SAVING WEIGHT WITH

SHRINK FITS

New charts and equations make it easier for

designers to optimize shrink fits, saving

materials and money.
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Shrink-fit assemblies are often
used when a prestress or residual
stress is desired in an assembly. Of-
ten, this is because a weak, low-cost
material can be used in a pres-
tressed condition to duplicate the
performance of a more expensive,
high-strength material. Shrink fits
also permit assembly weight reduc-
tion without reducing the joint’s
ability to resist applied loads. They
are commonly used in pressure ves-
sels, jigs, fixtures, and dies.

Many problems involved in ana-
lyzing shrink fits on thick cylinders
refer to Gadolin’s conditions,
which were derived for shrink fits
with two cylinders. These equa-
tions are based on a simple optimi-
zation procedure, without con-
straints on either the pressure at
the interference fit or the radial
thicknesses of the two cylinders.
Gadolin’s optimization method
gives solutions as easily used ex-
pressions. However, these equa-
tions are valid only if the allowable
stresses for the inner and outer cyl-
inders are the same. And allowable
stresses are generally the same only
when the cylinders are made of the
same materials. :

But shrink-fit assemblies of two
different materials are often pre-
ferred, to take advantage of differ-
ent material properties. For exam-
ple, a steel shell may be used for

Shrink fit

strength over a corrosion-resistant
copper or aluminum liner.

More recent studies of shrink fits
account for constraints on the ra-
dial thickness of the two cylinders
and the pressure at the interference
fit. However, solutions obtained by
modern optimization generally are
of little help to a designer seeking a
simple 'answer, unless the con-
straints exactly match those of a
previous study.

Now, new shrink-fit studies al-
low Gadolin’s conditions to be
modified so the equations can be
used even when the allowable
stresses for inner and outer cylin-
ders are not the same. Also, re-
cently developed design data sheets
allow quick and easy analysis of
shrink-fit problems.

Monobloc cylinder

To analyze the shrink-fit assem-
bly, it is best to look at its simplest
case. This is not actually a shrink
fit at all, but a single, or monobloc,

wever, itmay be less
 efficient. i

cylinder. A monobloc cylinder is
easier to produce than a shrink-fit
assembly, and may be used as an al-
ternative to a shrink fit when
weight constraints are not too re-
stricted. It is not recommended,
however, when designers want to
get the most out of their materials.
The outer layers of the cylinder are
not fully stressed, and they retain
some reserve strength.

Tangential and radial stresses at
radius r for a monobloc cylinder
with inner radius r, and outer ra-
dius r, subjected to internal pres-
sure pg are given by

2 "22_
poro|1+—
27 T2

Ot =

——————(r22 T ,-02) = (1a)

2 ]
Poro [1 i iy
gy = 2 (1b)
(r 22 =g 02)
where o, = tangential stress at ra-
dius r and o, radial stress at radius
r.

Tresca stress o7 is defined as the
algebraic difference between tan-
gential and radial stress at any ra-
diusr:
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SHRINKFITS

DATA SHEETS SIMPLIFY DESIGN
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If the Tresca stress at the inner
surface of the cylinder is below the
allowable stress, the design will be
safe, but the outer fibers of the cyl-
inder material will not be fully
stressed. Some reserve strength re-
mains at any radius other than r.

Theoretically, a designer can
take advantage of this reserve ca-
pacity by snug-fitting several cylin-
ders made of materials having pro-
gressively decreasing strength.
However, this is not practical be-
cause of the assembly costs in-
volved. Other alternatives are sim-
pler and more practical.

Two-cylinder shrink fit

Two cylinders can be used in-
stead of one. It is relatively easy to
compare the weight-reduction ad-
vantages of a shrink-fit assembly
with an alternative design using a
monobloc. In addition, designers
must use a shrink fit rather than a
monobloc if the inner pressure on
the cylinder is greater than half the
material’s yield strength.

Shrink fitting cylinder 2 around
cylinder 1 takes full advantage of
the reserve strength capacity at the
inner surface of cylinder 2. The in-
ner cylinder, 1, sustains com-
pressive stress before pressure is
applied on its inner surface. This
prestress produces a reserve
strength capacity at the inner sur-
face of cylinder 1.

