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This paper presents an exact solution in terms of infinite 
series of the problem of buckling by compressive forces in 
one direction of a rectangular plate with built-in edges 
{zero slope, zero displacement in the direction normal to 
the plane of the plate). The buckling load is calculated 
for 14 ratios of length to width, ranging in steps of 0.25 
from 0.75 to 4. On the basis of convergence, as the num-
ber of terms used in the infinite series is increased, it is 
estimated that the possible error in the numerical results 
presented is of the order of 0.1 per cent. A comparison is 
given with the work of other authors. 

INTRODUCTION 

IN T H E design of thin plates buckled by compressive forces in 
their plane, the degree to which the edges are restrained has 
an appreciable effect on the buckling load. Approximate 

values of the buckling stress for a built-in rectangular plate, 
loaded by compressive stresses in one direction, have been com-
puted by Faxen (1) ;2 Sezawa and Watanabe (2); and Maulbetsch 
(3). The "built-in" edge condition is here defined as zero slope 
and zero displacement in the direction normal to the plane of the 
plate. The similar problem of a built-in square plate loaded by 
equal compressive stresses in two directions has been solved by 
Taylor (4) and Trefftz (5). 

dlw dlw d4u) 
Fax6n (1) solves the differential equation 1- 2 -) 

i>x2i>yz 5 y* 
—h<r x c)Hu 

= —— (it) = displacement normal to the plane of the plate), 
D ox2 

and gets an infinite set of simultaneous linear equations which 
must be satisfied in order to satisfy the boundary conditions. 
He obtains numerical solutions which satisfy up to six of these 
equations simultaneously. His results are given in the third 
column of Table 1. 

Sezawa and Watanabe (2) solve the differential equation and 
expand the resulting hyperbolic and circular functions in trigo-
nometric series, deriving an infinite set of simultaneous linear 
equations. They limit themselves to the first six of these equa-
tions in then' numerical work. Their results are given in the 
fourth column of Table 1. They agree closely with Faxon's 
values. 

Maulbetsch (3) extends Faxon's solution of the differential 
equation up to length-to-width ratios of a/b = 4. He obtains 
numerical solutions which satisfy up to six of the infinite set of 
simultaneous equations. The results are given in the fifth column 
of Table 1. Maulbetsch also solves the problem using the Ritz 
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. {ax) cib'h/w'-D , 
Length- Sezawa Maul-

width Number and betseh, Maul- Table 2 
ratio, of Fax6n "Watanabe cliff, eq. betsch of present 

a/b buckles (1) (2) (3) energy (3) paper 
0 .75 1 11.39 12.77 11.66 
1.00 1 10.07 10.04 10.48 10.07 
1 .25 2 9 .20 9 . 3 8 9 . 2 5 
1.50 2 8 .30 8 .32 8 .45 8 .33 
1 .75 2 8 . 1 8 8 .17 8 . 1 1 
2 .00 3 7 . 8 7 7 . 8 8 7 . 8 4 8 .06 7 . 8 8 
2 . 2 5 3 7 . 9 6 7 . 6 3 
2 . 5 0 3 7 . 9 9 7 . 5 7 
2 . 7 5 4 7 . 1 3 7 . 7 6 7 . 4 4 
3 . 0 0 4 6 .93 7 . 5 9 7 . 3 7 
3 . 2 5 4 7 . 8 6 7 . 3 5 
3 .50 5 6 .81 7 .37 7 . 2 7 
3 . 7 5 5 7 . 4 0 7 . 2 4 
4 . 0 0 5 7 . 4 5 7 .23 

energy method and approximating the deflection surface by the 
normal modes of vibration of a bar clamped at both ends. He 
limits his numerical work with this method by requiring the 
lateral deflection along lines transverse to the direction of loading 
to be the same as the first normal mode of vibration of a bar 
clamped at both ends, and by allowing only up to three variations 
in the lateral deflection along lines parallel to the load. The 
results are given in the sixth column of Table 1. 

