

Cantilevered Diaphragm Design Summary

Diaphragm Design Summary					
Diaphragm Loading	Diaphragm Loading Critical Shear		Diaphragm Deflection	Diaphragm Aspect Ratio	
Depth Loading	th Loading 114.40 plf (27%)		0.044 in	0.69 (17%)	
Width Loading	133.31 plf (31%)	826.2 lbs (8%)	0.122 in	0.69 (17%)	

Shear Wall Design Summary								
Wall ID Design Shear		Chord Forces	Hold Down Capacity	Wall Deflection	Wall Aspect Ratio			
Depth Loading - Wall #1	81.85 plf (22%)	818.47 lbs (8%)	818.47 lbs (26%)	0.323 in (11%)	0.57 (16%)			
Depth Loading - Wall #2	95.34 plf (25%)	953.42 lbs (9%)	953.42 lbs (30%)	0.552 in (18%)	1.35 (39%)			
Depth Loading - Wall #3	97.56 plf (26%)	975.58 lbs (9%)	975.58 lbs (31%)	0.552 in (18%)	1.30 (37%)			
Depth Loading - Wall #4	-81.72 plf (22%)	-817.20 lbs (8%)	-817.20 lbs (26%)	-0.323 in (11%)	0.57 (16%)			
Depth Loading - Wall #5	1660.72 plf (83%)	N/A	18979.66 lbs (71%)	0.580 in (85%)	N/A			
Depth Loading - Wall #6	1660.72 plf (83%)	N/A	18979.66 lbs (71%)	0.580 in (85%)	N/A			
Width Loading - Wall #1	182.00 plf (48%)	1819.99 lbs (18%)	1819.99 lbs (58%)	0.717 in (24%)	0.57 (16%)			
Width Loading - Wall #2	-5.66 plf (1%)	-56.55 lbs (1%)	-56.55 lbs (2%)	-0.033 in (1%)	1.35 (39%)			
Width Loading - Wall #3	-5.79 plf (2%)	-57.87 lbs (1%)	-57.87 lbs (2%)	-0.033 in (1%)	1.30 (37%)			
Width Loading - Wall #4	153.81 plf (40%)	1538.06 lbs (15%)	1538.06 lbs (49%)	0.607 in (20%)	0.57 (16%)			
Width Loading - Wall #5	21.72 plf (1%)	N/A	248.25 lbs (1%)	0.008 in (1%)	N/A			
Width Loading - Wall #6	21.72 plf (1%)	N/A	248.25 lbs (1%)	0.008 in (1%)	N/A			

2015 SDPWS Cantilevered Diaphragm Design - Depth Loading

Drawing Not To Scale

Shear Analysis is Not Considered in Both Directions Simultaneously

Standard Diaphragm Douglas Fir 23/32" 10d at 4" Case 1 & 3 Blocked 425.0 plf	Diaphragm Type	Framing Species	Panel Thickness	Nail Size/Spacing	Load Case	Construction Method	Diaphragm Capacity
	Standard Diaphragm	Douglas Fir	23/32"	10d at 4"	Case 1 & 3	Blocked	425.0 plf

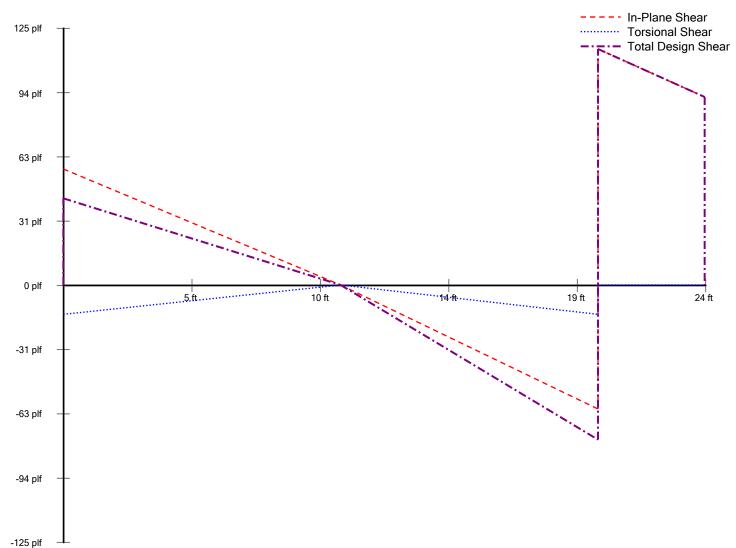
She	ear - Left Line	Shear - Right Line	Shear - Top Line	Shear - Bottom Line	Diaphragm Deflection	Aspect Ratio	Cantilever (L'/W')
6	60.0 plf (14%)	-59.6 plf (14%)	41.7 plf (10%)	114.4 plf (27%)	0.04 in @ 10.0 ft	0.69 (17%)	1.00 (25%)

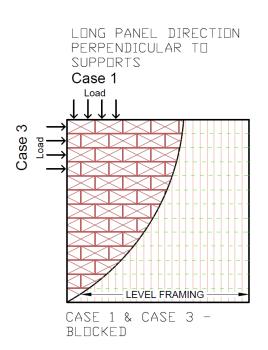
Design loads indicated in this table have been adjusted for Allowable Stress Design, and include contributions from diaphragm shear and rigid torsional effects.
 Design diaphragm deflection is calculated assuming OSB sheathing installed in dry service conditions. If plywood sheathing is used, diaphragm shear stiffness will be reduced, which may increase diaphragm deflection.

- Deflection values are determined using design strength level seismic loads, with redundancy factor (Rho) set to 1.3.

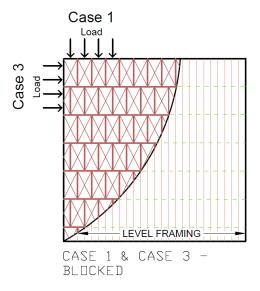
- Design torsional loads have been increased per the amplification of accidental torsion factor (Ax) with a value of 1.538.

