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NUMERICAL PROCEDURES iN THE ANALYSIS OF | NDETERMINATE STRUCTURES

The following is presented 1o i ltustrate +he use of Newmark's numerical
nrocedures in the analysis of indeterminate structures. The source of material
for this portion of the report is the notes obtained from lectures by Dr. R.N. McManus.

Numer cal procedures are a system of bookkeeping and an application of
basic assumptions and baslic principles to obtain the solutlon to complex problems
in engineering, Numerical procedures are used to best advantage in the solution
of difficult problems which require a great deal of time for an exact solution.
in the use of numerlical procedures, the computations can be arrsnged in tabular
form and after this has been done correctly, the solution |s readlly obtained.

In this way no time is wasted. The results are always almost jdentical with

+hose obtained from highly theoretical solutions and the amount of variation

is negligible. Thus, These procedures can bhe termed short cut methods to the
solution.

I+ is assumed that the reader is thoroughly scquainted with the Theory
studied in U. of A, Civil Engineering courses C.E. I}, C.E. 60 and C,E. 6l.

. Short-cut Methods

(1-1) Slqn Convention ~ to begin with, as in all methods studied so far, con-
vention 1s necessaery. The sign conventlon To be used from here on will
be ms follows: LOADS: positive losds act vertically upward (i.e. 4 (+ve))

—_ SHEARS: positive shears occur when The lett part of the beam,
ete. tend to move upward with respect to the right pert.
That is, for positive shear, the ¢
section must tend to arrange itself thus - { |

Also, there Is a net clockwise couple set up about an axis in the section in
question due to the external forces acting.

MOMENT: positive bending
moment occurs when the beam bends &G that

i+ is concave upward. The shape of the (KZ;::::‘ _i:::::).)
deformed beam is as shown here for 4ve -

bending moment.

That is, for beams in pure bending, 7The end moment at the left end is clockwise in
direction and that at the right end is counterclockwise.

{1-2) r
Suppose we have a simple beam
(Fig. I-1) loaded as shown. The re-
actions are: R = R = P/2. The

resulting shear force diagram can now

be drawn. See Fig. i=1{a),

From the principle that the change in

8M between 2 sections is equal to the
~ area of the SF diag. between the

sections, the BM diag. can be drawn.

(Fig¢ I"‘(b))n

o




Now suppose that an errcr had been made
in computing the reactions and Thot
they wers found to be R = 3/8 P

Ro = 5/8 P

for the beam shown. The resulting

SF diag and BM diag are shown in

parts (¢} & (d} of Fig. !-l.

Since this is a simply supported beam,
the bending moment at elther end mus?

be equal to zero. Therefore the bend-
ing moment, at the left end is correct
and that at the right end is In error

by _ 2B4.
16

Now the error made in computing the
reactions produced a constant error

in shear force and since the bending
moment varies |inearly as the i{ength
of the shear force diagram, a "linear"
change is produced in the error in
bending moment.
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Now, to produce the correct BM dlag suppose we rotate the BM dlag
(Fig, I=1(d}) counter-clockwise so that the BM is equal to zero at the right end

of the beam. Therefore,

moment varying over the entire length from zero at the left end to
+2Pf at the right end produces a

right end, That is, a change of

|6

in & sense we have added a |linearly varying correction

+ 2E3£ at the
| &

change of + _L_Pﬁ, at the center of the beam. A change of + P£ in BM gives a
|6

16
change of + P.J{ / { =
|6 2

force in Fig. I-iic) gives the correct value of shear force.

Example (1}

We have a simple beam
divided into & equal panels
and loaded with a series of

25
I

4

] - /éi&!

+ P/8 in the shear force, which, when applied to the shear

5

loads. [t is required to
compute the shears and

bending momenis at the

AL

KPS

pane! points. The fund-

amental procedure is to
start out with a boock-

frk x4~

keeping system. The re-

D £ 4%

actions are not required

for this process.

Let

RL E—

Ry
Then shear
point |

shear at pane! point 5 = x5,
Assume some value for Xy oo
Then the shear force across
panel 1-2 will be equal to
the value assumed for xy .
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—~ let Xy = +6 kips. Then shear force across panel -2 is 406 kips., At parel point Z,
the shear force charges suddenly TO +2K and since there are no further lcads
coming onto panel 2~3, the shear force remadins constant across that panel.
Similarly the shear force across panels 3~4 und 4-5 is ~ | Ok,

The vertical loads are apranged in row P In Fig. 1~2. The shears are
in the row marked V.

