Figure 13-2(b) Vessels of Obround Cross Section

GENERAL NOTES:

- (a) See UW-13 for corner joints.
 (b) See UG-47, UG-48, UG-49, and UW-19 for stay bars.
 (c) See 13-8 for weld efficiency calculations.

13-10 HMDE							
OBRO	INFORCED VESSI OUND CROSS SEC	TION	W				
[FIGU	JRE 13-2(B), SKET	CH (1)]					
For the equation	ons in these paragrap	ohs, the moments	of				
	lated on a per-unit-w e $b = 1.0$. See 13-4(k)		IS,				
(a) Membrane	e Stress						
Semicylindrica							
	$[S_{\mathbf{m}}]_B = PR/t_{\mathbf{L}}$		(1)				
	$[S_m]_C = P(R + L_2) t_1$		(2)				
	(-m)c - (2) -1		(-)				
Side plates:							
	$S_{xy} = PR/t_2$		(3)				
(b) Bending St	tress						
Semicylindrica							
	$[S_b]_B = \frac{PL_2c}{6I_1}(3L_2 - C_1)$	(A)	(4)				
$[S_b]$	$_{0}$ _C = $\frac{PL_{2}c}{6h}$ [3($L_{2} + 2R$) -	-CyA]	(5)				
	W1						
Side plates:							
	$\left[S_{b}\right]_{A} = PL_{2}C_{1}\phi' \cdot 6AI_{2}$		(6)				
	(-b)A2-12	8					
	$[S_b]_B = \frac{PL_2c}{6l_2}(3L_2 - C_b)$	A)	(7)				
	6/2						
(c) Total Stre	255						
Semicylindrica	al sections:						
	$[S_T]_B = eq.(1) + eq.(4)$)	(8)				
	$[S_T]_C = eq.(2) + eq.(5)$	[]	(9)				
Cide alates							
Side plates:	63 63 6						
	$[S_T]_A = eq.(3) + eq.(6)$) (c	10)				
$[S_T]_B = eq.(3)$	+ eq.(7)	(11)					
r ->B		200					

For the eq	uations in these paragraphs, the	moments of	Figure 3-2(b) Sketch 1	
inertia are o $I = bt^3/12$, v	calculated on a per-unit-width by where $b = 1.0$. See 13-4(k).		Section 13-10	
	drical sections:			
	$(S_m)_B = PR/t_1$	(1)		
	$[S_m]_C = P(R + L_2)'t_1$	(2)		
Side plate	s:			
	$S_m = PR/v_2$	(3)		
P = internal	design pressure (see U	G-21) D or	(O	
		1 -20	00 <i>psi</i>	
t_1 = thickne	ess of short-side plates of	of vessel $t_1 = 1$.	375 <i>in</i>	
R = insid	e radius $R = 9.625$ in	n.		
Semicylindrical				
$(P \cdot R)$) 1750 mai (1)			
$S_{mb} \coloneqq \frac{\cdot}{t_1}$	$) = 1750 \ psi$ (1)			
	$L_2 \coloneqq 1$	0.25 <i>in</i>		
$P \cdot (R+I)$	$=3613.636 \ psi \ (2)$			
$t_{mc} := \frac{}{} t_1$	= 3613.636 psi (2)			
Side Plates				
t_2 :=	=1.375 <i>in</i>			
$I_m := \frac{(P \cdot R)}{t_2} = 1$	1750 <i>psi</i> (3)	$S_m = \text{membran}$	ne stress	
t_2				

(b) Bending Stress Semicylindrical sections:

$$[S_b]_B = \frac{PL_2c}{6l_1}[3L_2 - C_1/A]$$
 (4)

$$[S_b]_C = \frac{PL_2c}{6I_1} [3(L_2 + 2R) - C_1/A]$$
 (5)

Side plates:

$$(S_b)_A = PL_2C_1c/6AI_2$$
 (6)

$$[S_b]_B = \frac{PL_2c}{6l_2} [3L_2 - C_1/A]$$
 (7)

