

# Rigid Diaphragm Design Summary

| Diaphragm Design Summary                      |                  |                      |                        |            |  |  |  |  |
|-----------------------------------------------|------------------|----------------------|------------------------|------------|--|--|--|--|
| Diaphragm Loading Critical Shear Chord Forces |                  | Diaphragm Deflection | Diaphragm Aspect Ratio |            |  |  |  |  |
| Depth Loading                                 | 161.98 plf (54%) | 708.8 lbs (7%)       | 0.257 in               | 1.67 (56%) |  |  |  |  |
| Width Loading                                 | 0.00 plf (0%)    | 0.0 lbs (0%)         | 0.000 in               | 1.67 (56%) |  |  |  |  |

| Shear Wall Design Summary |                  |                   |                    |                 |                   |  |  |
|---------------------------|------------------|-------------------|--------------------|-----------------|-------------------|--|--|
| Wall ID                   | Design Shear     | Chord Forces      | Hold Down Capacity | Wall Deflection | Wall Aspect Ratio |  |  |
| Depth Loading - Wall #1   | 58.30 plf (16%)  | 524.72 lbs (5%)   | 524.72 lbs (17%)   | 0.068 in (15%)  | 0.27 (8%)         |  |  |
| Depth Loading - Wall #2   | 161.98 plf (44%) | 1457.83 lbs (14%) | 1457.83 lbs (47%)  | 0.205 in (45%)  | 0.43 (12%)        |  |  |
| Depth Loading - Wall #3   | -60.49 plf (17%) | -544.37 lbs (5%)  | -544.37 lbs (17%)  | -0.071 in (16%) | 0.28 (8%)         |  |  |
| Depth Loading - Wall #4   | 477.28 plf (44%) | N/A               | 5154.60 lbs (34%)  | 0.000 in (0%)   | N/A               |  |  |
| Depth Loading - Wall #5   | 477.28 plf (44%) | N/A               | 5154.60 lbs (34%)  | 0.000 in (0%)   | N/A               |  |  |
| Width Loading - Wall #1   | 0.00 plf (0%)    | 0.00 lbs (0%)     | 0.00 lbs (0%)      | 0.000 in (0%)   | 0.27 (8%)         |  |  |
| Width Loading - Wall #2   | 0.00 plf (0%)    | 0.00 lbs (0%)     | 0.00 lbs (0%)      | 0.000 in (0%)   | 0.43 (12%)        |  |  |
| Width Loading - Wall #3   | 0.00 plf (0%)    | 0.00 lbs (0%)     | 0.00 lbs (0%)      | 0.000 in (0%)   | 0.28 (8%)         |  |  |
| Width Loading - Wall #4   | 0.00 plf (0%)    | N/A               | 0.00 lbs (0%)      | 0.000 in (0%)   | N/A               |  |  |
| Width Loading - Wall #5   | 0.00 plf (0%)    | N/A               | 0.00 lbs (0%)      | 0.000 in (0%)   | N/A               |  |  |

#### 2015 SDPWS Rigid Diaphragm Design - Depth Loading



Drawing Not To Scale

Shear Analysis is Not Considered in Both Directions Simultaneously

| Diaphragm Type     | Framing Species | Panel Thickness | Nail Size/Spacing | Load Case  | Construction Method | Diaphragm Capacity |
|--------------------|-----------------|-----------------|-------------------|------------|---------------------|--------------------|
| Standard Diaphragm | Douglas Fir     | 23/32"          | 10d at 6"         | Case 1 & 3 | Unblocked           | 300.0 plf          |

| Shear - Left Line | Shear - Right Line | Shear - Top Line | Shear - Bottom Line | Diaphragm Deflection | Aspect Ratio |
|-------------------|--------------------|------------------|---------------------|----------------------|--------------|
| 56.2 plf (19%)    | -56.2 plf (19%)    | 162.0 plf (54%)  | 45.5 plf (15%)      | 0.26 in @ 17.5 ft    | 1.67 (56%)   |

- Design loads indicated in this table have been adjusted for Allowable Stress Design, and include contributions from diaphragm shear and rigid torsional effects. - Design diaphragm deflection is calculated assuming OSB sheathing installed in dry service conditions. If plywood sheathing is used, diaphragm shear stiffness will be reduced, which may Design diaphragm deflection.
Deflection values are determined using design strength level wind loads.

