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SYXO 
An analytic solution for a type of seepage com- 

monly occurring in the backfill of retaining walls 
leads to a mathematical expression for water pressure 
on the lower boundary of the potential “sliding 
wedge ” of earth. This pressure is the function of 
the angle a between the wedge boundary and the 

vertical, and may be written : - jyL2 = F (a) where 

yW is the unit weight of water and H the depth of the 
backfill. An accompanying graph of F (a) eliminates 
the necessity for plotting a Aow net and for sealing 
the water pressure on the lower boundary of the 
wedge. 

IPSIS 
Une solution analytique pour une sorte de suinte- 

ment se produisant frequemment dans le remblai 
des murs de soutbnement am&e g une expression 
mathbmatique pour la pression d’eau B la limite 
infPrieure de la masse triangulaire potentielle de 
glissement de tcrre. Cctte pression est fonction 
de l’angle (L entre la limite de la masse et la verticale 

PW et peut s’tcrire - = 
+y&Y“ 

F (a) dans laquelle yzu est 

l’unitk de poids de l’eau et H la profondeur du rem- 
blai. Un graphique ci-joint de F (a) supprime le 
besoin de relever le rCseau de lignes de courant et 
tracer & I’&zhelle la pression d’eau sur la limite 
infkrieure de la masse. 

Attention was first drawn to the influence of drainage on the pressure against retaining 
walls by Terzaghi (1936).i In particular, he showed that even when impoundment of water, 
and the consequent development of hydrostatic pressure, behind the wall was eliminated, 
the seepage pattern could, under certain conditions, reduce the sliding resistance of the soil 
mass and hence require a greater wall reaction in order to maintain equilibrium. 

Since that time it seems probable that this seepage phenomenon has been taken into 
account in the analysis of relatively few walls. The reasons for avoiding the analysis are 
obviously : 

(1) the extensive amount of time required to construct a reliable freehand flow net for 
this case ; 

(2) the need to determine hydraulic pressures from the flow net and to plot hydraulic 
pressure diagrams on potential surfaces of sliding in the backfill ; 

(3) the need to determine the areas of the water pressure diagrams by planimeter ; and 
(4) the tedious procedure required to analyse the effect of this water pressure on the 

amount of reaction required from the wall. In other words, the analysis appears 
to require more time and effort than the results would be likely to justify. Any 
means whereby this analysis may be simplified would therefore serve to encourage 
its more general use. For the case of a vertical wall sustaining a horizontal back- 
fill, an exact solution of this seepage condition is available which wholly eliminates 
the first three steps enumerated above. 

In Fig. 1 the x-axis represents the horizontal surface of a cohesionless permeable homo- 
geneous and isotropic backfill on which water is falling at such a rate as to engender a steady 
flow toward the vertical back drain of a retaining wall. The boundary between this drain 
and the backfill coincides with the y-axis. The flow in the backfill is assumed to be in 
accordance with Darcy’s law. Considerations of continuity in the field of flow then lead to 
Laplace’s equation : 

??+!?I+ 

l See references on p. 170. 
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a solution of which will indicate the variation in hydraulic head, h, with position, x, y, pro- 
vided this solution also satisfies the boundary conditions for this particular region of flow. 
The pertinent boundary conditions number three, and are as follows :- 

(1) There will be no flow across the impervious horizontal base, y = H. This condition 
at% 

may be expressed by : - = 0 when y = H. 
aY 

(2) Since seepage water will reach a properly designed drain in quantities inadequate to 
completely saturate the drain, it moves downward pressure-free through the highly 
permeable drain structure. Therefore the water pressure at the surface of the 
drain is merely that of the atmosphere. The hydraulic head in the drain is conse- 
quently proportional to the elevation F, = h, = H - y, measured for convenience 
above the impervious base (y = H), upon which the fill rests. Therefore the 
condition is h = H - y when x = 0. 

(3) The head along the entire positive x-axis is given by h = H. That is, h = H when 
y =o. 

The head at any point in the field of flow (x > 0 and 0 < y < H) can then be obtained 
by the familiar method of development in a Fourier series and can be expressed as follows : 

(1) 

This expression satisfies Laplace’s equation and all three boundary conditions and therefore 
is the solution for this particular seepage problem. 

Typical curves for F, = constant (equipotentials) are shown accurately plotted in Fig. 2. 
The corresponding stream lines are also shown in this Figure. These are given by setting 
Z,!J = constant in the expression : 

# z H { 1 - 2 z,,;;7;j2 E-(~~+~)%ccos (2nz + I) g} . . (2) 

0 
which is conjugate to 1. By means of these two formulae, a flow net consisting of mutually 
orthogonal equipotentials and stream lines, may be plotted to any degree of desired accuracy. 

