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Abstract 
 
A method for calculating the structural properties of arbitrary beams is presented. In contrast 
to other formulations, a full 6x6 stiffness matrix is produced with all anisotropic material 
behaviour represented. The method is shown to produce accurate properties in comparison 
with sections where analytical solutions are available. Results are presented for isotropic and 
composite beams with various sections, including a composite rotor blade. A peculiar type of 
coupling response in a symmetrically laminated cylindrical tube is discussed. 
 
Introduction 
 
From a modelling perspective, one of the most complicated closed section beam-type 
structures of practical importance is a helicopter rotor blade. They are both complex in 
construction and structural response. Typically they may be 6-10m in length with chord 
lengths and depths approximately 650mm wide and 100mm deep, respectively. Furthermore, 
since the 1970s they have been constructed from highly anisotropic composite materials 
(Carbon fibre/epoxy, Rohacell foam and Nomex honeycomb).  Structurally, they may be 
considered as slender one-dimensional elements subject to extensional (centrifugal), twisting 
and bi-directional (flap and lag) bending loads. Their behavioural response is further 
complicated by intrinsic coupling between 
 

• centrifugal loads and twisting 

• torsional loads and extension 

• flexural loads and twisting 

• torsional moment and flexure 
 
due to the non-coincidence of shear, flexural and mass centres that stems from the asymmetric 
nature of the cross-section and material response. Indeed the latter type of coupling has been 
the centre of much attention since Mansfield and Sobey1 raised the possibility of aeroelastic 
coupling on tailoring dynamic performance.   
 
The analysis of complex structures such as a helicopter rotor blade, at present, is practically 
impossible due to the amount of memory required. The amount of data for any 3-dimensional 
finite element model with sufficient elements to provide detailed stress-strain response is 
prohibitively large, and generally impossible to solve on anything other than the largest 
supercomputers. Herein, lies the crux of the problem, to apply appropriate modelling skills to 
simplify the problem to current processing power levels whilst at the same time retaining the 
most important physical responses.  It is the calculation of the cross-sectional stiffness 
parameters which becomes the main issue in performing accurate analyses of rotor blade 
designs. The assessment of these properties has been investigated widely with isotropic 
sections. 
 
The development of a method which can calculate the equivalent 1-D beam properties for 
arbitrary sections composed of non-homogeneous anisotropic materials is desired by industry. 



In addition to helicopter rotor blades there are other examples in the aerospace industry where 
there is a need to accurately model arbitrary shaped tubes. These include propellers and main 
spars such as those found in the Westland Lynx tailplane. There are modelling opportunities 
outside of the Aerospace industry too. Sporting equipment such as golf club shafts, tennis 
rackets and ski poles and offshore platform structures are to name but a selected few examples 
where closed section composite tubes are subjected to various loads.  Potentially, there is 
scope for optimising the composite lay-up and taper of such structures. 
 
The behaviour of beams is of great importance in the design of engineering structures. The 
dynamic response of helicopter rotor blades is generally analysed using 1-dimensional beam 
models with the overall structural properties of the section to reduce processing requirements. 
The calculation of the beam section properties are therefore critical in achieving accurate 1-
dimensional beam properties and a full 6x6 stiffness matrix accounting for the coupling 
behaviour. There are several methods for calculating the behaviour of arbitrary beams. Most 
use 2D slice model representations of the section, these include Kosmatka2, Wörndle 3 and 
Rand4. The most complete of these is Kosmatka’s approach which gives a good physical 
insight into the problem since all displacement functions (including warping) are evaluated.  
Kosmatka, because of this detail, shows that in-plane warping must be considered in addition 
to out-of plane warping in the analysis of anisotropic sections. 
 
A generalised method for the analysis of beams with arbitrary cross-sections with non-
homogeneous anisotropic material properties is presented. It produces a full 6x6 stiffness 
matrix with both material and geometric coupling accounted for. Both in-plane and out-of 
plane warping are permitted. The approach is finite element based using the MSC 
PATRAN/NASTRAN software packages, coded using the PCL programming language 
supplied as part of PATRAN. 
 
The Method - Theory 
 
The method presented here is based on the work of Bartholomew and Mercer5 which has been 
extended to produce a full 6x6 stiffness (K) matrix for the beam including material and 
geometric coupling behaviour. The locations of the elastic centroid, centre of gravity and the 
shear centre are also calculated. The section properties can then be transformed to act around 
any of these locations, or any other arbitrary point. 
 