- Design torsional loads have been increased per the amplification of accidental torsion factor (Ax) with a value of 2.025.

Total design torsional distance from diaphragm center of rigidity, including amplification of accidental torsion and user defined torsion, is 12.89 ft.
This diaphragm has a horizontal structural irregularity Type 1b as defined in Table 12.3-1 in ASCE 7-16. This diaphragm is not permitted in seismic design categories E or F.

- This torsionally irregular structure has an aspect ratio of 1.67 which exceeds allowances per SDPWS Section 4.2.5.1.

| Splice Length                                                                                                                                                   | Design Moment  | Splice Tension  | Splice Capacity | Min. Nail Count | Nail Size                  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|-----------------|-----------------|----------------------------|--|--|
| 16.0 ft                                                                                                                                                         | 14883.8 ft-lbs | 708.8 lbs (79%) | 902.4 lbs       | 4               | 16d Common (0.162" x 3.5") |  |  |
| - Nail count is determined at each edge of splice. The splice assembly will require twice the nail count as indicated above to tie each end of splice together. |                |                 |                 |                 |                            |  |  |

| Diaphragm Moment | iaphragm Moment Moment Location |                | Chord Tension Allowable Tension |                | Allowable Compression |
|------------------|---------------------------------|----------------|---------------------------------|----------------|-----------------------|
| 14883.8 ft-lbs   | 17.50 ft From Top               | 708.8 lbs (7%) | 9867.0 lbs                      | 708.8 lbs (4%) | 19274.1 lbs           |

### 2015 SDPWS Rigid Diaphragm Design - Depth Loading





LONG PANEL DIRECTION PARALLEL TO SUPPORTS





33 ft 9 in

|--|

| Stud Species | Panel Thickness | Nail Size | Edge Nail Spacing | Construction Type | Wall Capacity | Stud Size | Stud Spacing |
|--------------|-----------------|-----------|-------------------|-------------------|---------------|-----------|--------------|
| Douglas Fir  | 7/16"           | 8d        | 6"                | Single Panel      | 365 plf       | 2x6       | 16 in        |
|              |                 |           |                   |                   |               |           |              |

| Wall Aspect Ratio | Torsional Load | Diaphragm Shear | Total Design Load | Wall Deflection | Allowable Deflection |
|-------------------|----------------|-----------------|-------------------|-----------------|----------------------|
| 0.27 (8%)         | 1968.1 lbs     | 0.0 lbs         | 58.30 plf (16%)   | 0.068 in (15%)  | 0.450 in             |

- Design loads indicated in this table have been adjusted for Allowable Stress Design.

- Allowable deflection limits are determined per Table 12.12-1 of ASCE 7-16. More stringent deflection criteria may be required for windows, doors, or other finish material.

- Design wall deflection is calculated assuming OSB wall sheathing installed in dry service conditions. If plywood sheathing is used, wall shear stiffness will be reduced, which may increase the design wall deflection. - Deflection values are determined using design strength level wind loads. Deflection limits are set to a value of L/240.

- Design torsional loads have been increased per the amplification of accidental torsion factor (Ax) with a value of 2.025

| Chord Size             | Design Tension Allowable Tension |             | Allowable Chord Compression | Design Plate Compression | Allowable Plate Compression |
|------------------------|----------------------------------|-------------|-----------------------------|--------------------------|-----------------------------|
| Double 2x6 Douglas Fir | 524.72 lbs (3%)                  | 19734.0 lbs | 17554.6 lbs                 | 524.72 lbs (5%)          | 10312.5 lbs                 |

- All wall framing analysis is determined assuming visual grade #2 lumber.

- Plate compression does not consider compression performance of floor sheathing. Additional analysis may be necessary to accomodate sheathing compression allowance. A 0.6 design adjustment has been taken to chord compression to accomodate this multi-ply assembly.

| Hold Down | Design Tension Tension Capacity I |            | Design Deflection | Allowable Deflection |
|-----------|-----------------------------------|------------|-------------------|----------------------|
| HD3B      | 524.72 lbs (17%)                  | 3130.0 lbs | 0.020 in (17%)    | 0.120 in             |

- Hold down tension loads have not been adjusted for the stabilizing moment induced by design dead load overtop this shear wall.

| Total Design Load | otal Design Load Anchor Bolt Size |        | Washer Size         | Nail Size  | Nail Spacing |
|-------------------|-----------------------------------|--------|---------------------|------------|--------------|
| 58.3 plf          | 5/8"                              | 306 in | Standard cut washer | 16d Common | 46 in        |

- Use either the anchor bolt or nailed connection options listed above, dependent upon what structural support is below this shear wall.