Now, since change In BM between two sections equals the area of the 5F

diag between the two sections, we can compute the bending moments M' at the panel
point on the basis of our previously assumed value tor shear force. Since the panels

are all of equa! length, the factor 4 ft kips can be removed and placed in the
right most column. See Fig. |-2.

Apply a linear correction moment M. , and the sum of M' and M, gives the
final correct moment M; af each panel point, Then the correct shear force is

determined.
Finally RL = +9K and Rey = +7k and ZEZV = 0,

Example (2)

Suppose we have a cantilever

beam loaded as shown in

Fig. 1=3, 11t is required

to compute the shears and _ _ _

bending moments across each -P P P ra g ¥ Ly
e pane . - ¥ o -5 1 -3 /3 L"'.G' - 9 é__"{as

For a cantilever beam no | - - - -3 - « %

correction moments are MG b4 2 aj L&

required because the shear Ve /> Q ~do  F2 -G ~I3L /72 f¥- kips

is known at the free end of

the beam P

e F“'Jr /__3

(=3} Equivalent Concentralichs.

We have shown how the fundamsntal procedure has been applied to simple
beams with a single concentrated force. We will now proceed to show the
fundamental procedures to be used when dealing with uniform loads.  To do tio.
it is necessary to introduce the idea of eguivalent concentrations. We will
proceed to show that with the use of equivalent concentrations; the BM curve
obtained is the correct one and agrees with the original whereas the OF curve
usually is not correct and that a linear correction can be applied %o give the

correct SF curve,
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To begir with, 1ot e consider a simple uniformiy loadia bean ol span
IEﬁgTh ,Z and Ef}r'"h'iif‘if'j ’i.?ff'_'ilji,’,'ti 0 w#’fﬁ A% Shown in Figv jmd(ﬂ\g £y SUPEOSe 4 bst
we load the original bsam with {Two
simple beams of span £/2 loaded A "y 8
uniformly to w#&/ft as in Fig.l-4{bj, @) «E;____ S N
in effect, we have in this case a ;
concentrated load of w.d at each 1| Wl

4 2 w AN EF e

end of the original beam anr tWo > [MWMI[A
- 4. o .
4

w L.
2

concentrated joads of w4  or one 4
L |

4 . /2 L/2
concentrated toad of w f  at the (b) R %d‘r‘ 4 L2 ’“Tl?n""%
Z

coenter. The reactions still remain

yi at each end., Piliotting the SF S.F |Dr1AG.

2 Y

dizgram, we see that we do not get ij

the correct shear force curve.

Fig., I=4{c). To obtain the cor- -y

rect shear, a correction of wl (C’) ©
4

+% ﬂ:?l V.s?/yi sf’ﬂ ,5‘,4.-.!-#;—'
(:'H‘#J:.'-l'( 5";’

o E

~ e

must be applied at the point of j’f’ """"‘“‘4 y +
action of the effective concen- ar  CFuva Covreet Shews o ,
tration. That is, adding +w d /4 ""’"’""’"""Z' . it 'fiﬁs
to the shear at A gives the
correct value of shear =
wh/a v+ wdis =whj2, Similarly AV | DIAG.
a correction of -wd /4 @ the

right end of the first trolley

glves zero for the shear at the

centerline which is the correct

value. Applying a correction

swld /4 to the chear at the left (;i) -
end of the second itrotley also : |
gives zero for the <hear at the Brm corge o |
conteriine. - A1 the right el o e goivalent cencenfrations
the bEeﬂrﬁj a coreect ron of *'w'.l;’fk
applied to the right end of the Fig. /- 4

second trotliey gives a value +waf££

focr the shear at that section. |1

can be shown that the curve obtained In Fig. i-4(c) glves the correct value for
the shear at the point A£/4, 4/2 and 5 4/4 of the span of the original beam.

orrec 4

Vo Lidi Evrve

Now To ohtain the correct value of BM at the centerline cither
SF curve may be used:. That is the BM at the £ = wf /4 x _,l /2 = wih 28 which
is the correct value of BM at the &, |

To obtain a closer approximation to the correct BM curve, the bean can
be made to support as many trolleys as desired. For example, if we use four
trolleys we wil! have - (Fig., 1-5).