When materials in both cylinders
have the same allowable stress, the
reserve strength at the inner sur-
face of cylinder 2 is used fully if the
ratio of inner and outer radii is the
same (Qo; = Q12) for the two cylin-
ders. Under these conditions,
which are known as Gadolin’s con-
ditions, the inner surface of cylin-
der 1 is not fully prestressed. It is
instead prestressed to the same ex-
tent as the reserve strength capac-
ity at the inner surface of cylinder
2.

Two materials

When cylinder materials have
different allowable stresses, the
problem is to determine the condi-
tions for optimum use of reserve

2)
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Modified Gadolin’s conditions have been used to generate six design data
sheets in terms of nondimensional relationships. The first plots the ratio ro/r,
against the ratio Pmax/o1a1. These curves have been plotted for five values of the
ratio of the allowable stresses of the two cylinder materials (8 = 0.5, 8 = 0.75, 8
= 1,8 = 1.25, and 8 = 1.5). An additional curve is included for analyzing a
monobloc cylinder.

Variation of ry/r, with respect to Pmax/c1an
for different values of 3
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Assume that the outer radius of the shrink-fit assembly is not more than five
times the inner radius (ro/rs is =0.2). If pmar/G1an > 0.45, the monobloc is not
used, because it makes the cylinder relatively large. Comparing the results for 8
= 1 with those for 8 = 0.75 shows that the highest value of pma</01an that can
be used with 8 = 1 is about 0.8. The highest value of pmax/c1a1 that can be used
with 8 = 0.75is about 0.7.

The next sheet plots the ratio ro/r; of the inner and outer radii of cylinder 1
against Pumax/o1an for different values of 8.
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The next sheet shows the percentage reductions in the cross-sectional area of
the shrink-fit as compared to a monobloc, for various values of prmax/o1an and 8.
Because a monobloc is useful only until pmax/cian = 0.45, these curves are plot-
ted only to that value. Area can be reduced by over 20% if pmax/U]gu = 0.4.

Percent reduction in area with respect
to monobloc
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The next sheet provides percentage reductions (or increases) in the cross-se-
ctional area with respect to a shrink fit with 8 = 1. If 8 < 1, the area increases;
if 8 > 1, it decreases. For example, if pmax/01an = 0.6, the area is reduced about
50%if B is increased to 1.5.
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strength capacity at the inner sur- aeall=vre=0:z—6rz=1_Qogz““1_Q122 (3b)

face of cylinder 2.

For shrink-fit cylinders, it is pos-
sible to find Tresca stresses at the
inner surfaces of the cylinders.
These may then be equated to the
corresponding allowable stresses,
O1all and 02all to give

2P, 2P,

Olall =0Ty =011 0r1 =—1—Q 3 Qo
02 1

(3a)

Equation 3b may be rewritten to
solve for p;:

P1=§|ia~zan 2o Qm]][l—leg] 4)

[1-e
Substituting for p; in equation
3a and simplifying gives an equa-
tion for p, in terms of the allowable

USING THE
SHEETS AND
EQUATIONS

Consider a thick cylinder that has to be
designed for a case where Pax/o1an = 0.4.
The inner radius = 100 mm. The modulus
of elasticity E; = 207 gigapascals (GPa).
The allowable stress for the inner cylinder
= 140 megapascals (MPa).

Because Dmax/oian = 0.40,:a monobloc
could be used instead of a shrink fit. The
information in the next two tables can be
easily obtained from the charts.

Finding the % reduction in area

6 To/To ro/r; % Reduction in
area with
respect to
monobloc

cylinder
Monobloc  0.45 — 0
0.50 0.50 0.59 23
0.75 0.55 0.69 42
1.00 0.60 0.77 56
1.25 0.65 0.85 66
1.50 0.69 0.92 73

Finding the radial interference

parameter
B % Reduction Bitt o AE
in area with O1all ToO1an
respect to the
case when
g=1

0.50 =78 0.019 0.250
0.75 = 0.038 0.400
1.00 0 0.050 0.520
1.25 22 0.052 0.620
1.50 39 0.041 0.700

To keep the radial interference parame-
ter <0.6, B must be =1. If the designer
wants to reduce the area by more than 60%
of the monobloc, 8 must be >1.

Toillustrate the use of the charts, assume
8 =1and ro = 100 mm. From Chart 1
choose ro/r. = 0.6, so r» = 100/0.6 = 167
mm. From Chart 2, ro/r; = 0.77,sor, =
100/0.77 = 130 mm. From Chart 6, A E,/
(Ulsu ro) 0. 52 soA =35 pm.

