100 MMCFD, starting at an 

inlet temperature of  80 F and  800 psia pressure. The compression ratio is 1.6 and the gas compressibility 

factor at suction and discharge conditions are   Z1 = 1.0 and Z2 = 0.85 and the ratio of specific heats of the 

gas is  γ = 1.4. Consider the compressor adiabatic efficiency ηa = 0.8.   What is the BHP required, for a 

mechanical efficiency of 0.98?   

 

Solutions 

 From Eq. (4.6), the horsepower can be calculated as  
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HP  =2692     

The driver BHP required is calculated from Eq. (4.8) as 

  BHP =   
98.0

2692  =   2747     

So far we examined a pipeline with one compressor station at the beginning of the pipeline.  Consider a 120 

mile long pipeline, NPS 18, 0.375 in. wall thickness from Beaumont to Denver, transporting 300 MMSCFD 
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Suppose calculations showed that the pressure required at Beaumont is 1800 psig based on application of 

the General Flow equation, to provide a delivery pressure of  800 psig at the Denver terminus.  

This is illustrated in Fig 4.1 

 

 

 

 

 

 

 

 

 

 

 

 

                                            Figure  4.1   Compressor stations required 

 

If the maximum allowable operating pressure (MAOP) of the pipeline is limited to 1400 psig, we cannot just 

install one compressor station at the beginning to provide the necessary pressure, since the 1800 psig is 

beyond the pipe MAOP.  Therefore, by installing an additional intermediate compressor station at Grover, as 

shown in the figure, we can keep each compressor station discharge pressure at the MAOP limit. The 

location of the Grover compressor station will depend upon the MAOP, the allowable compression ratio and 

the suction pressure.  One approach is to calculate the distance x between Grover and Denver, such that 

starting at 1400 psig at Grover, the gas outlet pressure at Denver is exactly 800 psig. We would apply the 

General Flow equation to the x mile length of pipe with upstream pressure set at P1 = (1400 + 14.7) psia and 

downstream pressure P2 = (800 +14.7) psia.   Having calculated the value of x and hence the location of 

Grover, we must calculate the suction pressure at Grover, by considering the pipe segment between 

Beaumont and Grover. If the suction pressure at Grover is too low, the compression ratio for the Grover 

compressor will be too high. Generally the compression ratio is limited to 1.2 to 1.8 for centrifugal 

compressors.  If the suction pressure at Grover is too low, we will have to consider installing 2 intermediate 

Beaumont Denver

NPS 18 pipeline 120 miles long

800 psig

Flow

1800 psig

Grover

1400 psig
1400 psig

1000 psig

Distance
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compressors instead of one at Grover. These two compressor stations will be located such that the suction 

pressures do not fall too low and the compression ratio is within limits. 
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5. Strength of Pipe 

In earlier sections of this course, we calculated the pressures and flow rates in a natural gas pipeline.  Using 

the flow equations, we calculated the minimum pressure required to transport gas at a certain flow rate and 

temperature from one point to another.  The pipe used for transportation of gas should be able to withstand 

the necessary internal pressure.  The internal pressure in a pipe is limited to what the pipe material and wall 

thickness can withstand at a certain temperature.  As the pipe pressure is increased, the stress in the pipe 

material increases.  Ultimately, at some internal pressure the pipe will rupture.  Therefore for each pipe size 

and wall thickness, depending upon the pipe material, there is a safe internal pressure beyond which it is not 

advisable to operate the pipeline.  This is known as the maximum allowable operating pressure (MAOP), 

sometimes shortened to maximum operating pressure(MOP).   There are two stresses developed in a pipe 

wall due to internal pressure. The larger of the two is called the hoop stress and acts in the circumferential 

direction. The second is the axial or longitudinal stress that acts along the axial direction.  The axial stress is 

one-half the magnitude of the hoop stress. This is illustrated in the Fig. 5.1 

Hoop Stress - Sh

Axia
l S

tre
ss 

- Sa

Axial Stress - Sa

Pressure - P

Sh

Diameter - D

 

 

             Fig  5.1  Pipe stresses due to internal pressure 

 

The allowable internal pressure can be easily calculated using the Barlow�s equation as follows. 