The critical stresses obtained by the energy method are seen 
to be consistently higher than those obtained from an approxi-
mate solution of the differential equation. This is to be ex-
pected since the energy method generally gives an upper limit of 
buckling stresses, while the failure to fulfill all boundary condi-
tions for built-in edges is equivalent to relaxing the end restraint 
and consequently should lead to a lower limit for buckling 
stresses. The differences between the upper and lower limits 
exceed 10 per cent in one case (a/b = 0.75), and they are of the 
order of 5 per cent in most cases. It appeared desirable therefore 
to investigate the possibility of obtaining more accurate values by 
an exact solution of the differential equation. The results of 
such an investigation are given in this paper. 

FUNDAMENTAL EQUATIONS 

Nomenclature. Consider an initially flat rectangular plate of 
uniform thickness Fig. 1, and let 

a = length in direction of load 
6 = width perpendicular to load 
h = thickness 

x,y,z = co-ordinate axes with origin at one corner of plate 
w = displacement in direction of z axis normal to plane of 

plate 
ax — stress in direction of load 

(<rx)or = critical stress for buckling 
D = flexural rigidity of plate = Eh3/12(l — ju4) 

mx = moment per unit length at edge y = 0 
TO„ = moment per unit length at edge x = 0 
km = coefficient in expansion of mx 

tn = coefficient in expansion of ?re„ 
K = symbol in summation formulas 

Deflection of Simply Supported Plate Under Combined Edge 
Moments and Axial Compression in One Direction. The plate 
with built-in edges may be regarded as a simply supported plate 
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in which the slope along the edges is made equal to zero by suita-
bly distributed edge bending moments. As a first step toward 
the solution of the problem we will therefore consider the lateral 
deflection of a simply supported plate under combined edge 
moments and axial compression in one direction. 

This problem may be examined by substituting for the edge 

\ \ rinrx . mry 
w = / , / v q , . .B in — s i n — . 

m = 1 n = 1 
[ i ] 

. m-n-x , niry 
4Q sin sm — -

a b 

abDir* «» + m2<rxh) 
ir2a2D j 

. [ 2 ] 

The edge bending moment along an increment dx or dy of the 
edge may, on the basis of Saint Venant's principle, be considered 
equivalent to a couple consisting of a force dQ acting at a short 
distance c from the edge and a reaction —dQ acting at the edge. 

If we define as mx and my the bending moments along those 
edges of the plate corresponding to the x and y axes, respectively, 
the value of dQ along these edges is, when y = 0 

= (l /c)wx dx. • [3a] 

while, if the number is even the moments at the edges x = 0, 
x = a will be of opposite sign or, when x = a (m, even) 

dQ = —(1 /c)my dy. . [3e] 

The edge moments mx and my may be expressed as trigono-
metric series with undetermined coefficients. Let 

£ 
m = 1,2,3.. 

CO 

z 
n = l,3,... 

km sin 

. niry 
t„ sm 

6 

[4] 

Substituting Equations [4] and [3] in [2], integrating around 
the edge of the plate, and taking the limit as c approaches zero 

F I G . 1 F L A T R E C T A N G U L A R P L A T E W I T H A L L E D G E S B U I L T ^ I N , 
L O A D E D B Y U N I F O R M C O M P R E S S I O N I N O N E D I R E C T I O N 

moments an equivalent pressure distribution. Timoshenko® has 
shown that if the lateral displacement is described by the trigo-
nometric series 

nk„ + mtn 

•w'D + ' 6 

*m*<r.h 
• [5] 

where n must always have odd values, and where the values of 
m must either be all odd or all even. 

The lateral deflection is obtained by substituting Equation [5] 
into Equation [1] 

a concentrated force Q acting at a point (x, y) will be in equi-
librium so long as tt) TO 

Z £ 
»i = 1,3,5... n = 1,3,5... 
or 2,4,6... 

. , , . . mnx . niry 
(nk„ + mtj sin sin —— 

a b 
m\2 / n 

L \ a ) + ( b 

. . . [6 ] 

where m has odd values from 1 to m for buckling into an odd 
number of waves and even values from 2 to ® for buckling into 
an even number of waves. 

