10/28/22, 9:36 AM Troubleshooting a transfer matrix program

Comparison of Rotosolve spreadsheet calculated results and analytically-
calculated results

L. Simple Beam Cases (calculation option 3)

Beam cases are easy to check since a simple analytical solution is readily available.

The cases in this section are called "simple" because they used the option 3 "simple" for the gyroscopic option, which
means that all disk effects are ignored.

The program provides choices for boundary conditions: "hinged", "clamped", "free", which have the same meanings as
in normal textbook beam calculations.

The beam was broken into 10 pieces and the lumped-MASS calculation option was set to false (continuos-mass
calculation).

In all these cases, the following beam parameters were used:
Length = 1 meter

Diameter = 0.1 meter

Density = 7750 kg/m”3 (more specifically, 7750.37312)
E=231E11 N/m"2 (more specifically, 230974359500)

The thee example simple beam cases were all generated with the inputs shown in the following file:
SimpleBeamDemo.xls

A. Free/Free beam,
Geometry:

Free I Drec

Results (analytical calculations shown in tab labeled "analytical calculation")
Boundary Conditions: freefree

Frequency Analytical Calculation Program Output
1 485.971 485.971
2 1,339.598 1,339.598
3 2,626.148 2,626.148

Mode shapes
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B. Clamped/Free beam (cantilevered)

Geometry as follows:
h Free

Results as follows:
Boundary Conditions: clampedfree

Frequency Analytical Calculation Program Output
1 76.372 76.372
2 478.612 478.612
3 1,340.128 1,340.128

Mode shapes as follows:

Mode shape plot (brg stiffness multiplier =1)
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C. Hinged-hinged (Simply-supported) beam

Geometry as follows:

Results as follows:

Troubleshooting a transfer matrix program

H

Boundary Conditions: hinged/hinged

Frequency Analytical Calculation Program Output
1 214.378 214.377
2 857.512 857.410
3 1,929.403 1,928.105

Mode shapes as follows:

Mode shape plot {brg stiffness multiplier=1)
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II. Adding concentrated mass along with distributed mass.

The attached file recreates the well-known scenario where a simply-supported beam with distributed beam mass m and
concentrated mass M in the center causes a resonant frequency based on an effective stiffness of 48EI/L"3 and an

effective mass of M + 0.5*m.

M _PLUS HalfimxIs

Again the program calculates the result as expected.

IIL. Introducing bearings

Most real-world rotors will be modeled as free-free boundary conditions. It is a very simple matter to recreate the
simply-supported results above by adding an additional 0-length section on the right, adding bearings to the left of the
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first and last rotor sections, and setting the bearing stiffness values very high, as was done in the following file:
SimplySupportedFromFreeFreeWithBearings.xls

E beanng=infinity

An examination of the critical speed map and the modeshapes in the above file confirms that the high bearing stiffness
causes the bearings to act like rigid supports,

The frequency results match the simply-supported results above, as expected:

Results
Frequency | Analytical Calculation Program Output
1 214.378 213.906
2 857.512 850.231
3 1,929.403 1,894.069

IV. Varying the bearing stiffness.

The model studied is the same as above, except that we have introduced a variable bearing stiffness as follows:

E_beanng=variable

The above system is solved in the attached file: DemoShaftOnBearings2.xls

The same geometry was also solved in "Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis" By

Dara Childs, page 123, which can be accessed here:

http://books.google.com/books?

id=vKPfBxgQQPoC&pg=PA 123&dq=%22These+modes+are+commonly+referred-+to+as+stick+modes%22&sig=KKcf-
SurzLoMB50PNymoxQIBzv8

A visual comparison of the critical speed maps generated by my spreadsheet with those provided by Childs shows good
agreement:
My spreadsheet Childs
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Looking toward the left of the critical speed map, we suspect that the first two modes increasing linearly on log-log plot
with a slope of 0.5 are rigid-rotor modes. We confirm this with a modeshape plot of these first two frequencies (bearing
multiplier 0.01):

Mode shape plot {brg stiffness multiplier =0.01)
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With the rigid rotor simplification, we can analytically verify the first two resonant frequencies at a bearing stiffness
multiplier of 0.01.