 

 
t
PDSh 2

=           (5.1) 
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where 

Sh   = allowable hoop stress in pipe,  psig 

P    =  allowable internal pressure, psig 

D    = pipe outside diameter, in. 

t     = pipe wall thickness, in. 

Even though the Barlow�s equation is for calculating the hoop stress in the pipe for a given internal pressure, 

we can easily re-arrange the equation to solve for the pressure P. 

 

 
D
tSP h2=           (5.2) 

Thus for an NPS 20 pipe, 0.500 in. wall thickness, if the allowable hoop stress is limited to 30,000 psig, the 

allowable internal pressure is 

 P = 1500
20

000,305.02 =××
 psig 

The longitudinal stress, Sa can be calculated from a similar equation as follows 

 
t
PDSa 4

=           (5.3) 

 

It must be noted that unlike the General Flow equation or other flow equations, the diameter used here is the  

outside diameter, not the inside diameter.  In practice, to calculate the internal design pressure for a gas 

pipeline, we modify the Barlow�s equation slightly by introducing some factors that depend upon the pipeline 

manufacturing method, operating temperature and the class location of the pipeline.  The modified equation 

is as follows. 

 
D
tSEFTP 2=           (5.4) 

where 

P   = internal design pressure, psig  

D = outside diameter of pipe, in.  

t  = pipe wall thickness, in. 

S   = Specified Minimum Yield Strength (SMYS) of pipe material, psig 

E   = seam joint factor, 1.0 for seamless and Submerged Arc Welded  (SAW) pipes.   
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F   = design factor, usually 0.72 for cross country gas pipelines, but may be as low as 0.4 depending 

upon class location and type of construction. 

T = temperature deration factor = 1.00 for temperatures below 250OF  

 

For further details on the above internal design pressure equation, refer to the DOT 49 CFR part 192 or 

ASME B31.8 standard. The design factor F depends upon the population density and dwellings in the vicinity 

of the pipeline.  Class locations 1 through 4 are defined by DOT based on the population density.  

Accordingly the values for F are as shown in Table 2   

 

Table 2  Design factor  
  
Class location Design factor, F 

1 0.72 
2 0.60 
3 0.50 
4 0.40 

 

 

The following definitions for Class locations are taken from the DOT 49 CFR Part 192 code: 

The class location unit (CLU) is defined as an area that extends 220 yards on either side of the centerline of 

a one mile section of pipe.  Offshore gas pipelines are known as Class 1 locations.  For onshore pipelines, 

any class location unit with 10 or fewer buildings intended for human occupancy is termed Class 1.  Class 2 

locations are defined as those areas with more than 10 but less than 46 buildings intended for human 

occupancy.  Class 3 locations are defined for areas that have 46 or more buildings intended for human 

occupancy or an area where the pipeline is within 100 yards of a building or a playground, recreation area, 

outdoor theatre or other place of public assembly that is occupied by 20 or more people on at least five days 

a week for ten weeks in any 12 month period. The days and weeks needed not be consecutive.   Class 4 

locations are defined for areas with multi-story buildings, such as four or more stories above ground. 

 

The temperature deration factor T, used in Eq. (5.4) is equal to 1.00  as long as the temperature of the gas in 

the pipe does not exceed   250OF. At higher temperatures a value of T less than 1.00 is used as indicated in 

Table 3 
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Table 3  Temperature deration factor  
   

Temperature Derating Factor T 
OF OC   

250 or less 121 or less 1.000 
300 149 0.967 
350 177 0.033 
400 204 0.900 
450 232 0.867 

. 

 

Strictly speaking, Barlow�s equation is correct only for thin walled cylindrical pipes. For thick walled  pipes a 

different formula must be used.  In practice, however, most gas pipelines fall within the category of thin 

walled pipes.  