Condition of Zero Slope at Built-in Edges. In Equation [6], 
we have a solution for the lateral deflection of a plate with simply 
supported edges under combined axial compression in one direc-
tion in its plane and moments on its edges. We will now adjust 
the undetermined coefficients km and tn in the moment Equations 
[4] in such a way that the slope at the edges of the plate is zero. 
From Equation [6], setting the slope equal to zero 

and when x = 0 

dQ = ( 1 / C ) ? H „ dy. • [36] 0 = ( — 

The mode for the minimum buckling load always has a single 
half wave (n always odd) in the direction perpendicular to the 
load. The moment at the edge y — b is, therefore, the same as 
that at y = 0 or, when y = b 

dQ = (1 /c)mx dx. [3c] 

The mode for the minimum buckling load may have either an odd 
(all values of m odd) or an even (all values of m even) number of 
half waves in the direction parallel with the load. If the number 
is odd the moments at the edges x = 0, x = a will be equal or, 
when x = a (m, odd) 

dQ = (1 /c)my dy. • [3d] 

• Reference (6), p. 317. 

dw\ 
dx ) x = 0,a 

CO CO 

( - 1 ) " : 

n^y 
(nkm + mt„) sin — 

6 

m 2 ir-m^ajl 
a1 

0 - — 
duA 
py Jy = 0,6 

CO CO 

EE- nir 
T 

(nk„ + mt„) sin -

•2m2<r,h 
a2 

. . . [7] 
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In order to satisfy Equations [7] for all values of x and y, the 
Jix!/ , . VlTCX , , 

coefficients of sin and sin must separately be zero. This 
b a 

leads to the doubly infinite sets of equations 

0 = E 
m = 1,3,5... 
or 2,4,6... 

mnkm + m2tn 

T b2 I 2 <rxb2h m2b2 
\m2 h n2\ 5 
L a 2 J tt2D a2 

CO 

- E 
, ( » = 1, 3, 5 . . . ) 

n = l,3,5... 
n2km + nmt„ 

T b2 I2 axb2h m2b2 
m2 — + n2\ L a2 J TT D a2 

Ira = 1 ,3 ,5 . . . 
' \or 2, 4, 6 

. . . [8] 

CO 

E R ? » 2 B 2 

h n2 
: = 1,3... L a2 

— It 

a/b 

4 m V l C 
it m2b2 mb /— , ir m2b2 mb /— - + — V Z t a n h - V — + — V K |_2 ^ a2 a 2 J a2 a 

_ , \irW_mb ^ t a n h - J — V X 
2 T o2 a 2 1 a2 a [9] 

E 
= 1,3... L aJ 

I 2 m2b2 
— 7i J 

" V F C 2 TTTOJI J K ( I 4 N A 

7ran / 7f / / - a ^ - ^ + V1-
tanh 7C / 4n2 SŜ  + V'-x/J ..[10] 

CO 

E fm2b2 

m =2,4,6... a 2 

a2/b 

+ ?l2 — X 
m2b2 

2K v> 4M2 

' 7f 

7ran , 
~2b" 

coth 
2b 

7rare 

V^SHEf) 

" fV ' - s^V- f ) ] 

SOLUTION 

Condition for Buckling. In order to satisfy Equations [8], it 
is necessary either that and be zero (in which case there are 
no bending moments at the edges and no lateral displacement of 
the plate), or that ax have a value (<ri)0r such that the determinant 
of the coefficients of km and t„ be zero. The smallest value of 
(<ri)Cr is then the desired critical buckling stress. 

Summation Formulas. In making the computations it was 
found convenient to develop certain summation formulas. The 
method used is described by Guillemin4 and is credited by him to 
A. Sommerfeld. These formulas are 

1 Reference (7), p. 416. 

..[11] 

Convergence. The critical stress (o-i)cr was computed by taking 
a sufficient number of terms in the determinant of the coefficients 
of km and tn in Equations [8] so that the value of {<rx)„ remained 
unchanged after taking additional terms. 

Fortunately the convergence is rapid. For example, for the 
case of a square plate (a = b) the approximate value of (<rx)ct 
which reduces the determinant involving th fa, fa, fa, and fa to 
zero is 10.047 (?r2D/b2h); the approximate value of (ox)0r which re-
duces the determinant involving h, t3, and fa to fa6 to zero is 10.073 
{ir2D/b2h); the approximate value (ax)ei which reduces the de-
terminant involving h to U and fa to fa3 to zero is 10.074 (ir2D/ 
bzh); and the approximate value (ox)cr which reduces the deter-
minant involving ti to ti and fa to fai to zero is also 10.074 
(•w2D/b2li). Similar rapid convergence is indicated in Table 1 
for ratios of length to width of 1.75, 2.5, 3.5, and 4. On the basis 
of these extensive computations, it seems reasonable to assume 
that, for length-to-width ratios up to 4, the approximate value of 
(<rx)or which reduces the determinant involving ti, t3, and fa to fa6 
to zero differs less than 0.1 per cent from the exact value of 
(crx)or (which reduces the infinite determinant to zero). 