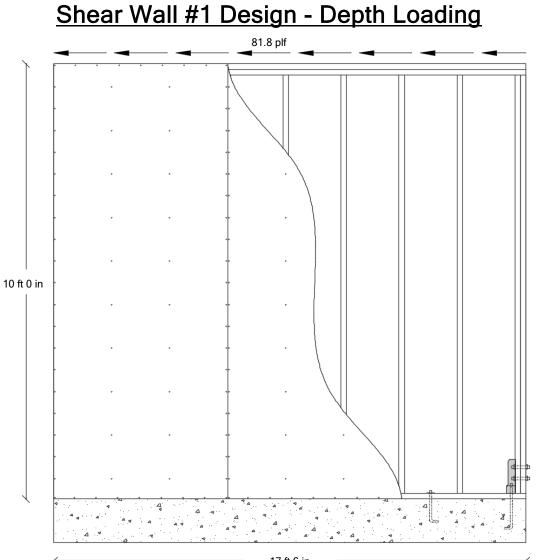
- Total design torsional distance from diaphragm center of rigidity, including amplification of accidental torsion and user defined torsion, is 3.46 ft.


- This diaphragm has a horizontal structural irregularity Type 1b as defined in Table 12.3-1 in ASCE 7-16. This diaphragm is not permitted in seismic design categories E or F.


Splice Length	Design Moment	Splice Tension	Splice Capacity	Min. Nail Count	Nail Size
16.0 ft	58800.0 ft-lbs	1960.8 lbs (97%)	2030.4 lbs	9	16d Common (0.162" x 3.5")

Chord forces have been increased for the redundancy factor (Rho) and accidental torsion effects (Ax).
 Nail count is determined at each edge of splice. The splice assembly will require twice the nail count as indicated above to tie each end of splice together.


Diaphragm Moment	Moment Location	Chord Tension	Allowable Tension	Chord Compression	Allowable Compression
58800.0 ft-lbs	24.00 ft From Top	1960.8 lbs (20%)	9867.0 lbs	1960.8 lbs (10%)	19274.1 lbs


2015 SDPWS Cantilevered Diaphragm Design - Depth Loading

LONG PANEL DIRECTION PARALLEL TO SUPPORTS

ng is conceptual. Act	tual construction methods &	dimensions may differ	from that which is shown above.

Stud Species	Panel Thickness	Nail Size	Edge Nail Spacing	Construction Type	Wall Capacity	Stud Size	Stud Spacing
Douglas Fir	7/16"	8d	4"	Single Panel	380 plf	2x6	16 in
Wall Aspect Patie	Tomional Los	d Diophrogra	Ohaan Tatal Da	sign Lood Wall	Deflection Alle	wohle Deflection	Ston Drift

Wall Aspect Ratio	Torsional Load	Diaphragm Shear	Total Design Load	Wall Deflection	Allowable Deflection	Story Drift
0.57 (16%)	1438.8 lbs	0.0 lbs	81.85 plf (22%)	0.081 in (3%)	3.000 in	0.323 in (11%)

- Design loads indicated in this table have been adjusted for Allowable Stress Design.

This drawin

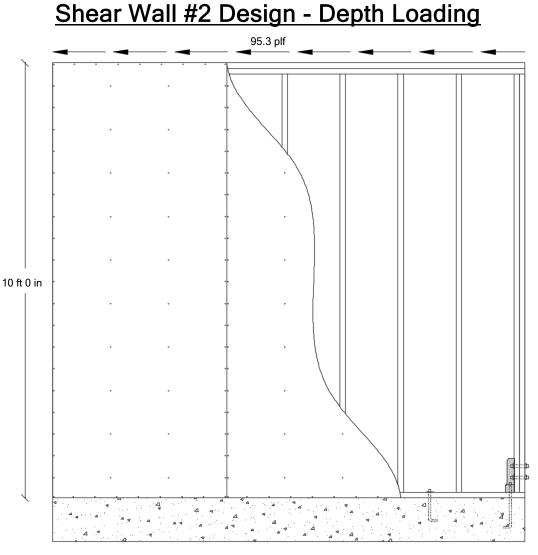
- Allowable deflection limits are determined per Table 12.12-1 of ASCE 7-16. More stringent deflection criteria may be required for windows, doors, or other finish material.

- Design wall deflection is calculated assuming OSB wall sheathing installed in dry service conditions. If plywood sheathing is used, wall shear stiffness will be reduced, which may increase the design wall deflection. - Deflection values are determined using design strength level seismic loads, with redundancy factor (Rho) set to 1.3.

- Story drift values are determined using design strength level seismic loads, with Cd value of 4.0, and le value of 1.00. - Design torsional loads have been increased per the amplification of accidental torsion factor (Ax) with a value of 1.538.

Chord Size	Design Tension	Allowable Tension	Allowable Chord Compression	Design Plate Compression	Allowable Plate Compression
Double 2x6 Douglas Fir	818.47 lbs (6%)	19734.0 lbs	14746.8 lbs	818.47 lbs (8%)	10312.5 lbs

- All wall framing analysis is determined assuming visual grade #2 lumber.


Plate compression does not consider compression performance of floor sheathing. Additional analysis may be necessary to accomodate sheathing compression allowance.
 A 0.6 design adjustment has been taken to chord compression to accomodate this multi-ply assembly.

Hold Down	Design Tension	Tension Capacity	Design Deflection	Allowable Deflection
HD3B	818.47 lbs (26%)	3130.0 lbs	0.031 in (26%)	0.120 in

- Hold down tension loads have not been adjusted for the stabilizing moment induced by design dead load overtop this shear wall.

Total Design Load	Anchor Bolt Size	Anchor Bolt Spacing	Washer Size	Nail Size	Nail Spacing
81.8 plf	5/8"	218 in	Standard cut washer	16d Common	33 in

- Use either the anchor bolt or nailed connection options listed above, dependent upon what structural support is below this shear wall.

7 ft 4 in

		A - 4 I				بواجر ويرتبع واجراجه المالية والترابية فحرواه	
ving is	conceptual.	Actual construction	ii memous a	unnensions ma	ay unler norm	that which is shown ab	Jve.