The method analyses a 3-D mesh of a slice through a beam cross-section (see Fig.1). The 
elements are given material properties in accordance to the cross-section with the correct 
orientation. The two faces of the slice are linked together using multi-point constraints which 
allow relative motion between the two based on 6 scalar freedoms – 3 translational and 3 
rotational. It is these scalar freedoms which provide the information necessary to produce the 
6x6 stiffness matrix and allow in-plane and out-of-plane section warping to occur. 
 
The six equations, which link the nodes on each face of the section and the scala r freedoms, 
are shown below: 
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where Q are the dependent nodes, P are the independent nodes, x, y are the co-ordinates of the 
node pair in the section, ì1, ì2, ì3 are the scalar freedoms in translation, ù1 , ù2 , ù3 are the 



scalar freedoms in rotation, u, v, w are the displacements in translation and rx, ry, rz are the 
displacements in rotation for the nodes. 

 
Figure 1: The Beam Section and Associated 3-D Finite Element Mesh 

 
The section properties are obtained in two stages. The first stage involves applying unit loads 
to 4 of the scalar freedoms in turn, i.e. the axial translational, ì3, and the three rotational.  
These represent axial tension, bending about the X-axis, bending about the Y-axis and a 
torsional moment about the longitudinal X-axis. The displacements of all 6 scalar freedoms 
provide the flexibilities for each load case.  
 
The flexibilities for the two shear load cases can only be found by us ing the reaction forces at 
the nodes caused by the MPCs in the bending load cases (moments applied to the rotational 
freedoms ù1 and ù2.) These forces are applied to the model at each node with the results for 
one face reversed. This distributes the shear forces about the section accurately, taking into 
account the relative stiffness of each element. The magnitudes of all of the forces have to be 
normalised so that the applied shear force is equivalent to a unit load. This varies with the 
slice length, so, for example, if the slice model is unity in length, then the forces from the 
bending case have to be halved to produce a unit load in shear. The scalar freedoms ì1 and ì2 
have to be restrained to zero to provide reactions to the applied shear forces. This means that 
the other 4 freedoms can provide flexibility data, but the two shear flexibilities are not 
available directly from the output. These can be found by integrating the displacements across 
the entire section6,7. This method provides the final flexibilities required for the complete 6x6 
flexibility (S) matrix: 

 
Where äx, äy, and äz are relative displacements of the ends of the beam per unit length, èx, èy 
and èz are relative rotations of the ends of the beam per unit length, Fx, Fy and Fz are the shear 



forces and axial force acting in the beam, and Mx, My and Mz are the bending moments and 
torsional moment acting in the section of the beam being considered. 
 
Shear Centre, Elastic Centre  
 
The flexibility matrix produced using this method is based around loading at the origin of the 
analysis co-ordinate system. However, it should be noted that the flexibilities for the bending 
and torsion load cases effectively centre around the elastic and shear centres, respectively. 
This is because an applied moment at the origin is equivalent to a pure moment at the elastic 
or shear centres, wherever they are located. The method finds the lowest energy solutions for 
the applied load cases, with the constraint that rotations are based around the axes defined for 
the beam section prior to analysis. The bending moments are therefore applied around the 
analysis axes, not the neutral axes of the section.  
 
If the origin does not coincide with the elastic or shear centres, then there will be coupling 
terms in the axial and shear load flexibilities due to offset loading. The location of the shear 
centre is governed by the relationship between the amount of torsion due to the applied 
torsion and shear load cases. The shear load case is centred at the origin, and so applies a 
torsional moment as well as the shear force. The shear load cases have been normalised to 1N, 
so the torsional moment is represented by the magnitude of the moment arm. The shear centre 
is calculated by: 
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where Xs and Ys are the locations of the shear centre with respect to the origin of the beam. 
Similarly, the elastic centre is calculated using the relationship of the amount of bending due 
to the axial and the bending load cases. 
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The 6x6 stiffness (K) matrix is produced by inverting the flexibility (S) matrix for the section 
based at the origin. The matrix contains all coupling behaviour due to material and geometric 
behaviour and the offset due to loading the section at the origin. The matrix can be 
transformed to any location desired with standard transformation equations for section 
properties. 
 
Implementation 
 
The method has been coded as a routine for use with MSC PATRAN8 in PATRAN Command 
Language (PCL). The user creates a 2-D mesh of the cross-section of the beam to be analysed, 
with material properties and orientations defined correctly. The routine takes the mesh, 
extrudes it into 3-D and reassigns all the material properties and orientations. The MPCs are 
created, using the locations of the nodes within the cross-section, as described earlier. The 
first four load cases are then applied and analysed using MSC NASTRAN9. 
 