If one now considers the variation in head along planes x = (H - y) tan cc, which radiate 
from point “ a “, one has : 

The fluid pressure head at any point is hp = h - 12, where h, is the elevation head and 
is given by 11, = H - y. Therefore, the hydraulic pressure at any point on a plane radiating 
from “ a ” is given by : 

uw = yto(Iz - H + y) = yw 
[ 

- ; H 
m (-1p 

y -7 &$w + 1J2 
6-(2m+l);(l-~) tanaesin 2m + l) n3/ 

2H 1 
. . (3) 

The variation of this pressure along a particular plane, specifically that inclined at an 
angle of 53.6” (CY = 36.4”) with the horizontal, is shown in Fig. 1. The maximum ordinate 

of the pressure curve, measured normal to the a-plane is for this case %H = 0.175. If the 
Yw 
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pressure equation (3) is integrated over the length of any 
result is obtained : 

H set Q H 

P, = ow dl = set a a, dy 
s s 
0 0 

co 

arbitrary radial plane the following 

= &JP 
[ 

32 
Y * set CC - 1~3 cos cc ~(2m + 1)3 

i 
tan a + (-l)m E -(zm+l); tana II . . (4) 

0 

pl0 The ratio, 1 zYWH2’ is a function only of the angle 01. This function, F(w), which can be 

written : 

F(a) = 
32 m 

set CI - - cos CI z-3 c (2m 1, 1)3 
[tan a + (-l)m E 

- (2m+ 1); tan a 
I 

0 

is shown plotted in Fig. 3. The resultant water force along this radial plane is of course 
directed normal to this plane. 

The conventional method of analysis used by Coulomb can now be applied to the backfill. 
Referring to Fig. 4 one examines the conditions for equilibrium of the wedge of earth, nob, 

0 h=H 

Fig. 1. Dimensions of backfill and 
water pressure on lower bound- 
ary of earth wedge 

which is defined by the angle Q. N and T represent the normal and tangential components 
of the “ effective ” or “ intergranular ” reaction on the inclined surface ab and Q is the 
external reaction required for stability. Ptl, is taken from Fig. 3. For equilibrium : 

Qcos6 = P,cos cx -j-N cos ol - Tsina . . . . . (5) 
and 

W = Q sin 6 + P, sin a + N sin cc + T cos a = ‘y 
G + es 
-Hs.tancc . . (6) 2wl+e 

Introducing the shearing properties of the fill : T = N tan 4, the equilibrium equations 
reduce to : 

Q G + es 
- = 
&&HZ 

ISe tan a + F(a). (cos a. tan [a + $1 - sin cz) 

(sin S + cos 6. tan (CX + 4)) (7) 
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For particular values of S and $ this expression can be evaluated with the aid of Fig. 3 
for various assumed values of CC until the maximum thrust is found. 

If S = 0 we have : 

Q -=~tana.cos(o+~#~)+F(rx){cosw-sinct.cot(a+~$)) . 
$YWH2 * (8) 

Assuming for this special case that G = 2.65, e = 0.65 and s = 1.0, and that $ = 30”, 
35” or 40”, successive trials show that the corresponding maximum values of Q/&,H2 are as 
given in Table 1. 

The figures in column (5) are based upon the gross weight (solid plus water) of the 
completely saturated soil. Under such conditions, it is possible that capillary tension in the 

0 b 

Fig. 3. Fig. 4. Forces on sliding wedge 

water will serve to reduce thrust on the wall by virtue of the “ apparent ” cohesion which 
it imparts to a granular soil. Hence the actual thrusts on the wall could be less than those 
indicated in column (5) and so that actual effect of seepage would be even greater than 
suggested by a comparison of columns (3) and (5). 

It is not necessary to assume the backfill to be cohesionless, since no matter how the 
shearing properties of the fill are expressed, consideration of the equilibrium equations (5) 

Table 1 

With seepage 
(2) (3) 

a wit Q 
i ZYW 

So seepage 
(4) (5) 

-2 orit 

(6) 

Increase : 

and (6) together with the shearing properties will lead to an expression analogous to equation 
(7) which involves F(a). With the aid of Fig. 3 it is relatively easy to evaluate the basic 
equation analogous to equation (7). 

These increases are of the same order of magnitude as those reported by other invest- 
igators (Terzaghi, 1943 and Skempton, 1946) whose conclusions were apparently based on 
graphical flow nets and subsequent plotting and planimetering of the water-pressure distri- 
bution shown on Fig. 1. It appears that the effect of seepage becomes more pronounced, 
relatively, as the quality of backfill improves ; that is as 4 increases. 
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