Stud Species	Panel Thickness	Nail Size	Edge Nail Spacing	Construction Type	Wall Capacity	Stud Size	Stud Spacing
Douglas Fir	7/16"	8d	4"	Single Panel	380 plf	2x6	16 in
	Torrignella	d Dianhragen	Ohana Tatal Da	cian Lood Mall		weble Deflection	Charle Drift

Wall Aspect Ratio	Torsional Load	Diaphragm Shear	Total Design Load	Wall Deflection	Allowable Deflection	Story Drift
1.35 (39%)	-244.6 lbs	950.1 lbs	95.34 plf (25%)	0.138 in (5%)	3.000 in	0.552 in (18%)

- Design loads indicated in this table have been adjusted for Allowable Stress Design.

This draw

- Allowable deflection limits are determined per Table 12.12-1 of ASCE 7-16. More stringent deflection criteria may be required for windows, doors, or other finish material. - Design wall deflection is calculated assuming OSB wall sheathing installed in dry service conditions. If plywood sheathing is used, wall shear stiffness will be reduced, which may increase the

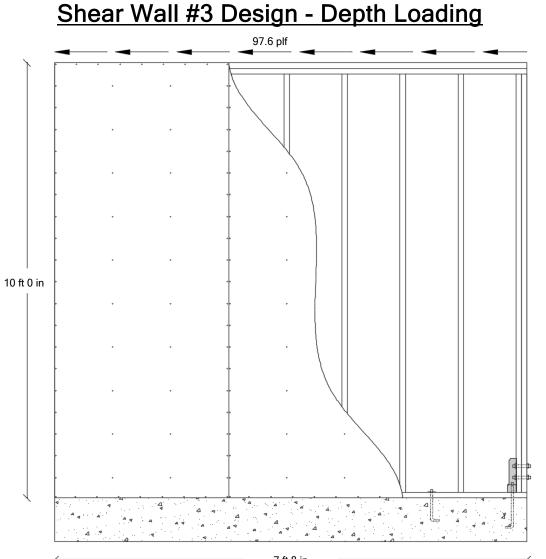
design wall deflection. - Deflection values are determined using design strength level seismic loads, with redundancy factor (Rho) set to 1.3.

- Story drift values are determined using design strength level seismic loads, with Cd value of 4.0, and le value of 1.00.

- Design torsional loads have been increased per the amplification of accidental torsion factor (Ax) with a value of 1.538.

Chord Size Design Tension Allows		Allowable Tension	Allowable Chord Compression	Design Plate Compression	Allowable Plate Compression
Double 2x6 Douglas Fir	953.42 lbs (6%)	19734.0 lbs	14746.8 lbs	953.42 lbs (9%)	10312.5 lbs

- All wall framing analysis is determined assuming visual grade #2 lumber.


Plate compression does not consider compression performance of floor sheathing. Additional analysis may be necessary to accomodate sheathing compression allowance.
 A 0.6 design adjustment has been taken to chord compression to accomodate this multi-ply assembly.

Hold Down	Hold Down Design Tension		Design Deflection	Allowable Deflection
HD3B	953.42 lbs (30%)	3130.0 lbs	0.037 in (30%)	0.120 in

- Hold down tension loads have not been adjusted for the stabilizing moment induced by design dead load overtop this shear wall.

Total Design Load	Anchor Bolt Size	Anchor Bolt Spacing	Washer Size	Nail Size	Nail Spacing		
95.3 plf	5/8"	187 in	Standard cut washer	16d Common	28 in		
11 34 41 1 1 1 1							

- Use either the anchor bolt or nailed connection options listed above, dependent upon what structural support is below this shear wall.

/	π	ŏ	In

	mis drawing is conceptual. Actual construction methods a dimensions may different informatic which is shown above.								
Stud Species	Panel Thickness	Nail Size	Edge Nail Spacing	Construction Type	Wall Capacity	Stud Size	Stud Spacing		
Douglas Fir	7/16"	8d	4"	Single Panel	380 plf	2x6	16 in		

Wall Aspect Ratio	Torsional Load	Diaphragm Shear	Total Design Load	Wall Deflection	Allowable Deflection	Story Drift
1.30 (37%)	-261.0 lbs	1013.9 lbs	97.56 plf (26%)	0.138 in (5%)	3.000 in	0.552 in (18%)

- Design loads indicated in this table have been adjusted for Allowable Stress Design.

- Allowable deflection limits are determined per Table 12.12-1 of ASCE 7-16. More stringent deflection criteria may be required for windows, doors, or other finish material. - Design wall deflection is calculated assuming OSB wall sheathing installed in dry service conditions. If plywood sheathing is used, wall shear stiffness will be reduced, which may increase the

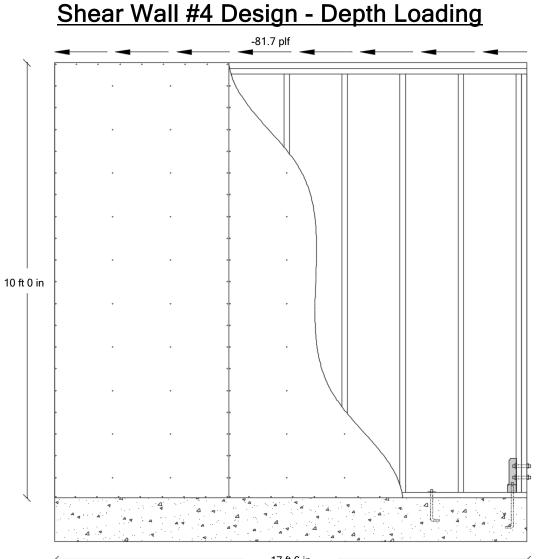
design wall deflection. - Deflection values are determined using design strength level seismic loads, with redundancy factor (Rho) set to 1.3.

- Story drift values are determined using design strength level seismic loads, with Cd value of 4.0, and le value of 1.00.

- Design torsional loads have been increased per the amplification of accidental torsion factor (Ax) with a value of 1.538.

Chord Size Design Tension Allowable		Allowable Tension	Allowable Chord Compression	Design Plate Compression	Allowable Plate Compression
Double 2x6 Douglas Fir	975.58 lbs (7%)	19734.0 lbs	14746.8 lbs	975.58 lbs (9%)	10312.5 lbs

- All wall framing analysis is determined assuming visual grade #2 lumber.