21 ft 0 in

This drawing is conceptual. Actual construction methods & dimensions may differ from that which is shown above.

| Stud Species | Panel Thickness | Nail Size | Edge Nail Spacing | Construction Type | Wall Capacity | Stud Size | Stud Spacing |
|--------------|-----------------|-----------|-------------------|-------------------|---------------|-----------|--------------|
| Douglas Fir  | 7/16"           | 8d        | 6"                | Single Panel      | 365 plf       | 2x6       | 16 in        |
|              |                 |           |                   |                   |               |           |              |

| Wall Aspect Ratio | Torsional Load | Diaphragm Shear | Total Design Load | Wall Deflection | Allowable Deflection |
|-------------------|----------------|-----------------|-------------------|-----------------|----------------------|
| 0.43 (12%)        | -505.9 lbs     | 3907.5 lbs      | 161.98 plf (44%)  | 0.205 in (45%)  | 0.450 in             |

- Design loads indicated in this table have been adjusted for Allowable Stress Design.

- Allowable deflection limits are determined per Table 12.12-1 of ASCE 7-16. More stringent deflection criteria may be required for windows, doors, or other finish material.

- Design wall deflection is calculated assuming OSB wall sheathing installed in dry service conditions. If plywood sheathing is used, wall shear stiffness will be reduced, which may increase the design wall deflection. - Deflection values are determined using design strength level wind loads. Deflection limits are set to a value of L/240.

- Design torsional loads have been increased per the amplification of accidental torsion factor (Ax) with a value of 2.025.

| Chord Size             | Design Tension   | Allowable Tension | Allowable Chord Compression | Design Plate Compression | Allowable Plate Compression |
|------------------------|------------------|-------------------|-----------------------------|--------------------------|-----------------------------|
| Double 2x6 Douglas Fir | 1457.83 lbs (8%) | 19734.0 lbs       | 17554.6 lbs                 | 1457.83 lbs (14%)        | 10312.5 lbs                 |

- All wall framing analysis is determined assuming visual grade #2 lumber.

- Plate compression does not consider compression performance of floor sheathing. Additional analysis may be necessary to accomodate sheathing compression allowance. A 0.6 design adjustment has been taken to chord compression to accomodate this multi-ply assembly.

| Hold Down Design Tension |                   | Tension Capacity | Design Deflection | Allowable Deflection |
|--------------------------|-------------------|------------------|-------------------|----------------------|
| HD3B                     | 1457.83 lbs (47%) | 3130.0 lbs       | 0.056 in (47%)    | 0.120 in             |

- Hold down tension loads have not been adjusted for the stabilizing moment induced by design dead load overtop this shear wall.

| Total Design Load | Anchor Bolt Size | Anchor Bolt Spacing | Washer Size         | Nail Size  | Nail Spacing |
|-------------------|------------------|---------------------|---------------------|------------|--------------|
| 162.0 plf         | 5/8"             | 110 in              | Standard cut washer | 16d Common | 16 in        |

- Use either the anchor bolt or nailed connection options listed above, dependent upon what structural support is below this shear wall.



32 ft 6 in

This drawing is conceptual. Actual construction methods & dimensions may differ from that which is shown above

| Stud Species | Panel Thickness | Nail Size | Edge Nail Spacing | Construction Type | Wall Capacity | Stud Size | Stud Spacing |
|--------------|-----------------|-----------|-------------------|-------------------|---------------|-----------|--------------|
| Douglas Fir  | 7/16"           | 8d        | 6"                | Single Panel      | 365 plf       | 2x6       | 16 in        |
|              |                 |           |                   |                   |               |           |              |

| Wall Aspect Ratio | Torsional Load | Diaphragm Shear | Total Design Load | Wall Deflection | Allowable Deflection |
|-------------------|----------------|-----------------|-------------------|-----------------|----------------------|
| 0.28 (8%)         | -1966.6 lbs    | 0.0 lbs         | -60.49 plf (17%)  | -0.071 in (16%) | 0.450 in             |

- Design loads indicated in this table have been adjusted for Allowable Stress Design.