Once the analysis is concluded, the routine accesses the results, placing the flexibility data 
into the flexibility matrix and processing the force resultants to produce the shear load cases. 



These are then applied and re-analysed with NASTRAN. The axial displacements of the 
section are integrated to produce the shear flexibilities for the two load cases. The flexibility 
data from the calculations and the scalar freedoms are then added to the now complete 
flexibility matrix. The matrix can be processed according to the user’s requirements, 
including transformations and inverting to give the stiffness matrix. 
 
Isotropic Rectangular Solid Section 
 
As a check of the method and the analysis code, the first example consists of a simple 
rectangular section composed of an isotropic aluminium alloy, with the origin of the co-
ordinate system at the cross-section centroid. The results should show no coupling behaviour 
and stiffness properties similar to simple analytical solutions. 
 
The cross-section was 16x10mm and the material data was (E=70000MPa and í=0.3.) The 
elements used in this analysis were all 1mm3, therefore a total of 160 CHEXA elements were 
used which had linear displacement functions. 1122 MPCs were required to constrain the slice 
section model. The results from the stiffness matrix are shown in Table 1. All other results 
were at least 7 orders of magnitude lower than these six on the leading diagonal, indicating 
that no coupling behaviour was present. 
 

 Theory FE Error 
EA 1.120E+07 1.120E+07 0.00% 
EIx 9.333E+07 9.333E+07 0.00% 
EIy 2.389E+08 2.389E+08 0.00% 
GAsx 3.733E+06 3.701E+06 -0.87% 
GAsy 3.733E+06 3.765E+06 0.85% 
GJ 8.791E+07 8.821E+07 0.34% 

Table 1: Comparison of Rectangular Cross-Section Properties with Theory 
 
The errors between the method and theory are small, the largest being with the shear stiffness 
values which were calculated using Stephen’s7 shear coefficient of 0.867. In the FE method, 
these were calculated using the displacement field of the section which was approximated by 
the linear element displacement field. It can be seen from the shear stress plot for shear in X 
(Figure 2) that the stress distribution is close to the parabolic distribution expected, but does 
not reach zero at the free edges. This is a limitation of the elements being used, not the 
method itself. The accuracy of the stress field is improved by increasing the number of 
elements or by using parabolic displacement function elements. 
 

 
Figure 2: Shear Stress Distribution and Deformed Shape for Rectangular Section 

 



Isotropic Circular Tube 
 
The accuracy of the method when used to predict thin-walled section behaviour was also 
investigated. The section chosen was a cylindrical isotropic tube with dimensions of an outer 
diameter of 30mm and a wall thickness of 1mm. A total of 376 linear CHEXA elements were 
used, the number of MPCs required to link the two faces was 3384. 
 
The stiffness results from the analysis are shown in Table 2. All other values in the matrix 
were several orders of magnitude lower than these taken from the leading diagonal, reflecting 
numerical rounding errors, and so were ignored. There is a small difference between the shear 
stiffness values from this method and the analytical value taken from Stephen. This was due 
to the relative coarseness of the mesh, and the linear elements inability to produce an accurate 
deformed shape. The accuracy of this value improved to within 3% when the number of 
elements through the thickness of the section was doubled. The other properties also showed 
slight improvements in accuracy. 
 

 Theory FE Error 
EA 6.377E+06 6.378E+06 0.01% 
EIx 6.712E+08 6.713E+08 0.02% 
EIy 6.712E+08 6.713E+08 0.02% 
GAsx 1.304E+06 1.229E+06 -5.75% 
GAsy 1.304E+06 1.229E+06 -5.75% 
GJ 5.163E+08 5.164E+08 0.02% 

Table 2: Stiffness Comparison for Hollow Isotropic Circular Section 
 

 
Figure 3: Shear Stress Distribution for Isotropic Hollow Circular Section 

 
Anisotropic Circular Tube 
 
The coupling behaviour due to the material was then assessed with a relatively simple 
example, that of an anisotropic cylindrical tube. The geometry was the same as that used 
previously, but with a composite material made up of purely -45° plies as shown in Figure 4. 
This example is intriguing in that the lay-up is symmetric but not balanced and so would 
allow extension/shear coupling to arise. For a closed thin-wall section, however,  this 
manifests itself as extension/twist coupling.  
 