Plate compression does not consider compression performance of floor sheathing. Additional analysis may be necessary to accomodate sheathing compression allowance.
 A 0.6 design adjustment has been taken to chord compression to accomodate this multi-ply assembly.

Hold Down	Hold Down Design Tension		Design Deflection	Allowable Deflection
HD3B	975.58 lbs (31%)	3130.0 lbs	0.037 in (31%)	0.120 in

- Hold down tension loads have not been adjusted for the stabilizing moment induced by design dead load overtop this shear wall.

Total Design Load	Anchor Bolt Size	Anchor Bolt Spacing	Washer Size	Nail Size	Nail Spacing		
97.6 plf	97.6 plf 5/8"		Standard cut washer	16d Common	27 in		

- Use either the anchor bolt or nailed connection options listed above, dependent upon what structural support is below this shear wall.

ving is	conceptual.	Actual of	construction	methods &	dimensions	may differ	from t	hat which is	s shown above	e.
						,				

Stud Species	Panel Thickness	Nail Size	Edge Nail Spacing	Construction Type	Wall Capacity	Stud Size	Stud Spacing
Douglas Fir	7/16"	8d	4"	Single Panel	380 plf	2x6	16 in
Wall Aspect Batic		d Dianbragm	Shoor Total Day	sian Load Wall	Deflection Allo	wable Deflection	Story Drift

Wall Aspect Ratio	Torsional Load	Diaphragm Shear	Total Design Load	Wall Deflection	Allowable Deflection	Story Drift
0.57 (16%)	-1431.4 lbs	0.0 lbs	-81.72 plf (22%)	-0.081 in (3%)	3.000 in	-0.323 in (11%)

- Design loads indicated in this table have been adjusted for Allowable Stress Design.

This draw

- Allowable deflection limits are determined per Table 12.12-1 of ASCE 7-16. More stringent deflection criteria may be required for windows, doors, or other finish material.

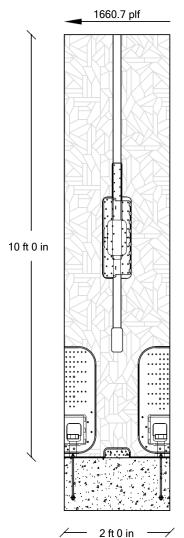
- Design wall deflection is calculated assuming OSB wall sheathing installed in dry service conditions. If plywood sheathing is used, wall shear stiffness will be reduced, which may increase the design wall deflection. - Deflection values are determined using design strength level seismic loads, with redundancy factor (Rho) set to 1.3.

- Story drift values are determined using design strength level seismic loads, with Cd value of 4.0, and le value of 1.00. - Design torsional loads have been increased per the amplification of accidental torsion factor (Ax) with a value of 1.538.

Chord Size	Design Tension	Allowable Tension	Allowable Chord Compression	Design Plate Compression	Allowable Plate Compression
Double 2x6 Douglas Fir	817.20 lbs (6%)	19734.0 lbs	14746.8 lbs	817.20 lbs (8%)	10312.5 lbs

- All wall framing analysis is determined assuming visual grade #2 lumber.

Plate compression does not consider compression performance of floor sheathing. Additional analysis may be necessary to accomodate sheathing compression allowance.
 A 0.6 design adjustment has been taken to chord compression to accomodate this multi-ply assembly.


Hold Down	Design Tension	Tension Capacity	Design Deflection	Allowable Deflection
HD3B	817.20 lbs (26%)	3130.0 lbs	0.031 in (26%)	0.120 in

- Hold down tension loads have not been adjusted for the stabilizing moment induced by design dead load overtop this shear wall.

Total Design Load	Anchor Bolt Size	Anchor Bolt Spacing	Washer Size	Nail Size	Nail Spacing		
-81.7 plf	5/8"	218 in	Standard cut washer	16d Common	33 in		
11 34 41 1 1 1 1							

- Use either the anchor bolt or nailed connection options listed above, dependent upon what structural support is below this shear wall.

Shear Wall #5 Design - Depth Loading

This drawing is conceptual. Actual construction methods & dimensions may differ from that which is shown above

Wall Type	Wall Capacity	Min Allowable Wall Height	Max Allowable Wall Height	Wall Stud Size
WSWH 24x10	2005 plf	6 ft 2.5 in	10 ft	2x6

- Install the panel flush to the outside face of the framing and add furring to the inside face as required to accommodate finish material.

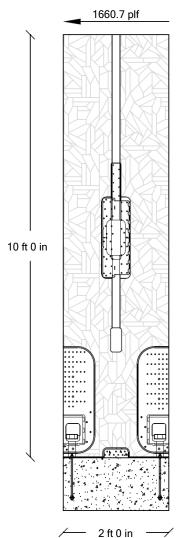
Torsional Load	Diaphragm Shear	Total Design Load	Wall Deflection	Allowable Deflection	Story Drift
253.9 lbs	3067.5 lbs	1660.72 plf (83%)	0.580 in (85%)	0.686 in	2.318 in (77%)

- Design loads indicated in this table have been adjusted for Allowable Stress Design, and assumes minimum 2,500 psi concrete below.

- Allowable deflection limits are defined in Simpson Strong-Tie C-L-SW21. More stringent deflection criteria may be required for windows, doors, or other finish material.

- Deflection values are determined using design strength level seismic loads, with redundancy factor (Rho) set to 1.3.

Story drift values are determined using design strength level seismic loads, with Cd value of 4.0, and le value of 1.00.
 Design torsional loads have been increased per the amplification of accidental torsion factor (Ax) with a value of 1.538.


 Hold Down
 Design Tension
 Tension Capacity
 Bolt Diameter
 Minimum Bolt Embedment

 WSWH-AB Anchor Bolt
 18979.66 lbs (71%)
 26860.0 lbs
 1.0 in
 15.5 in

Hold down tonsion loads have not been adjusted for the stabilizing memory induced by design dead load everten this shear wall

Hold down tension loads have not been adjusted for the stabilizing moment induced by design dead load overtop this shear wall.
 Additional concrete reinforcement may be required to achieve listed anchor design loads. Refer to Simpson Strong-Tie C-L-SW21 for additional information.