- Allowable deflection limits are determined per Table 12.12-1 of ASCE 7-16. More stringent deflection criteria may be required for windows, doors, or other finish material.

- Design wall deflection is calculated assuming OSB wall sheathing installed in dry service conditions. If plywood sheathing is used, wall shear stiffness will be reduced, which may increase the design wall deflection. - Deflection values are determined using design strength level wind loads. Deflection limits are set to a value of L/240.

- Design torsional loads have been increased per the amplification of accidental torsion factor (Ax) with a value of 2.025.

| Chord Size             | Design Tension  | Allowable Tension | Allowable Chord Compression | Design Plate Compression | Allowable Plate Compression |
|------------------------|-----------------|-------------------|-----------------------------|--------------------------|-----------------------------|
| Double 2x6 Douglas Fir | 544.37 lbs (3%) | 19734.0 lbs       | 17554.6 lbs                 | 544.37 lbs (5%)          | 10312.5 lbs                 |

- All wall framing analysis is determined assuming visual grade #2 lumber.

- Plate compression does not consider compression performance of floor sheathing. Additional analysis may be necessary to accomodate sheathing compression allowance.

A 0.6 design adjustment has been taken to chord compression to accomodate this multi-ply assembly.

| Hold Down                                                                                                                        | Hold Down Design Tension Tension     |  | Design Deflection | Allowable Deflection |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|-------------------|----------------------|--|--|--|--|
| HD3B                                                                                                                             | HD3B 544.37 lbs (17%) 3130.0 lbs 0.0 |  | 0.021 in (17%)    | 0.120 in             |  |  |  |  |
| - Hold down tension loads have not been adjusted for the stabilizing moment induced by design dead load overtop this shear wall. |                                      |  |                   |                      |  |  |  |  |

Nail Size **Total Design Load Nail Spacing** Anchor Bolt Size Anchor Bolt Spacing Washer Size

| -60.5 plf | 5/8" | 295 in | Standard cut washer | 16d Common | 44 in |
|-----------|------|--------|---------------------|------------|-------|
|           |      |        |                     |            |       |

Use either the anchor bolt or nailed connection options listed above, dependent upon what structural support is below this shear wall.

## Shear Wall #4 Design - Depth Loading



This drawing is conceptual. Actual construction methods & dimensions may differ from that which is shown above.

| Wall Type | Wall Capacity | Min Allowable Wall Height | Max Allowable Wall Height | Wall Stud Size |
|-----------|---------------|---------------------------|---------------------------|----------------|
| WSWH 12x9 | 1095 plf      | 6 ft 2.5 in               | 9 ft                      | 2x6            |

- Install the panel flush to the outside face of the framing and add furring to the inside face as required to accommodate finish material.

| Torsional Load | Diaphragm Shear | Total Design Load | Wall Deflection | Allowable Deflection |
|----------------|-----------------|-------------------|-----------------|----------------------|
| 219.7 lbs      | 257.5 lbs       | 477.28 plf (44%)  | 0.000 in (0%)   | 0.450 in             |

- Design loads indicated in this table have been adjusted for Allowable Stress Design, and assumes minimum 2,500 psi concrete below.

- Allowable deflection limits are defined in Simpson Strong-Tie C-L-SW21. More stringent deflection criteria may be required for windows, doors, or other finish material.

- Deflection values are determined using design strength level wind loads. Deflection limits are set to a value of L/240.

- Design torsional loads have been increased per the amplification of accidental torsion factor (Ax) with a value of 2.025

| Hold Down           | Design Tension    | Tension Capacity | Bolt Diameter | Minimum Bolt Embedment |
|---------------------|-------------------|------------------|---------------|------------------------|
| WSWH-AB Anchor Bolt | 5154.60 lbs (34%) | 15145.0 lbs      | 1.0 in        | 15.5 in                |

- Hold down tension loads have not been adjusted for the stabilizing moment induced by design dead load overtop this shear wall.

- Additional concrete reinforcement may be required to achieve listed anchor design loads. Refer to Simpson Strong-Tie C-L-SW21 for additional information.