For the first rigid rotor mode at stiffness multiplier 0.01,

Kbrg =0.01 * 48*E*I/L"3 = 543338. N/m

M =pi * rho * L * (0d"2-id"2)/4 = 60.87 kg

F = sqrt(2*Kbrg/M) / (2*pi) = 21.27hz (matches program-calculated 21.15 very well).

For the second rigid rotor mode at stiffness multiplier of 0.01, we calculate the transverse or diametrical mass moment
of inertia of the shaft (assuming all mass concentrated on the centerline... consistent with calculation mode 3) as
follows:

Id = % 0 L7 Rowte® — Rimne™)

Id =5.072363139 kg*m"2
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The max kinetic energy is KE =0.5 #[d2 * (6')2
For small angles, 6 ~ sin(0) =y / (L/2) (wherey is transverse displacement at location of the bearing.
0'=y'/(L/72)
Substitute into KE equation:
KE = 0.5 *Id * (y')? /(L/2)?
We can preserve kinetic energy by rewriting the above as
KE = 0.5 * Meffective * (y')? = 0.5 * Meffective * v/2
where Meffective = 1d / (L/2)2 =20.28945255 kg

Thus from an energy standpoint, the rotary inertia Id acts like an effective mass Meffective=Id /(L/2)? at the location of
one of the bearings. Since the fundamental frequency can be calculated from energy considerations (KEmax=PEmax),
we can calculate the resonant frequency using this effective mass. (This approach of calculating an effective mass
based on energy considerations is described in Thompson's "Mechanical Vibrations" section 2.3 or Rao's "Mechanical
Vibrations" example 1.6). The relevant spring stiffness includes both bearings in parallel. The frequency is

f = sqrt(2*Kb/Meftective) /(2*pi) = 36.83283813 hz. This matches the program output 36.77409375 very well (2“’:l
mode for bearing multiplier of 0.01).

Looking toward the right side of the critical speed map toward stiffness multiplier of 100, we see a leveling of the first
and second modes. We suspect these reprsent the first and second flexible rotor modes.

For the first mode at bearing stiffness multiplier 100, The modeshape plot appears to confirms a flexible rotor/rigid
bearing mode.

Mode shape plot (brg stiffness multiplier=100)
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We can check the frequency for this mode (first mode at multiplier =100) using a simply-supported beam calculation,
which gives a frequency of 214.21 hz. This is reasonably close to the program-calculated resonant frequency of
213.6hz.

For the second mode at bearing stiffness multiplier 100, The modeshape plot appears to confirm a second flexible
rotor/rigid bearing mode.
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Mode shape for = 842.86 hz and Kbrg
multiplier = 100

transverse displacement (no

y=

% = axial distance {meters)

The theoretical modeshape of this second flexible rotor mode is sin(2n*x/L). Examining the area between x=0 and
x=L/2, we find it has the same modeshape as the first flexible-rotor/rigid-bearing modeshape of a beam of length L/2.
We can use this information to analytically confirm our frequency based on a simply supported beam of length L/2.
The analytical solution of the half-length simply-supported beam gives 856.8hz, while the program predicts the second
mode at bearing stiffness multiplier of 100 to be 842.4 hz. The small difference can be reconciled by noting that the
mode shape does not come completely to 0, so there is some flexibility still present in the bearings (even at bearing
stiffness multiplier of 100) which reduces the resonant frequency.

V. Adding tilting disk effects (like bump test scenario) — Calculation option 2

If we bump test a rotor with a large disk (especially overhung), the disk inertia causes the natural frequency to lower by
virtue of the fact that a moment must be exerted to tilt the disk back and forth. This effect is called "rotary inertia" in
beam theory, even though it is not the way we would normally use the word "rotary".