 

Example 15 

A gas pipeline, NPS 20 is operated at an internal pressure of 1200 psig.  The yield strength of the pipe 

material is 52,000 psig.  Calculate the minimum wall thickness required for operation, below 200 F 

 

Solution 

From Eq. (5.4), assuming a design factor of 0.72 and  temperature derating factor of 1.00, the pipe wall 

thickness is calculated as 

 

0.172.0520002
201200

×××
×=t  = 0.3205 in. 

 

Steel pipe material used in gas pipelines are manufactured in accordance with API specifications 5L and 

5LX.  Several grades designated as X-42, X-52, etc are used. These designations refer to the SMYS of the 

pipe material.   For example, X-42 steel has an SMYS of 42,000 psig, whereas X-52 has an SMYS of 52,000 

psig.  Other grades commonly used are X-60, X-65 and X-70.   In some cases for low pressure applications, 

API 5L grade B pipe with SMYS of 35,000 psig  is used.  
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Example 16 

A natural gas pipeline, NPS 16 0.250 in. wall thickness, is constructed of API 5L X 70 steel pipe. Calculate 

the MOP of this pipeline for the various DOT class locations.  Assume temperature deration factor = 1.00 

 

Solution 

Using Eq. (5.4) the MOP is given by  

16
0.172.00.170000250.02 ×××××=P  =    1575 psig for class 1  

Repeating calculations, by proportions, for the various class locations 

For Class 2,   MOP =  
72.0
6.01575×  = 1312.5 psig  

Class 3, MOP =  
72.0
5.01575×  =  1093.75 psig  

Class 4, MOP =  
72.0
4.01575×  =  875 psig  

 

In order to ensure that a pipeline may be operated safely  at a certain MOP,  before putting it into service, it 

must be hydrostatically tested to a higher pressure and held at that pressure for a specified period of time, 

without any leaks or rupture of pipe.   The magnitude of the hydrotest pressure is usually 125 percent of the 

operating pressure. Therefore if the MOP is 1000 psig, the pipeline will be hydrotested to a minimum 

pressure of 1250 psig. Considering a design factor of 0.72, the operation of a pipeline at the MOP will result 

in the hoop stress reaching 72% of the SMYS.  Since the hydrotest pressure is 125 percent of  the MOP, the 

corresponding hoop stress in the pipe during the testing will be 1.25 times  72% or  90% of SMYS.  Usually, 

the hydrotest envelope is such that the hoop stress is between 90% and 95% of the SMYS. Thus, if the MOP 

is 1000 psig, the hydrotest envelope will be between 1250 psig and 1319 psig.  For buried pipelines, the 

hydrotest pressure is held constant for a period of 8 hours and it is thoroughly checked for leaks.  For above 

ground pipelines, the hydrotest period is 4 hours.  

 

Frequently, in gas pipeline hydraulics, we are interested in knowing the quantity of pipe required for a project. 

There is a simple formula for calculating the weight of pipe per unit length of pipe. For a given pipe of outside 

diameter D   and  wall thickness  t, the weight per foot of pipe is given by 
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 w = 10.68 t (D-t)        (5.5) 

where  D and t are in inches and w is in lb/ft. 

For example, a 20 mile pipeline, NPS 20 with  0.500 in wall thickness has a total pipe weight of 

W = 20 x 5280 x 10.68 x 0.500 x (20-0.5) = 10,996,128 lb or 5,498 tons 

 

 

Summary 
 

In this course we addressed the hydraulics of compressible fluids such as natural gases.  First we introduced 

the relevant properties of gas that affect pipeline hydraulics. Next, the methods of calculating pressures and 

flow rates in a natural gas pipeline  was analyzed, with reference to several popular equations of gas flow. 

We compared the various flow equations and found some were more conservative than others. Using the 

pressure calculated, the compressor HP was estimated.  The need for installing additional intermediate 

compressor stations, based on allowable pipe pressures was explained.  Methods of increasing pipeline 

throughput were discussed.  The strength requirement of pipes to withstand the internal pressure was 

reviewed using the Barlow�s equation.  
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