## Shear Wall #5 Design - Depth Loading



This drawing is conceptual. Actual construction methods & dimensions may differ from that which is shown above.

| Wall Type | Wall Capacity | Min Allowable Wall Height | Max Allowable Wall Height | Wall Stud Size |
|-----------|---------------|---------------------------|---------------------------|----------------|
| WSWH 12x9 | 1095 plf      | 6 ft 2.5 in               | 9 ft                      | 2x6            |

- Install the panel flush to the outside face of the framing and add furring to the inside face as required to accommodate finish material.

| Torsional Load | Diaphragm Shear | Total Design Load | Wall Deflection | Allowable Deflection |
|----------------|-----------------|-------------------|-----------------|----------------------|
| 219.7 lbs      | 257.5 lbs       | 477.28 plf (44%)  | 0.000 in (0%)   | 0.450 in             |

- Design loads indicated in this table have been adjusted for Allowable Stress Design, and assumes minimum 2,500 psi concrete below.

- Allowable deflection limits are defined in Simpson Strong-Tie C-L-SW21. More stringent deflection criteria may be required for windows, doors, or other finish material.

- Deflection values are determined using design strength level wind loads. Deflection limits are set to a value of L/240.

- Design torsional loads have been increased per the amplification of accidental torsion factor (Ax) with a value of 2.025.

| Hold Down           | Design Tension    | Tension Capacity | Bolt Diameter | Minimum Bolt Embedment |
|---------------------|-------------------|------------------|---------------|------------------------|
| WSWH-AB Anchor Bolt | 5154.60 lbs (34%) | 15145.0 lbs      | 1.0 in        | 15.5 in                |

- Hold down tension loads have not been adjusted for the stabilizing moment induced by design dead load overtop this shear wall.

- Additional concrete reinforcement may be required to achieve listed anchor design loads. Refer to Simpson Strong-Tie C-L-SW21 for additional information.

### 2015 SDPWS Rigid Diaphragm Design - Width Loading



Drawing Not To Scale

Shear Analysis is Not Considered in Both Directions Simultaneously

| Diaphragm Type     | Framing Species | Panel Thickness | Nail Size/Spacing | Load Case  | Construction Method | Diaphragm Capacity |
|--------------------|-----------------|-----------------|-------------------|------------|---------------------|--------------------|
| Standard Diaphragm | Douglas Fir     | 23/32"          | 10d at 6"         | Case 1 & 3 | Unblocked           | 300.0 plf          |

| Shear - Left Line | Shear - Right Line | Shear - Top Line | Shear - Bottom Line | Diaphragm Deflection | Aspect Ratio |
|-------------------|--------------------|------------------|---------------------|----------------------|--------------|
| 0.0 plf (0%)      | 0.0 plf (0%)       | 0.0 plf (0%)     | 0.0 plf (0%)        | 0.00 in @ 10.5 ft    | 1.67 (56%)   |

- Design loads indicated in this table have been adjusted for Allowable Stress Design, and include contributions from diaphragm shear and rigid torsional effects.

- Design diaphragm deflection is calculated assuming OSB sheathing installed in dry service conditions. If plywood sheathing is used, diaphragm shear stiffness will be reduced, which may Deflection values are determined using design strength level wind loads.

- Total design torsional distance from diaphragm center of rigidity, including amplification of accidental torsion and user defined torsion, is 0.22 ft.

| Splice Length                                                                                                                                                   | Design Moment | Splice Tension | Splice Capacity | Min. Nail Count | Nail Size                  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|-----------------|-----------------|----------------------------|--|--|
| 16.0 ft                                                                                                                                                         | 0.0 ft-lbs    | 0.0 lbs (0%)   | 225.6 lbs       | 1               | 16d Common (0.162" x 3.5") |  |  |
| - Nail count is determined at each edge of splice. The splice assembly will require twice the nail count as indicated above to tie each end of splice together. |               |                |                 |                 |                            |  |  |

| Diaphragm Moment | Moment Location    | Chord Tension | Allowable Tension | Chord Compression | Allowable Compression |
|------------------|--------------------|---------------|-------------------|-------------------|-----------------------|
| 0.0 ft-lbs       | 10.50 ft From Left | 0.0 lbs (0%)  | 9867.0 lbs        | 0.0 lbs (0%)      | 19274.1 lbs           |

