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verse bending stresses equal to Poisson’s ratio times the longitudinal
bending stresses are present. For rectangular beams of moderate
width, Ashwell (Ref. 10) shows that the stiffness depends not only
upon the ratio of depth to width of the beam but also upon the radius of
curvature to which the beam is bent. For a rectangular beam of width
b and depth A bent to a radius of curvature p by a bending moment M,
these variables are related by the expression 1/p = M/KEI, where
I = bh?/12, and the following table of values for K is given for several
values of Poisson’s ratio and for the quantity b2/ph.

b?/ph
Value of v 0.25 1.00 4.00 16.0 50.0 200. 800.
0.1000 1.0000 1.0003 1.0033 1.0073 1.0085 1.0093 1.0097
0.2000 1.0001 1.0013 1.0135 1.0300 1.0349 1.0383 1.0400
0.3000 1.0002 1.0029 1.0311 1.0710 1.0826 1.0907 1.0948
0.3333 1.0002 1.0036 1.0387 1.0895 1.1042 1.1146 1.1198
0.4000 1.0003 1.0052 1.0569 1.1357 1.1584 1.1744 1.1825
0.5000 1.0005 1.0081 1.0923 1.2351 1.2755 1.3045 1.3189

In very short wide beams, such as the concrete slabs used as
highway-bridge flooring, the deflection and fiber-stress distribution
cannot be regarded as uniform across the width. In calculating the
strength of such a slab, it is convenient to make use of the concept of
effective width, 1.e., the width of a spanwise strip which, acting as a
beam with uniform extreme fiber stress equal to the maximum stress
in the slab, develops the same resisting moment as does the slab. The
effective width depends on the manner of support, manner of loading,
and ratio of breadth to span b/a. It has been determined by Holl (Ref.
22) for a number of assumed conditions, and the results are given in
the following table for a slab that is freely supported at each of two
opposite edges (Fig. 8.17). Two kinds of loading are considered, viz.
uniform load over the entire slab and load uniformly distributed over a
central circular area of radius c. The ratio of the effective width e to
the span a 1s given for each of a number of ratios of ¢ to slab thickness
h and each of a number of b/a values.

Values of e/a for
Loading b/a=1 b/a=1.2 b/a=1.6 b/a =2 b/a = o0
Uniform 0.960 1.145 1.519 1.900
Central, c =0 0.568 0.599 0.633 0.648 0.656
Central, ¢ = 0.125h 0.581 0.614 0.649 0.665 0.673
Central, ¢ = 0.250A 0.599 0.634 0.672 0.689 0.697
Central, ¢ = 0.500Ah 0.652 0.694 0.740 0.761 0.770
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Figure 8.17

For the same case (a slab that is supported at opposite edges and
loaded on a central circular area) Westergaard (Ref. 23) gives
e =0.58a+ 4c as an approximate expression for effective width.
Morris (Ref. 24) gives e = %ec + d as an approximate expression for
the effective width for midspan off-center loading, where e, is the
effective width for central loading and d is the distance from the load
to the nearer unsupported edge.

For a slab that is fixed at two opposite edges and uniformly loaded,
the stresses and deflections may be calculated with sufficient accuracy
by the ordinary beam formulas, replacing E by E/(1 — v?). For a slab
thus supported and loaded at the center, the maximum stresses occur
under the load, except for relatively large values of ¢, where they occur
at the midpoints of the fixed edges. The effective widths are approxi-
mately as given in the following table (values from the curves of Ref.
22). Here b/a and c have the same meaning as in the preceding table,
but it should be noted that values of e/b are given instead of e/a.

Values of e/b for
Max stress
Values of ¢ b/a=1 b/a =12 b/a=1.6 b/a=2.0 at
0 0.51 0.52 0.53 0.53 Load
0.01a 0.52 0.54 0.55 0.55 Load
0.03a 0.58 0.59 0.60 0.60 Load
0.10a 0.69 0.73 0.81 0.86 Fixed edges

Holl (Ref. 22) discusses the deflections of a wide beam with two
edges supported and the distribution of pressure under the supported
edges. The problem of determining the effective width in concrete
slabs and tests made for that purpose are discussed by Kelley (Ref. 25),
who also gives a brief bibliography on the subject.

The case of a very wide cantilever slab under a concentrated load is
discussed by MacGregor (Ref. 26), Holl (Ref. 27), Jaramillo (Ref. 47),
Wellauer and Seireg (Ref. 48), Little (Ref. 49), Small (Ref. 50), and
others. For the conditions represented in Fig. 8.18, a cantilever plate
of infinite length with a concentrated load, the bending stress ¢ at any
point can be expressed by ¢ = K ,,(6P/t?), and the deflection y at any
point by y = Ky(PaL2 /nD), where K, and K, are dimensionless coeffi-