Shear Wall #6 Design - Depth Loading

This drawing is conceptual. Actual construction methods & dimensions may differ from that which is shown above

Wall Type	Wall Capacity	Min Allowable Wall Height	Max Allowable Wall Height	Wall Stud Size
WSWH 24x10	2005 plf	6 ft 2.5 in	10 ft	2x6

- Install the panel flush to the outside face of the framing and add furring to the inside face as required to accommodate finish material.

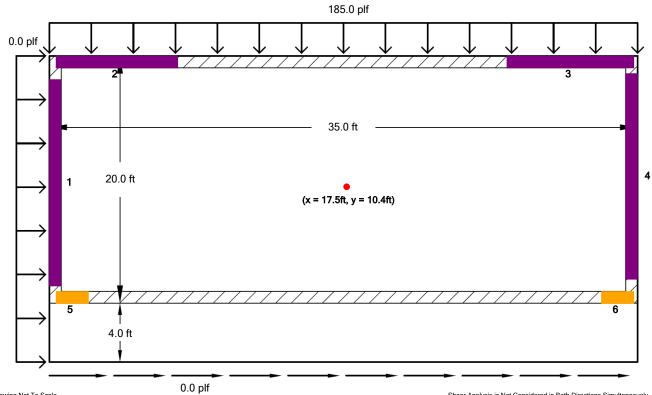
Torsional Load	Diaphragm Shear	Total Design Load	Wall Deflection	Allowable Deflection	Story Drift
253.9 lbs	3067.5 lbs	1660.72 plf (83%)	0.580 in (85%)	0.686 in	2.318 in (77%)

- Design loads indicated in this table have been adjusted for Allowable Stress Design, and assumes minimum 2,500 psi concrete below.

- Allowable deflection limits are defined in Simpson Strong-Tie C-L-SW21. More stringent deflection criteria may be required for windows, doors, or other finish material.

- Deflection values are determined using design strength level seismic loads, with redundancy factor (Rho) set to 1.3.

Story drift values are determined using design strength level seismic loads, with Cd value of 4.0, and le value of 1.00.
 Design torsional loads have been increased per the amplification of accidental torsion factor (Ax) with a value of 1.538.


 Hold Down
 Design Tension
 Tension Capacity
 Bolt Diameter
 Minimum Bolt Embedment

 WSWH-AB Anchor Bolt
 18979.66 lbs (71%)
 26860.0 lbs
 1.0 in
 15.5 in

Hold down tonsion loads have not bee	n adjusted for the stabilizing memort indu	and by design dead load overtan this shear wall	

Hold down tension loads have not been adjusted for the stabilizing moment induced by design dead load overtop this shear wall.
 Additional concrete reinforcement may be required to achieve listed anchor design loads. Refer to Simpson Strong-Tie C-L-SW21 for additional information.

2015 SDPWS Cantilevered Diaphragm Design - Width Loading

Drawing Not To Scale

Shear Analysis is Not Considered in Both Directions Simultaneously

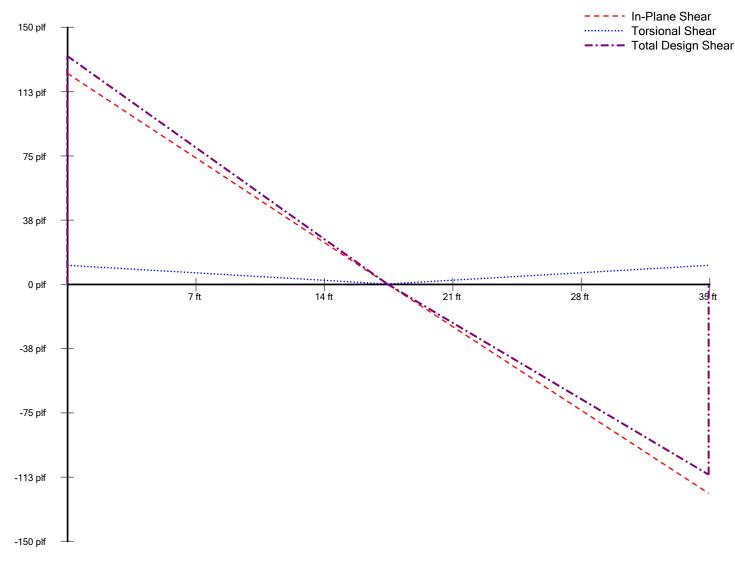
Diaphragm Type	Framing Species	Panel Thickness	Nail Size/Spacing	Load Case	Construction Method	Diaphragm Capacity
Standard Diaphragm	Douglas Fir	23/32"	10d at 4"	Case 1 & 3	Blocked	425.0 plf
Oheen leftine	Ohnen Diehtline	Oheen Ten Line	Oheen DeMandline	Displayers Definition	Assaul Datis	OpenAllesseen (110A/I)

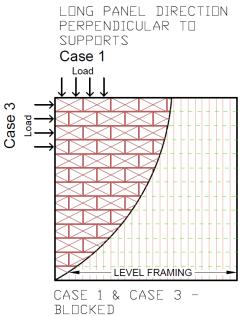
Shear - Left Line	Shear - Right Line	Shear - Top Line	Shear - Bottom Line	Diaphragm Deflection	Aspect Ratio	Cantilever (L'/W')
133.3 plf (31%)	112.3 plf (26%)	-2.5 plf (1%)	2.5 plf (1%)	0.12 in @ 17.5 ft	0.69 (17%)	1.00 (25%)

Design loads indicated in this table have been adjusted for Allowable Stress Design, and include contributions from diaphragm shear and rigid torsional effects.
 Design diaphragm deflection is calculated assuming OSB sheathing installed in dry service conditions. If plywood sheathing is used, diaphragm shear stiffness will be reduced, which may increase diaphragm deflection.