### 2015 SDPWS Rigid Diaphragm Design - Width Loading



CASE 1 & CASE 3 -UNBLOCKED

LEVEL FRAMING

Software Version: 1.1.8.21

LEVEL FRAMING

CASE 1 & CASE 3 -

UNBLOCKED



33 ft 9 in

This drawing is conceptual. Actual construction methods & dimensions may differ from that which is shown above

| Stud Species | Panel Thickness | Nail Size | Edge Nail Spacing | Construction Type | Wall Capacity | Stud Size | Stud Spacing |
|--------------|-----------------|-----------|-------------------|-------------------|---------------|-----------|--------------|
| Douglas Fir  | 7/16"           | 8d        | 6"                | Single Panel      | 365 plf       | 2x6       | 16 in        |
|              |                 |           |                   |                   |               |           |              |

| Wall Aspect Ratio | Torsional Load | Diaphragm Shear | Total Design Load | Wall Deflection | Allowable Deflection |
|-------------------|----------------|-----------------|-------------------|-----------------|----------------------|
| 0.27 (8%)         | 0.0 lbs        | 0.0 lbs         | 0.00 plf (0%)     | 0.000 in (0%)   | 0.450 in             |

- Design loads indicated in this table have been adjusted for Allowable Stress Design.

- Allowable deflection limits are determined per Table 12.12-1 of ASCE 7-16. More stringent deflection criteria may be required for windows, doors, or other finish material.

- Design wall deflection is calculated assuming OSB wall sheathing installed in dry service conditions. If plywood sheathing is used, wall shear stiffness will be reduced, which may increase the design wall deflection. - Deflection values are determined using design strength level wind loads. Deflection limits are set to a value of L/240.

|                        | esign Tension | Allowable Tension | Allowable Chord Compression | Design Plate Compression | Allowable Plate Compression |
|------------------------|---------------|-------------------|-----------------------------|--------------------------|-----------------------------|
| Double 2x6 Douglas Fir | 0.00 lbs (0%) | 19734.0 lbs       | 17554.6 lbs                 | 0.00 lbs (0%)            | 10312.5 lbs                 |

- All wall framing analysis is determined assuming visual grade #2 lumber.

- Plate compression does not consider compression performance of floor sheathing. Additional analysis may be necessary to accomodate sheathing compression allowance. - A 0.6 design adjustment has been taken to chord compression to accomodate this multi-ply assembly.

| Hold Down                                                                                                                        | Design Tension | Tension Capacity | Design Deflection        | Allowable Deflection |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|--------------------------|----------------------|--|--|--|
| HD3B                                                                                                                             | 0.00 lbs (0%)  | 3130.0 lbs       | 3130.0 lbs 0.000 in (0%) |                      |  |  |  |
| - Hold down tension loads have not been adjusted for the stabilizing moment induced by design dead load overtop this shear wall. |                |                  |                          |                      |  |  |  |

| Total Design Load | Anchor Bolt Size | Anchor Bolt Spacing | Washer Size         | Nail Size  | Nail Spacing |
|-------------------|------------------|---------------------|---------------------|------------|--------------|
| 0.0 plf           | 5/8"             | 950878599 in        | Standard cut washer | 16d Common | 144165465 in |

- Use either the anchor bolt or nailed connection options listed above, dependent upon what structural support is below this shear wall.

- Nail spacing shows 16d common installed in a single row. This spacing does not account for additional load from walls at levels above, and may be increased if rim board and plate below can accommodate multiple rows of fasteners.

> Software Version: 1.1.8.21 Analysis Runtime: 08/27/2024 08:12:55 AM Page 11 / 15



21 ft 0 in

This drawing is conceptual. Actual construction methods & dimensions may differ from that which is shown above

| Stud Species | Panel Thickness | Nail Size | Edge Nail Spacing | Construction Type | Wall Capacity | Stud Size | Stud Spacing |
|--------------|-----------------|-----------|-------------------|-------------------|---------------|-----------|--------------|
| Douglas Fir  | 7/16"           | 8d        | 6"                | Single Panel      | 365 plf       | 2x6       | 16 in        |
|              |                 |           |                   |                   |               | •         |              |

| Wall Aspect Ratio | Torsional Load | Diaphragm Shear | Total Design Load | Wall Deflection | Allowable Deflection |
|-------------------|----------------|-----------------|-------------------|-----------------|----------------------|
| 0.43 (12%)        | 0.0 lbs        | 0.0 lbs         | 0.00 plf (0%)     | 0.000 in (0%)   | 0.450 in             |

- Design loads indicated in this table have been adjusted for Allowable Stress Design.