The "simply-supported" beam scenario above (1 meter beam, 0.1 m diameter, etc) was run again using option 2 to add
the effects of rotary inertia. The results are shown in this file SimplySupportedWithRotarylnertaVsRaoGood.xls

As shown in the "Analytical check" tab, Rao's "Mechanical Vibrations" provides a formula for calculating the natural
frequencies for this geometry (simply-supported uniform beam) including the effects of rotary inertia. The first three
resonant frequencies are shown below using simple analytical calc, adding rotary inertia, and comparing to program

output:
Analytical, no rotary inertia | Analytical, with rotary Program output (with rotary
(simple calculation) inertia inertia=option 2)
1 214.3781239 213.7199712 213.7202468
f2 857.5124957 847.1251912 847.1172571
3 1929.403115 1877.977813 1877.775498

The rotary inertia does not play a very important role in the first mode for this geometry, but increases in importance as
the higher order modeshapes introduce more nodes and more tilting. The program matches the analytical calculation
very well, even at the higher mode numbers. When I increased the number of elements from 10 to 200 while keeping
the total length the same, the program results matched even better (program computed f3=1877.977).

In general, we suspect rotary inertia will play in important role when there are large disks and lots of bending/tilting at
the location of the disks.

VL. Gryoscopic Effects — calculation option 1

While the disk-tilting effects of option 2 tend to lower critical speed, the gryoscopic effects tend to increase critical
speed. Option 1 includes both effects. This results in higher critical speeds than the simple mode (no disk effects) since
the increase caused by gyroscopic effects is larger than the decrease caused by the disk tilt effects.
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Rigid-rotor gyroscopically-stiffened whirl
"Formulas For Stress, Strain, And Structural Matrices", 2nd ed. by Walter D. Pilkey Table 17-1 gives the following
solution for the resonant frequencies of a rigid rotor with a center disk having significant polar and transverse inertia.

7. 3
Long rigid rotor, elastic W) =wWa = T
supports V M
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This was simulated in the following file RigidRotorGyroDemoWorks1.xls

The mode shapes are as follows:

Mode shape plot (brg stiffness multiplier =1)
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Pilkey's wcl corresponds to the first mode f1 at 11.77hz where the rigid rotor moves parallel to it's axis with a very
simple solution w=sqrt(Ktotal./M).

Pilkey's wc3 corresponds to f2 and represents the forward-rotating gryoscopically-stiffened mode whose 3-d modeshape
would resemble two cones with their points meeting at the center of the rotor. Note that for problems involving
gryoscopic stiffening, the whirl speed changes as a function of machine speed. Therefore the analytical solution for the
critical speed wc3 requires solving an implicit relationship to find the speed where the whirling frequency is equal to the
machine speed (as is typical of most problems that include gyroscopic stiffening).

The parameters used for the simulation are defined in the file. The analytical calculations are shown in the analytical
tab. The program results match the analytical predications reasonably well:

IAnalytical [Program
f1 11.7775 11.77269
f2 244.7908) 241.8507|

VII.  Overhung rotor solved/checked for all three calculation modes

This is intended to model the an overhung rotor described in the thread "Gyroscopic effect", at
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http://maintenanceforums.com/eve/forums/a/tpc/f/3751089011/m/9291040423/p/1

(except that the smaller disk and shaft stub on the left is omitted for simplicity of the analytical solution).

The rotosolve spreadsheet solution is here: OverhungRotor.xIs

The geometry looks as follows:

Rotor Geometry (rotor in horizontal position with onhy upper haf showing)
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A complete analytical solution of this geometry (mode 3= simple/point mass, mode 2 = bump test, and mode 1 =

critspd) is provided in the following file: FindAlphaR1a.pdf

st

\
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15 FL

Critical Speed (like cale option 1)

Bump test frequency (like calc option 2)

My rotosolve spreadsheet was run on the same model, and the results are compared below:

Analytical Solution (hz) Program output (hz)
Mode 1 = simple / point mass — | 47.2 47.8
neglects all disk effects
Mode 2 = bump test — includes ~35hz 36.12
disk effects but neglects gyro
Mode 3 = Critical speed — ~59.5 60.44
includes gryo and disk effects
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Troubleshooting a transfer matrix program

The mode shapes for the three calculation modes are as follows:

Calc Mode 1 (crit speed)

Cal

¢ Mode 2 (bump test)

Calc Mode 3 (simple)
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This geometry was checked with the Critspd program, and similar results were obtained.
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