 
Figure 4: Orientation of Fibres in Anisotropic Circular Tube 

 
The flexibility matrix for the tube is shown in Equation 12. The zero terms represent values 
which were at least 5 orders of magnitude lower than those quoted. 
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It can be seen that the elastic and shear centres coincide with the origin (S34 S35 S16 & S26 are 
zero), which correlates well with the expected result. The tension/torsion coupling due to 
extension/shear coupling of the –45° material is clearly present, although 12% lower than the 
value expected using composite plate theory and small angle rotation. This is due to the 
assumptions of the flat plate theory, rather than the FE method. The simple theoretical 
calculation ignored the differential shear through the thickness of the tube which develops as 
the tube rotates, thereby over-estimating the displacement angle. 
 
There are other unexpected coupling terms which develop as a result of the anisotropic 
material behaviour of the –45° material, especially when loaded in shear or bending. For 
example, a non-intuitive bending about the X-axis due to a shear in the X-direction at the 
tube’s centre position, as indicated by the term in S41. The corresponding value in S14 
indicates a generation of shear displacement in X due to bending about X. The shear strain in 
the composite ply-plane due to a shear load applied vertically is shown in Figure 5. The axial 
strain due to the same load case is shown in Figure 6.  
 
This behaviour is caused by the extension-shear coupling of the –45° plies, an explanation is 
shown in Figure 7. The shear flow on either side of a vertical plane acting through the centre 
of the section, is symmetrical. The fibres, however, are orientated in a different sense on 
either side of this vertical plane, which itself is a feature of the continuity of fibres. In the 
examples given, the left side of the tube is sheared upwards, with the fibre orientation, and the 
material shortens axially. On the right side, the shear is also acting upwards, but against the 
fibre orientation, giving rise to the material extending axially due to the extension-shear 
coupling. The overall effect is for the section to bend about the axis it is being loaded in. 



 
Figure 5: Local In-Plane Shear Strain Under Vertical Shear Load 

 

 
Figure 6: Axial Strain (Bending) Due to Vertical Shear Force 

 

 
Figure 7: Illustration of Shear-Bending Coupling 

 
Helicopter Rotor Blade  
 
The final example is that of a helicopter rotor blade section, created using approximately 3000 
linear elements and 13152 MPCs. Material and geometric information, as supplied by GKN 
Westland Helicopters Ltd10 (GWHL), was used in creating the section and finite element 
mesh. Key material locations are the torque/wing box and a high volume of longitudinal 



fibres near the nose. The origin of the co-ordinate system was at the nose of the section, with 
the X-axis passing through the tail of the blade. The material properties excluded anisotropy, 
so interaction terms were caused only by the geometry (see Eqn 13). The presence of S16 and 
S26 terms shows that the shear centre is offset from the tip of the blade (see Fig.8), as would 
be expected, and is located near the centre of the main torsional wing box. The S35 and S45 
terms show that the elastic centre is also offset from tip of the blade, but not by as much (see 
Fig.8), its precise location reflecting the action of stiff longitudinal fibres in the nose. 
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Figure 8: Location of Elastic and Shear Centres for Rotor Blade Example. 

 
An example of the composite in-plane shear stresses due to an applied torsion load is shown 
in Figure 9. Most of the load is carried by large numbers of ±45° plies in the main wing-box 
area, giving rise to the location of the shear centre, as shown in Figure 8. The highest in-plane 
shear stresses are in a thin layer of ±45° plies near the surface above and below the wing-box. 
 

 
Figure 9: In-Plane Shear Stress Due to Torsional Loading 

 
The flexibilities calculated for the blade compare well with section data from GWHL, giving 
confidence in both the method and the implementation. Further work using anisotropic 
sections for aeroelastic tailoring is being carried out. Ideally, comparisons should be made 
with experimental data, which is intended as part of the development process.  
 



Conclusions 
 
A method for calculating the stiffness properties of non-homogeneous anisotropic beams with 
arbitrary shapes has been presented. It provides a full 6x6 stiffness matrix, giving coupling 
terms due to geometric and material related effects. It has been shown to give results that 
compare favourably with elementary theory for a number of simple cases involving isotropic 
materials, including solid and thin-walled sections. The results for single layer –45° hollow 
circular beam showed the presence of coupling between extension-twist and bending-shear 
behaviour. An analysis of a helicopter rotor blade composed of 14 different materials 
produced results that predict the elastic and shear centres as well as the flexibility matrix. 
 
The use of standard finite element analysis software also allows the user to investigate the 
stress fields for all the load cases. A useful feature of this is the availability of the interlaminar 
stresses, allowing delamination prediction to be carried out, if desired. 
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