- Allowable deflection limits are determined per Table 12.12-1 of ASCE 7-16. More stringent deflection criteria may be required for windows, doors, or other finish material.

- Design wall deflection is calculated assuming OSB wall sheathing installed in dry service conditions. If plywood sheathing is used, wall shear stiffness will be reduced, which may increase the design wall deflection. - Deflection values are determined using design strength level wind loads. Deflection limits are set to a value of L/240.

| Chord Size             | Design Tension | Allowable Tension | Allowable Chord Compression | Design Plate Compression | Allowable Plate Compression |
|------------------------|----------------|-------------------|-----------------------------|--------------------------|-----------------------------|
| Double 2x6 Douglas Fir | 0.00 lbs (0%)  | 19734.0 lbs       | 17554.6 lbs                 | 0.00 lbs (0%)            | 10312.5 lbs                 |

- All wall framing analysis is determined assuming visual grade #2 lumber.

- Plate compression does not consider compression performance of floor sheathing. Additional analysis may be necessary to accomodate sheathing compression allowance. - A 0.6 design adjustment has been taken to chord compression to accomodate this multi-ply assembly.

| Hold Down                                                                                                                        | Design Tension | Tension Capacity | Design Deflection | Allowable Deflection |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|-------------------|----------------------|--|--|--|
| HD3B                                                                                                                             | 0.00 lbs (0%)  | 3130.0 lbs       | 0.000 in (0%)     | 0.120 in             |  |  |  |
| - Hold down tension loads have not been adjusted for the stabilizing moment induced by design dead load overtop this shear wall. |                |                  |                   |                      |  |  |  |

| Total Design Load | Anchor Bolt Size | Anchor Bolt Spacing | Washer Size         | Nail Size  | Nail Spacing   |
|-------------------|------------------|---------------------|---------------------|------------|----------------|
| 0.0 plf           | 5/8"             | 151523896082 in     | Standard cut washer | 16d Common | 22972977793 in |

- Use either the anchor bolt or nailed connection options listed above, dependent upon what structural support is below this shear wall.

- Nail spacing shows 16d common installed in a single row. This spacing does not account for additional load from walls at levels above, and may be increased if rim board and plate below can accommodate multiple rows of fasteners.

> Software Version: 1.1.8.21 Analysis Runtime: 08/27/2024 08:12:55 AM Page 12 / 15



32 ft 6 in

This drawing is conceptual. Actual construction methods & dimensions may differ from that which is shown above

| Stud Species | Panel Thickness | Nail Size | Edge Nail Spacing | Construction Type | Wall Capacity | Stud Size | Stud Spacing |
|--------------|-----------------|-----------|-------------------|-------------------|---------------|-----------|--------------|
| Douglas Fir  | 7/16"           | 8d        | 6"                | Single Panel      | 365 plf       | 2x6       | 16 in        |
|              |                 | •         |                   |                   |               |           |              |

| Wall Aspect Ratio | Torsional Load | Diaphragm Shear | Total Design Load | Wall Deflection | Allowable Deflection |
|-------------------|----------------|-----------------|-------------------|-----------------|----------------------|
| 0.28 (8%)         | 0.0 lbs        | 0.0 lbs         | 0.00 plf (0%)     | 0.000 in (0%)   | 0.450 in             |

- Design loads indicated in this table have been adjusted for Allowable Stress Design.

- Allowable deflection limits are determined per Table 12.12-1 of ASCE 7-16. More stringent deflection criteria may be required for windows, doors, or other finish material.

- Design wall deflection is calculated assuming OSB wall sheathing installed in dry service conditions. If plywood sheathing is used, wall shear stiffness will be reduced, which may increase the design wall deflection. - Deflection values are determined using design strength level wind loads. Deflection limits are set to a value of L/240.

|                        | esign Tension | Allowable Tension | Allowable Chord Compression | Design Plate Compression | Allowable Plate Compression |
|------------------------|---------------|-------------------|-----------------------------|--------------------------|-----------------------------|
| Double 2x6 Douglas Fir | 0.00 lbs (0%) | 19734.0 lbs       | 17554.6 lbs                 | 0.00 lbs (0%)            | 10312.5 lbs                 |

- All wall framing analysis is determined assuming visual grade #2 lumber.