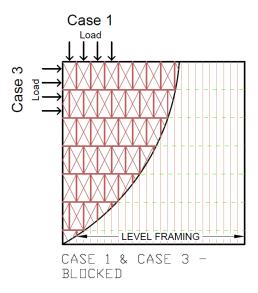
- Deflection values are determined using design strength level seismic loads, with redundancy factor (Rho) set to 1.3.

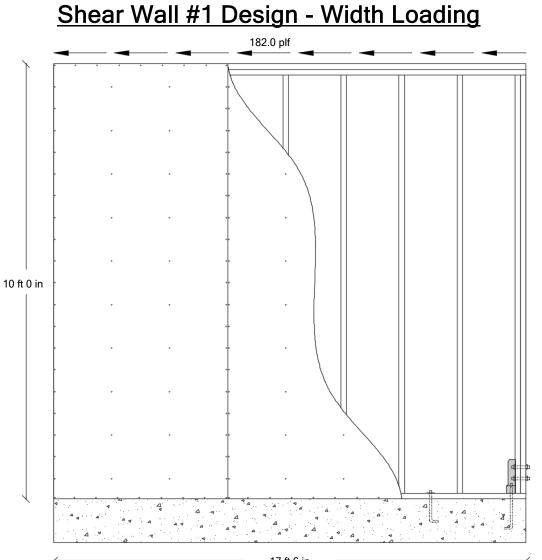
- Total design torsional distance from diaphragm center of rigidity, including amplification of accidental torsion and user defined torsion, is 1.75 ft.


Splice Length Design Moment		Splice Tension	Splice Capacity	Min. Nail Count Nail Size	
16.0 ft	19829.7 ft-lbs	826.2 lbs (92%)	902.4 lbs	4	16d Common (0.162" x 3.5")


- Chord forces have been increased for the redundancy factor (Rho) and accidental torsion effects (Ax).

- Nail count is determined at each edge of splice. The splice assembly will require twice the nail count as indicated above to tie each end of splice together.


Diaphragm Moment Moment Location		Chord Tension	Allowable Tension	Chord Compression	Allowable Compression
19829.7 ft-lbs	17.50 ft From Left	826.2 lbs (8%)	9867.0 lbs	826.2 lbs (4%)	19274.1 lbs


2015 SDPWS Cantilevered Diaphragm Design - Width Loading

LONG PANEL DIRECTION PARALLEL TO SUPPORTS

	A		P		e desta se se se se se se se	
iwing is conceptual.	Actual construction	methods &	dimensions may	differ from that	t which is shown abov	/e.

1						D G ¹¹ A		0. D.10
ļ	Douglas Fir	7/16"	8d	4"	Single Panel	380 plf	2x6	16 in
	Stud Species	Panel Thickness	Nail Size	Edge Nail Spacing	Construction Type	Wall Capacity	Stud Size	Stud Spacing

Wall Aspect Ratio	Torsional Load	Diaphragm Shear	Total Design Load	Wall Deflection	Allowable Deflection	Story Drift
0.57 (16%)	246.2 lbs	2953.3 lbs	182.00 plf (48%)	0.179 in (6%)	3.000 in	0.717 in (24%)

- Design loads indicated in this table have been adjusted for Allowable Stress Design.

This drav

- Allowable deflection limits are determined per Table 12.12-1 of ASCE 7-16. More stringent deflection criteria may be required for windows, doors, or other finish material.

- Design wall deflection is calculated assuming OSB wall sheathing installed in dry service conditions. If plywood sheathing is used, wall shear stiffness will be reduced, which may increase the design wall deflection. - Deflection values are determined using design strength level seismic loads, with redundancy factor (Rho) set to 1.3.

- Story drift values are determined using design strength level seismic loads, with Cd value of 4.0, and le value of 1.00.

Chord Size Design Tension		Allowable Tension	Allowable Chord Compression	Design Plate Compression	Allowable Plate Compression
Double 2x6 Douglas Fir	1819.99 lbs (12%)	19734.0 lbs	14746.8 lbs	1819.99 lbs (18%)	10312.5 lbs

- All wall framing analysis is determined assuming visual grade #2 lumber.

- Plate compression does not consider compression performance of floor sheathing. Additional analysis may be necessary to accomodate sheathing compression allowance.

- A 0.6 design adjustment has been taken to chord compression to accomodate this multi-ply assembly.

Hold Down	Design Tension	Tension Capacity	Design Deflection	Allowable Deflection			
HD3B	1819.99 lbs (58%)	3130.0 lbs	0.070 in (58%)	0.120 in			
Hold down tension loads have not been adjusted for the stabilizing moment induced by design dead load overtop this shear wall.							

Total Design Load	Total Design Load Anchor Bolt Size		Washer Size	Washer Size Nail Size	
182.0 plf	5/8"	98 in	Standard cut washer	16d Common	14 in

- Use either the anchor bolt or nailed connection options listed above, dependent upon what structural support is below this shear wall.

7 ft 4 in

wing is conceptual. Actual construction methods	& dimensions may differ from that which is shown above.
wing is conceptual. Actual construction methods	a amensions may amer nom that which is shown above.

Stud Species	Panel Thickness	Nail Size	Edge Nail Spacing	Construction Type	Wall Capacity	Stud Size	Stud Spacing
Douglas Fir	7/16"	8d	4"	Single Panel	380 plf	2x6	16 in
	Terrienelles	d Disphrage		sign Lood Mall		weble Deflection	Chan - Drift

Wall Aspect Ratio	Torsional Load	Diaphragm Shear	Total Design Load	Wall Deflection	Allowable Deflection	Story Drift
1.35 (39%)	-41.8 lbs	0.0 lbs	-5.66 plf (1%)	-0.008 in (0%)	3.000 in	-0.033 in (1%)

- Design loads indicated in this table have been adjusted for Allowable Stress Design.