Results. The results of the computation of the approximate 
values of (a-i)cr which reduce finite determinants of the coeffi-
cients of km and tn in Equations [8] to zero together with the esti-
mated value (based on the convergence) of (<rj)cr which would 
reduce the infinite determinant to zero are given in Table 2 for 
ratios of length to width from 0.75 to 4. 

The results are plotted in Fig. 2. It is evident that as the ratio 
of length to width increases, the value of the critical stress ap-
proaches 6.97 (ir2D/b2li), the value given by Dunn (8) for the 
critical stress for an infinitely long plate simply supported on the 
loaded edges and built-in on the other two edges. It is also 
evident that as the ratio of length to width approaches zero the 
T A B L E 2 B U C K L I N G STRESS OF R E C T A N G U L A R PLATE W I T H 

BUILT-IN EDGES, CRITICAL-STRESS RATIO M m b * h / * * D 
Asymp-

totic 
value, 

estimated 
for infinite 

deter-
minant 
11.659 
10.074 

9.25 
8.33 
8.111 

7.88 
7.63 
7.568 
7.44 
7.37 
7 .35 

7! 266 
7.24 
7.229 

Approximation— 
Length- In- In-

width Number cluding Including cluding Including 
ratio, 
a/b 

of fi 11 to h ti to ts h to ti ratio, 
a/b buckles ki to A" 7 ki to kn ki to &23 ki to A'31 
0.75 1 11.583 11.657 11.659 
1 . 0 0 1 10.047 10.073 10.074 16!074 
1.25 2 9.23 9.25 
1.50 2 8.33 8.33 
1.75 2 

3 
8.105 
8.31 

8.111 s ! i i i 

2] 00 3 7 .86 7^88 
2.25 3 7 .62 7.63 
2.50 3 7.567 7.568 7. 568 7.568 
2.75 4 7.43 7 .44 
3 .00 4 7 .36 7.37 
3 .25 4 

5 
7 .35 
7 .35 

7 .35 
7.36 

3] 50 5 7.254 7.266 7'. 266 7.266 
3.75 0 7.24 7.24 
4 .00 5 7.194 7.229 7'.229 7.229 
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Asymptote 

4bl 

E i f o L 

/ buckle 

A a buck/es 

\f 3 buckles, 
• 4 buckles 

—1 | buckles 

Asymptote 
- a/h — co 

0 / 2 ^ 4 
Ratio of length to width, % 

F I G . 2 B U C K L I N G S T R E S S OF R E C T A N G U L A R P L A T E W I T H BUILT- IN-
E D G E S , L O A D E D BY U N I F O R M C O M P R E S S I O N I N O N E D I R E C T I O N 

462 tr2Z> 
value of the critical stress approaches — :—•, the critical stress 

a2 oVi 
for a Euler column with built-in ends. 

Comparison With Other Authors. The asymptotic values of 
critical-stress ratio derived in this paper are repeated in the last 
column of Table 1 for comparison with the values obtained by 
previous authors. 

Faxon's results agree within about 2 per cent with the results 

in the present paper and are consistently equal to or lower except 
for a /6 = 1.75. For a/6 = 1.75, he derives a value of 8.18 which 
is even higher than the upper limit (energy solution) value of 8.17 
given by Maulbetsch. 

The results of Sezawa and Watanabe are equal to or lower than 
the results in the present paper by amounts up to about 0.3 per 
cent. 

Maulbetsch has extended Faxon's solution of the differential 
equation up to values of a/6 = 4. The results he obtained are 
consistently lower than the results in the present paper by 
amounts up to about 6 per cent. Maulbetsch's results using the 
Ritz energy method agree within about 10 per cent and are con-
sistently higher than the results given in the present paper. 
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