The equations may be used to design a
thick cylinder given the following data: ro
= 100 mm; Pmax = 85 MPa; Giall T 140
MPa; 05,1 = 105 MPa; E, = 207 GPa.

From this information, pPrma:/o1.n and 8
are calculated as: pmas/o1an = 85/140 =
0.607; and 8 = 105/140 = 0.75. Because
Dmax/61au > 0.45, a monobloc cannot be
considered.

The equation for r, gives its value as r, =
323 mm. Then r; = 193 mm, and the equa-
tion for p; gives the pressure on the outer
surface of cylinder 1 as 17.5 MPa. The ra-
dial interference, A, is found to be 63 um.

h =
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Tresca stress
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This graph gives the Tresca stress for a monobloc cylinder at any radius

r. Monobloc cylinders will have reserve strength capacity because the outer
layers of the cylinder are not fully stressed. The reserve strength is the
difference between the stress at radius r and the allowable stress.

stresses of the materials of the two
cylinders.

2 2
py=Tin [ { 1—’%} +6{1—’—2}:| ®)
2 r” ry

where 6 1s 0'23"/0'18)].

To determine the maximum
pressure that can be applied at the
inner surface of cylinder 1, equa-
tion 5 is partially differentiated
with respect to r; and equated to
zero to give

S 2 g2 —g ®)

6r1 ry ro~

or

_ [
ry VE )]

Substituting this expression for
r, in equation 5 gives the maximum
pressure that can be applied on the
inner surface of cylinder 1:
Pow i a4 -22YB ] ®)

O1all re

Often, the maximum pressure
applied on the inner surface of cyl-
inder 1 is given as one of the design
criteria, and the radial thickness of
cylinder 2 is found for a given inner
radius of cylinder 1. The equation
for finding the radius of cylinder 2
is written as
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Because r, cannot be negative,
the following inequality should be
satisfied in the equation:

2Pmax

Olall

(1+8)> (10)

The relationship of p; to o4 can
be derived using equations 3a, 5,
and 7:

Poywve-er[F2] av

0.2
Glall 1—Qos

The equation for the radial inter-
ference A is

AP \/:%’[%+%] (12)

where

_[VB+Qn_ 13
=[] G2
and

_[1+VBQe_

B [I—V_BQoz yl] (19

Equations 7, 8, and 12 are the
modified Gadolin’s conditions
when the allowable stresses for the
materials of the two cylinders are
different.

If the materials of the two cylin-
ders have the same modulus of
elasticity E; = E, and Poisson’s ra-
tio »; = v, equation 12 simplifies to

VB~ Qe

2Pmex
g ”°'2V79[1+ﬁ—2vBQ02

] as

This analysis uses the allowable
stresses of the two cylinder materi-
als instead of the respective
strengths. Therefore, the equations
can be used when both strengths
and factors of safety for the two

cylinders are different. ]
Nomenclature
E, = modulus of elasticity of the inner
cylinder material
E; = modulus of elasticity of the outer
cylinder material

n; = factor of safety for the inner cylinder
n» = factor of safety for the outer cylinder
Po = pressure on the inner surface of the
inner cylinder
Pmax = maximum pressure that can be ap-
plied on the inner surface of the in-
ner cylinder
p1 = pressure on the outer surface of the
inner cylinder
ro = inner radius of the inner cylinder
ry = inner radius of the outer cylinder
r» = outer radius of the outer cylinder

Qou = "o/l‘l

Qoz =T /r 2
Ql'z )] / T2
S, = strength of the material of the inner
cylinder
S, = strength of the material of the outer
cylinder
B = co/oran
A = radial interference between the two
cylinders
v; = Poisson’s ratio of the inner cylinder
material
vo = Poisson’s ratio of the outer cylinder
material
o = radial stress at the inner surface of
the inner cylinder
or» = radial stress at the inner surface of
the outer cylinder
o, = tangential stress at the inner surface
of the inner cylinder
g2 = tangential stress at the inner surface
of the outer cylinder

o1 = Tresca stress at the inner surface of
the inner cylinder (6,1 — 6,1)

oo = Tresca stress at the inner surface of
the outer cylinder (o;; — 0,1)

o1an = allowable stress for the material of
the inner cylinder (Sy/n1)

gsan = allowable stress for the material of
the outer cylinder (Sa/n2)

g1, = prestress on the inner surface of the
inner cylinder