This draw

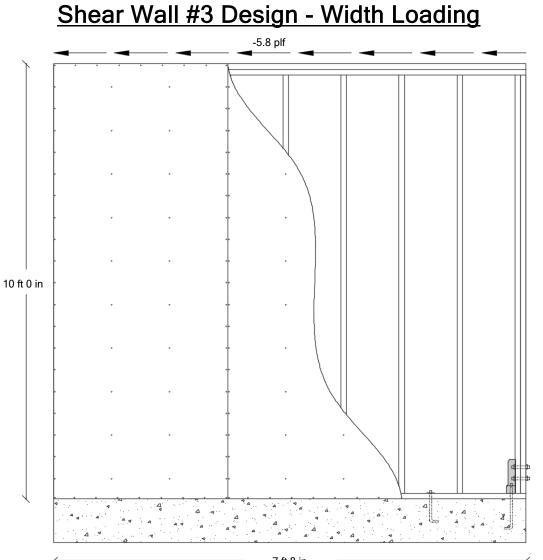
- Allowable deflection limits are determined per Table 12.12-1 of ASCE 7-16. More stringent deflection criteria may be required for windows, doors, or other finish material.

- Design wall deflection is calculated assuming OSB wall sheathing installed in dry service conditions. If plywood sheathing is used, wall shear stiffness will be reduced, which may increase the design wall deflection. - Deflection values are determined using design strength level seismic loads, with redundancy factor (Rho) set to 1.3.

- Story drift values are determined using design strength level seismic loads, with Cd value of 4.0, and le value of 1.00.

Chord Size	Design Tension	Allowable Tension	Allowable Chord Compression	Design Plate Compression	Allowable Plate Compression
Double 2x6 Douglas Fir	56.55 lbs (0%)	19734.0 lbs	14746.8 lbs	56.55 lbs (1%)	10312.5 lbs

- All wall framing analysis is determined assuming visual grade #2 lumber.


- Plate compression does not consider compression performance of floor sheathing. Additional analysis may be necessary to accomodate sheathing compression allowance.

- A 0.6 design adjustment has been taken to chord compression to accomodate this multi-ply assembly.

Hold Down	Design Tension	Tension Capacity	Design Deflection	Allowable Deflection		
HD3B	56.55 lbs (2%)	3130.0 lbs	0.002 in (2%)	0.120 in		
- Hold down tension loads have not been adjusted for the stabilizing moment induced by design dead load overton this shear wall						

Total Design Load	Anchor Bolt Size	Anchor Bolt Spacing	Washer Size	Nail Size	Nail Spacing
-5.7 plf	5/8"	3157 in	Standard cut washer	16d Common	478 in

- Use either the anchor bolt or nailed connection options listed above, dependent upon what structural support is below this shear wall.

ft	

wing is conceptual.	Actual construction n	nethods & dimension	is may differ from th	at which is shown above.

Stud Species	Panel Thickness	Nail Size	Edge Nail Spacing	Construction Type	Wall Capacity	Stud Size	Stud Spacing
Douglas Fir	7/16"	8d	4"	Single Panel	380 plf	2x6	16 in

Wall Aspect Ratio	Torsional Load	Diaphragm Shear	Total Design Load	Wall Deflection	Allowable Deflection	Story Drift
1.30 (37%)	-44.7 lbs	0.0 lbs	-5.79 plf (2%)	-0.008 in (0%)	3.000 in	-0.033 in (1%)

- Design loads indicated in this table have been adjusted for Allowable Stress Design.

This drav

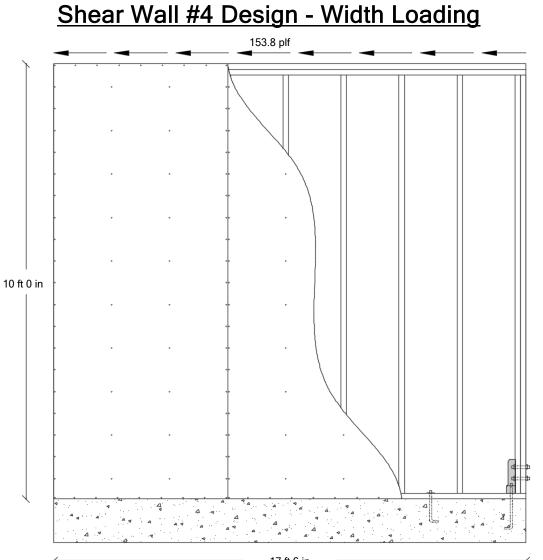
- Allowable deflection limits are determined per Table 12.12-1 of ASCE 7-16. More stringent deflection criteria may be required for windows, doors, or other finish material.

- Design wall deflection is calculated assuming OSB wall sheathing installed in dry service conditions. If plywood sheathing is used, wall shear stiffness will be reduced, which may increase the design wall deflection. - Deflection values are determined using design strength level seismic loads, with redundancy factor (Rho) set to 1.3.

- Story drift values are determined using design strength level seismic loads, with Cd value of 4.0, and le value of 1.00.

Chord Size	Design Tension	Allowable Tension	Allowable Chord Compression	Design Plate Compression	Allowable Plate Compression
Double 2x6 Douglas Fir	57.87 lbs (0%)	19734.0 lbs	14746.8 lbs	57.87 lbs (1%)	10312.5 lbs

- All wall framing analysis is determined assuming visual grade #2 lumber.


- Plate compression does not consider compression performance of floor sheathing. Additional analysis may be necessary to accomodate sheathing compression allowance. - A 0.6 design adjustment has been taken to chord compression to accomodate this multi-ply assembly.

Hold Down	Design Tension	Tension Capacity	Design Deflection	Allowable Deflection
HD3B	57.87 lbs (2%)	3130.0 lbs	0.002 in (2%)	0.120 in

- Hold down tension loads have not been adjusted for the stabilizing moment induced by design dead load overtop this shear wall.

Total Design Load	Anchor Bolt Size	Anchor Bolt Spacing	Washer Size	Nail Size	Nail Spacing
-5.8 plf	5/8"	3085 in	Standard cut washer	16d Common	467 in

- Use either the anchor bolt or nailed connection options listed above, dependent upon what structural support is below this shear wall.

drawing is conceptual. Actual construction methods	s & dimensions may differ from that which is shown above.
--	---

Stud Species	Panel Thickness	Nail Size	Edge Nail Spacing	Construction Type	Wall Capacity	Stud Size	Stud Spacing
Douglas Fir	7/16"	8d	4"	Single Panel	380 plf	2x6	16 in

Wall Aspect Ratio	Torsional Load	Diaphragm Shear	Total Design Load	Wall Deflection	Allowable Deflection	Story Drift
0.57 (16%)	-244.9 lbs	2939.0 lbs	153.81 plf (40%)	0.152 in (5%)	3.000 in	0.607 in (20%)

- Design loads indicated in this table have been adjusted for Allowable Stress Design.

