Kaolinite

INPUT DATA

Material Type	Kaolinite
Consolidation Type	Floating

Before Test

Inside diameter of the ring, ID	6.0	cm
Height of specimen, Hi	2.0	cm
Mass of specimen + ring	192.0	gr
Initial moisture content of specimen, wi	79.0	%
Specific of solids, Gs	2.7	
Weight of ring	90.0	gr
Density of water , Pw	1.0	gr/cm3
least count , LC	0.001	cm

After Test

Mass of wet sample + ring +glass plate	3266.0	gr
Mass of can	37.0	gr
Mass of can + wet soil	160.0	gr
Mass of wet specimen	123.0	gr
Mass of can + dry soil	101.0	gr
Mass of dry specimen, Ms	64.0	gr
Final moisture of specimen, wf	92.2	%

EQUATIONS

Area of specimen

$$A = \frac{\pi x ID^2}{4}$$

Mass of water in specimen before test

$$Mwi = wi \times Ms$$

Mass of water in specimen after test

$$Mwf = wf x Ms$$

Height of solid

$$Hs = \frac{M_S}{A x G_S x P_W}$$

Height of water before test

$$Hwi = \frac{M_{wi}}{A \times P_{w}}$$

Height of water after test

$$Hwf = \frac{M_{wf}}{A \times P_{w}}$$

Intial void ratio

$$eo = \frac{Hi - Hs}{Hs}$$

CALCULATIONS

1. Area of specimen, A

A 28.274 cm2

2. Mass of water in specimen before test, Mwi

Mwi 50.560 gr

3. Mass of water in specimen after test, Mwf

Mwf 59.008 gr

4. Height of solids, Hs

Hs 0.854 cm

5. Height of water before test, Hwi

Hwi 1.788 cm

6. Height of water after test, Hwf

Hwf 2.087 cm

7. Initial void ratio ,eo

eo 1.341