- c_i = distance from neutral axis of cross section of plate, composite section, or section with multidiameter holes (see 2-12) to the inside surface of the vessel. Sign is always positive (+).
- c_o = distance from neutral axis of cross section of plate, composite section, or section with multidiameter holes (see 2-12) to the extreme outside surface of the section. Sign is always negative (-).
- c = distance from neutral axis of cross section to extreme fibers (see c_i and c_o). The appropriate c_i or c_o value shall be substituted for the c term in the stress equations.

$$c_i = \frac{t_1}{2} = 0.688 \ in$$

$$c_i = \frac{t_1}{2} = 0.688 \ \emph{in}$$
 $c_o = -\frac{t_2}{2} = -0.688 \ \emph{in}$

$$b = 1.0$$

$$I_1 := \frac{\left(b \cdot t_1^{-3}\right)}{12} = 0.217 \ \emph{in}^3$$
 $I_2 := \frac{\left(b \cdot t_2^{-3}\right)}{12} = 0.217 \ \emph{in}^3$

$$I_2 \coloneqq \frac{\left(b \cdot t_2^{\ 3}\right)}{12} = 0.217 \ \textit{in}^{\ 3}$$

$$\gamma = L_2/R$$
 $\gamma := \frac{L_2}{R} = 1.065$

$$\alpha_2 = I_2/I_1$$
 $\alpha_2 := \frac{I_2}{I_1} = 1$

$$C_1 = R^2(2\gamma^2 + 3\gamma\pi\alpha_2 + 12\alpha_2)$$

$$C_1 = R^2(2\gamma^2 + 3\gamma\pi\alpha_2 + 12\alpha_2)$$
 $C_1 := R^2 \cdot (2\gamma^2 + 3\gamma \cdot \pi \cdot \alpha_2 + 12\alpha_2) = 2251.626 \text{ in}^2$

$$A = R(2\gamma + \pi\alpha_2)$$
 $A = R \cdot (2\gamma + \pi \cdot \alpha_2) = 50.738$ in

$$\begin{split} S_{bB} &\coloneqq \frac{P \cdot L_2 \cdot c_i}{6 \cdot l_1} \cdot \left(3 \cdot L_2 - \frac{C_1}{A} \right) = -18470.537 \ \textit{psi} \quad (4) \\ S_{bC} &\coloneqq \frac{P \cdot L_2 \cdot c_i}{6 \cdot l_1} \cdot \left(3 \cdot \left(L_2 + 2 \ R \right) - \frac{C_1}{A} \right) = 59802.19 \ \textit{psi} \quad (5) \\ &\text{Side Plates:} \\ S_{bA} &\coloneqq \frac{P \cdot L_2 \cdot C_1 \cdot c_i}{6 \cdot A \cdot l_2} = 60148.223 \ \textit{psi} \quad (6) \\ S_{bB2} &\coloneqq \frac{P \cdot L_2 \cdot C_1 \cdot c_i}{6 \cdot l_2} \cdot \left(3 \cdot L_2 - \frac{C_1}{A} \right) = -18470.537 \ \textit{psi} \quad (7) \\ & (c) \ \textit{Total Stress} \\ &\text{Semicylindrical sections:} \\ & (S_7)_g = \exp(1) + \exp(4) \quad (8) \\ & (S_7)_g = \exp(1) + \exp(6) \quad (10) \\ & (S_7)_g = \exp(3) + \exp(6) \quad (10) \\ & (S_7)_g = \exp(3) + \exp(6) \quad (11) \\ & \\ S_{TB} &\coloneqq S_{mb} + S_{bB} = -16720.537 \ \textit{psi} \quad (8) \\ & S_{TC} &\coloneqq S_{mc} + S_{bC} = 63415.827 \ \textit{psi} \quad (9) \\ & S_{TA} &\coloneqq S_m + S_{bA} = 61898.223 \ \textit{psi} \quad (10) \\ & & \text{Maximum Allowable Stress} \\ & \text{for SA516G70} = 200000 \ \textit{psi} \\ \end{split}$$