This (

- Allowable deflection limits are determined per Table 12.12-1 of ASCE 7-16. More stringent deflection criteria may be required for windows, doors, or other finish material.

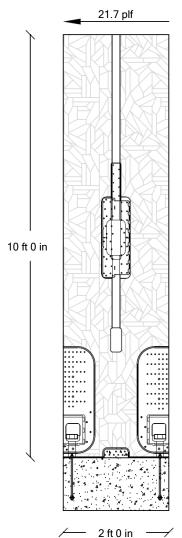
- Design wall deflection is calculated assuming OSB wall sheathing installed in dry service conditions. If plywood sheathing is used, wall shear stiffness will be reduced, which may increase the design wall deflection. - Deflection values are determined using design strength level seismic loads, with redundancy factor (Rho) set to 1.3.

- Story drift values are determined using design strength level seismic loads, with Cd value of 4.0, and le value of 1.00.

Chord Size	Design Tension	Allowable Tension	Allowable Chord Compression	Design Plate Compression	Allowable Plate Compression
Double 2x6 Dougla	s Fir 1538.06 lbs (10%)	19734.0 lbs	14746.8 lbs	1538.06 lbs (15%)	10312.5 lbs

- All wall framing analysis is determined assuming visual grade #2 lumber.

- Plate compression does not consider compression performance of floor sheathing. Additional analysis may be necessary to accomodate sheathing compression allowance.


- A 0.6 design adjustment has been taken to chord compression to accomodate this multi-ply assembly.

Hold Down	Design Tension	Tension Capacity	Design Deflection	Allowable Deflection		
HD3B	1538.06 lbs (49%)	3130.0 lbs	0.059 in (49%)	0.120 in		
- Hold down tension loads have not been adjusted for the stabilizing moment induced by design dead load overtop this shear wall.						

Total Design Load	Anchor Bolt Size	Anchor Bolt Spacing	Washer Size	Nail Size	Nail Spacing
153.8 plf	5/8"	116 in	Standard cut washer	16d Common	17 in

- Use either the anchor bolt or nailed connection options listed above, dependent upon what structural support is below this shear wall.

Shear Wall #5 Design - Width Loading

This drawing is conceptual. Actual construction methods & dimensions may differ from that which is shown above.

Wall Type	Wall Capacity	Min Allowable Wall Height	Max Allowable Wall Height	Wall Stud Size
WSWH 24x10	2005 plf	6 ft 2.5 in	10 ft	2x6

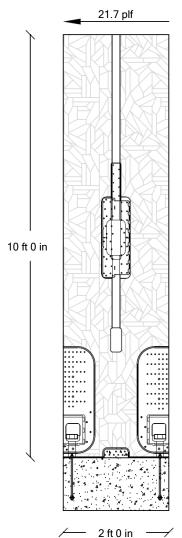
- Install the panel flush to the outside face of the framing and add furring to the inside face as required to accommodate finish material.

Torsional Load	Diaphragm Shear	Total Design Load	Wall Deflection	Allowable Deflection	Story Drift
43.4 lbs	0.0 lbs	21.72 plf (1%)	0.008 in (1%)	0.686 in	0.030 in (1%)

- Design loads indicated in this table have been adjusted for Allowable Stress Design, and assumes minimum 2,500 psi concrete below.

- Allowable deflection limits are defined in Simpson Strong-Tie C-L-SW21. More stringent deflection criteria may be required for windows, doors, or other finish material.

- Deflection values are determined using design strength level seismic loads, with redundancy factor (Rho) set to 1.3.


- Story drift values are determined using design strength level seismic loads, with Cd value of 4.0, and le value of 1.00.

Hold Down	Design Tension	Tension Capacity	Bolt Diameter	Minimum Bolt Embedment
WSWH-AB Anchor Bolt	248.25 lbs (1%)	26860.0 lbs	1.0 in	15.5 in

- Hold down tension loads have not been adjusted for the stabilizing moment induced by design dead load overtop this shear wall.

- Additional concrete reinforcement may be required to achieve listed anchor design loads. Refer to Simpson Strong-Tie C-L-SW21 for additional information.

Shear Wall #6 Design - Width Loading

This drawing is conceptual. Actual construction methods & dimensions may differ from that which is shown above.

Wall Type	Wall Capacity	Min Allowable Wall Height	Max Allowable Wall Height	Wall Stud Size
WSWH 24x10	2005 plf	6 ft 2.5 in	10 ft	2x6

- Install the panel flush to the outside face of the framing and add furring to the inside face as required to accommodate finish material.

Torsional Load	Diaphragm Shear	Total Design Load	Wall Deflection	Allowable Deflection	Story Drift
43.4 lbs	0.0 lbs	21.72 plf (1%)	0.008 in (1%)	0.686 in	0.030 in (1%)

- Design loads indicated in this table have been adjusted for Allowable Stress Design, and assumes minimum 2,500 psi concrete below.

- Allowable deflection limits are defined in Simpson Strong-Tie C-L-SW21. More stringent deflection criteria may be required for windows, doors, or other finish material.

- Deflection values are determined using design strength level seismic loads, with redundancy factor (Rho) set to 1.3.

- Story drift values are determined using design strength level seismic loads, with Cd value of 4.0, and le value of 1.00.

Hold Down	Design Tension	Tension Capacity	Bolt Diameter	Minimum Bolt Embedment
WSWH-AB Anchor Bolt	248.25 lbs (1%)	26860.0 lbs	1.0 in	15.5 in

- Hold down tension loads have not been adjusted for the stabilizing moment induced by design dead load overtop this shear wall.

- Additional concrete reinforcement may be required to achieve listed anchor design loads. Refer to Simpson Strong-Tie C-L-SW21 for additional information.