- Plate compression does not consider compression performance of floor sheathing. Additional analysis may be necessary to accomodate sheathing compression allowance. - A 0.6 design adjustment has been taken to chord compression to accomodate this multi-ply assembly

Hold Down **Design Tension Tension Capacity Design Deflection** Allowable Deflection HD3B 0.00 lbs (0%) 3130.0 lbs 0.000 in (0%) 0.120 in - Hold down tension loads have not been adjusted for the stabilizing moment induced by design dead load overtop this shear wall.

| Total Design Load | Anchor Bolt Size | Anchor Bolt Spacing | Washer Size         | Nail Size  | Nail Spacing |
|-------------------|------------------|---------------------|---------------------|------------|--------------|
| 0.0 plf           | 5/8"             | 927240032 in        | Standard cut washer | 16d Common | 140581553 in |

- Use either the anchor bolt or nailed connection options listed above, dependent upon what structural support is below this shear wall.

### Shear Wall #4 Design - Width Loading



This drawing is conceptual. Actual construction methods & dimensions may differ from that which is shown above.

| Wall Type | Wall Capacity | Min Allowable Wall Height | Max Allowable Wall Height | Wall Stud Size |
|-----------|---------------|---------------------------|---------------------------|----------------|
| WSWH 12x9 | 1095 plf      | 6 ft 2.5 in               | 9 ft                      | 2x6            |

- Install the panel flush to the outside face of the framing and add furring to the inside face as required to accommodate finish material.

| Torsional Load | Diaphragm Shear | Total Design Load | Wall Deflection | Allowable Deflection |
|----------------|-----------------|-------------------|-----------------|----------------------|
| 0.0 lbs        | 0.0 lbs         | 0.00 plf (0%)     | 0.000 in (0%)   | 0.450 in             |

- Design loads indicated in this table have been adjusted for Allowable Stress Design, and assumes minimum 2,500 psi concrete below.

- Allowable deflection limits are defined in Simpson Strong-Tie C-L-SW21. More stringent deflection criteria may be required for windows, doors, or other finish material.

- Deflection values are determined using design strength level wind loads. Deflection limits are set to a value of L/240.

| Hold Down           | Design Tension | Tension Capacity | Bolt Diameter | Minimum Bolt Embedment |
|---------------------|----------------|------------------|---------------|------------------------|
| WSWH-AB Anchor Bolt | 0.00 lbs (0%)  | 15145.0 lbs      | 1.0 in        | 15.5 in                |

Hold down tension loads have not been adjusted for the stabilizing moment induced by design dead load overtop this shear wall.
Additional concrete reinforcement may be required to achieve listed anchor design loads. Refer to Simpson Strong-Tie C-L-SW21 for additional information.

### Shear Wall #5 Design - Width Loading



This drawing is conceptual. Actual construction methods & dimensions may differ from that which is shown above.

| Wall Type | Wall Capacity | Min Allowable Wall Height | Max Allowable Wall Height | Wall Stud Size |
|-----------|---------------|---------------------------|---------------------------|----------------|
| WSWH 12x9 | 1095 plf      | 6 ft 2.5 in               | 9 ft                      | 2x6            |

- Install the panel flush to the outside face of the framing and add furring to the inside face as required to accommodate finish material.

| Torsional Load | Diaphragm Shear | Total Design Load | Wall Deflection | Allowable Deflection |
|----------------|-----------------|-------------------|-----------------|----------------------|
| 0.0 lbs        | 0.0 lbs         | 0.00 plf (0%)     | 0.000 in (0%)   | 0.450 in             |

- Design loads indicated in this table have been adjusted for Allowable Stress Design, and assumes minimum 2,500 psi concrete below.

- Allowable deflection limits are defined in Simpson Strong-Tie C-L-SW21. More stringent deflection criteria may be required for windows, doors, or other finish material.

- Deflection values are determined using design strength level wind loads. Deflection limits are set to a value of L/240.

| Hold Down           | Design Tension | Tension Capacity | Bolt Diameter | Minimum Bolt Embedment |
|---------------------|----------------|------------------|---------------|------------------------|
| WSWH-AB Anchor Bolt | 0.00 lbs (0%)  | 15145.0 lbs      | 1.0 in        | 15.5 in                |

- Hold down tension loads have not been adjusted for the stabilizing moment induced by design dead load overtop this shear wall.

- Additional concrete reinforcement may be required to achieve listed anchor design loads. Refer to Simpson Strong-Tie C-L-SW21 for additional information.