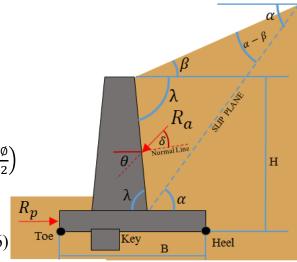

Lateral Pressure and Retaining Structures

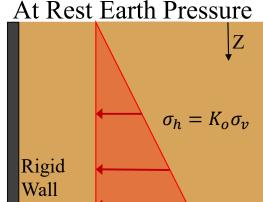
General Considerations: CERM 37 & Essentials-McCarthy (719)


- Earth Pressure Types
 - AT REST: When homogenous isotropic soil, vertical principal stress is = to the overburden
 - or $\sigma_{v} = \gamma_{soil} Z$
 - The horizontal pressure is related to vertical pressure by $\frac{\sigma_h}{\sigma_v} = \frac{v}{1-v} = 1 \sin(\phi')$
 - Where: ϕ' is the effective stress angle of internal friction.
 - This is valid for OCR = 1. For greater OCR use $\sigma_h = \sigma_v [1 \sin(\phi')] OCR^{\sin(\phi')}$
 - Pressure per unit length of wall = $P_0 = \frac{1}{2}K_o\gamma_t H^2$
 - When submerged, intergranular (effective) stress σ'_v

•
$$\sigma'_v = \sigma_v - u$$

- ACTIVE: Wall and soil movement pushing the wall out (away from the soil mass)
 - General Active horizontal earth pressure w/ level backfill: $p_a = p_v K_a 2c \sqrt{K_a}$
 - This potentially allows the cohesion to cause tension cracking **at the top**.
 - General equation for $K_a = \frac{\sin^2(\lambda + \phi)}{\sin^2\lambda \sin(\lambda \delta) \left(1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi \beta)}{\sin(\lambda \delta)\sin(\lambda + \beta)}}\right)^2}$ see figure \Rightarrow for symbols
 - This equation is modified by geometry, soil type, and friction theory (CERM 37-3)
- Common ($\beta = 0 \& \lambda = 90^{\circ}$) for dry cohesionless Rankine (no friction δ) soil $K_a = tan^2 \left(45 \frac{\phi}{2}\right)$
 - Total Active Resultant per unit of wall length(acting at H/3 from bottom):
 - DRY COHESIONLESS SOIL: $R_a = \frac{1}{2}p_a H = \frac{1}{2}K_a \gamma H^2$
 - INTERNAL FRICTION & COHESION: $R_a = \frac{1}{2}K_a\gamma H^2 2c\sqrt{K_a}$ (essentials pg 726)

Active & Passive Earth Pressure



Lateral Pressure and Retaining Structures

General Considerations: CERM 37 & Essentials-McCarthy (719)

- Earth Pressure Types
 - **Passive:** Wall and soil movement pushing against the soil mass
 - General PASSIVE horizontal pressure w/ level backfill: $p_p = p_v K_p + 2c \sqrt{K_p}$
 - General equation for $K_p = \frac{\sin^2(\lambda \phi)}{\sin^2\lambda \sin(\lambda + \delta) \left(1 \sqrt{\frac{\sin(\phi + \delta)\sin(\phi + \beta)}{\sin(\lambda + \delta)\sin(\lambda + \beta)}}\right)^2}$ see figure \Rightarrow for symbols

This equation is modified by geometry, soil type, and friction theory (CERM 37-4)

Active & Passive Earth Pressure

- Common ($\beta = 0 \& \lambda = 90^{\circ}$) for dry cohesionless Rankine (no friction δ) soil $K_p = tan^2 \left(45 + \frac{\phi}{2}\right)$ Total Active Resultant per unit of wall length(acting at H/3 from bottom):
 - DRY COHESIONLESS SOIL: $R_p = \frac{1}{2}p_p H = \frac{1}{2}K_p \gamma H^2$
 - INTERNAL FRICTION & COHESION: $R_p = \frac{1}{2}K_p\gamma H^2 + 2c\sqrt{K_p}$ (essentials pg 726)

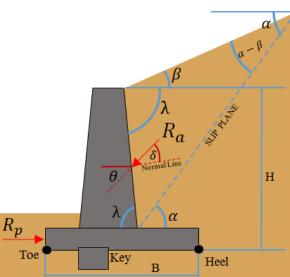
Keywords:

Level backfill $\rightarrow \beta = 0$

٠

Vertical Wall $\rightarrow \lambda = 90^{\circ}$

Rankine Theory \rightarrow No wall friction ($\delta = 0$)


Granular Soil/Sand $\rightarrow c = 0$

Saturated Clay $\rightarrow \phi = 0 \& K_n = K_a = 1$

Good Visuals on pg 725 & 725 of Essentials McCarthy.

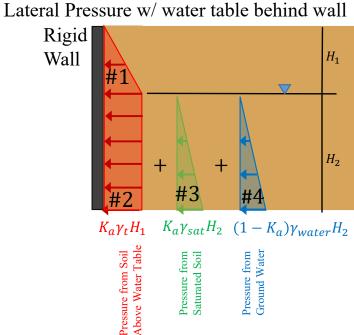
More movement/strain is required to achieve the PASSIVE state than the ACTIVE STATE

Active & Passive similar when top of wall is fixed. When the wall is going away from soil \rightarrow Active state Components of $R_a \& R_p$ (See CERM 37-7)

Lateral Pressure and Retaining Structures

 $R_{a(surcharge)} = K_a q H$

Effects of Groundwater & Freezing


- Groundwater affects the way the soil particles react to the wall
 - The general equation for pressure is a combination of loads above and below water line
 - Resulting Pressure per unit length $R_a = #1 + #2 + #3 + #4$ or
 - $R_a = \frac{1}{2}K_a\gamma_t H_1^2 + K_a\gamma_t H_2^2 + \frac{1}{2}K_a\gamma_{sat} H_2^2 + \frac{1}{2}(1-K_a)\gamma_{water} H_2^2$
 - Acting at a height of $h_{res} = \frac{\sum [R_{a(indiv)}h_{res(indiv)}]}{Total R_{a}}$

Surcharge loading Cerm 37-8 & 752 essentials.

- Depends on load type.
 - For distributed load, apply an additional pressure
 - Point loads require some equations.
 - See CERM 37-8 & Essentials pg 752.

Design Considerations

- Overturning (CERM example pg 37-9)
- Sliding (CERM Example 37-9 & 37-11)
- Bearing Capacity check (CERM Example 37-9)
- General Sizing of Cantilever Retaining Walls (CERM 37-12)
- CONCRETE DESIGN (CERM 54)