The curve obtained for the BM curve approaches a parabola. Taking
the origin at the curve at the vertex and going a distance of |/2 the way 1o
the end of the beam the decrease s (17254 = 1 /4 which corresponds to the point
required. That is, we always obtain the correct value for BM at the point of
the concentration.
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(I"'4) " . |
The following deals with effective concentrations dus to trapezoidal

loadings. Suppose we have the following -

h = increment of span

L A% Ak L AE AR

3ah + Eh - ah

"2’(2&+b) '%(2b+&)
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ol Always, the reactlon for a trapezoldal loading is given by multipiying
the sum of twice the value of The ordlnate at the polnt and the value of the
ordinate at the othar end of the loading curve by one~sixth the height. Combining
the ordinates of 2 'adjacent increments, we have as shown below -

| f wt:have'a'varyulrro UIéf'Iﬁa'ihgia sgecond degree parabola 28 approx-
Imated by Simpson‘s Rule, will be used {n Increments to cbtalin +ha approximate
loading curve as shown In Fig. [=8,

and |+ we know the vslues of the ordinates
at each of the points, an expression for ,wf*\\#,.___/’“\\,g’“

~. the equlvalent concentratlon can be

dorilved., These expressions are always A B8
as qlven In Fig. -9, F’ig- |~ 8
/

E"g /= S
We are not always too concerned with the end concentrations, That is, ws
can assume a value for shear in the end panel and apply 8 linear correction.

(1-6) Deflections
(1) Goometry of small angles.
Here we apply a limitation to the angle change that can occur,

o Therefore we are always within the allowable error., That 1s;, we deal
with angle& for which correct to Three significant figures the

folltowing holds -




joange

That is, we will deal with angles generallily less than 5%, Theratore,
411 movements due to rotation wili be treated as being perpendicutar 1O
the radius that is rotated, Suppose we have a rigid body as shown in
Fig. |-10. Suppose we
rotate it through the

angie & o ?
A =Ra a2
R o _
A, =R acos p D - -
Ay = (R cos B) x © *
A X 55

Theretore |f we know the point
of rotation, the movement or ‘_‘_______R coﬁ’ﬁ - H
daflection is equal to the
radius to point perpendicular
to direction of movement
multiplied by the angle changc. The only assumption to be used 1w
above is that the angle change is small.

From this as a basis, the gsometry of lines will he davolope!

(ii) Geometry of lines;
Suppose we have a A ﬂi
straight line AB | l
divided infto seg- "N
ments as Shown
and that at each
point there is o |
correspondin a2 =)
angle ahangegas o] 23 L
the line deflects '
+o the positions 3R N
A, Ct, DY, [F, B. R\afzéjgzg

¢ . 6o %

e

Then the depart-
ure ot the 'ing at .
x 1% equal to the L
deflection of the - | “ S
| ine from its orig- |
inal position. i.€. Fig /]

the departure =

L‘l Q- (Ly Qp + L2 ‘35}

Also Lya; = statical moment " of @) about Xa Similariy Lyay = statical
moment of anp about x and Lzliy = statical moment of a3 about x. The

moment arm is measured perpendicularto the direction of movement .

That is, the departure is equal to the algebralc sunm of B ctoflcon
moments of ail the angle changes to the left of fhe secbion atonl an
“awié in the section. This is analogous 10 the shear forae ard bending
moment at the section. The shear and BM can be converted by use Of
+he elastic properties to give the slope and deflection reupcot ivary

of a loaded beam.
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(I=7) Angie Changes. 3% P
Consider a simple beam loaded as
shown in Figure |-12, When load is ‘-
applied to a beam the beam bends and NA-— - ~, _ _ N
doflects. That is sections rotate "‘—'lz ﬁr
about an axis through the N.A., and - i -

+he element of length ds remains - ‘?il !
unchanged at the neutral axis whereas .

+he fibre In the compression zone
shortens and that In the tension
zone lengthens, As a result there
are produced between the sectlions, Fia, (-12
angle changes due Yo This shortening on the one side and the Fang'l'hanlng
on the other. We can assume that each

saction rotates through haif the

angle change which is smail tTo begin

with,

Now the flbre strass, f = My/|

where f = fibre stress,

M = moment at the section,

y = distence from the NA to the

¢ibre tn question and

| = moment of inertia of the

section about an axls through the NA.

The unit strain, ¢ = t/E
where E » mod. of elasticity.

Therefore the total strain over the
length of the element ds = @ ds

= f,E & dE 3
1+ we deal with small angies, dax = 2 x gx = @ dg + That is, we are using the
basic assumption that o = tan & = gds 2 Y

Y

measured in angular measure in radians.

Also, do = f/Ey. ds which in turn is equal to My/Ely . ds = M/El. ds.
1+ wa let ds = one inch, we obtain da = M/El radians/inch.




r—_—

Due to
symmatry,

P A& V are
known at

t. There~
fore, begin
P& V rows
from tThe
center

4 (5e4f1¢)

{1-8) Procedures for Finding Deflections.

(i) Simple beam = concentrated |oad IF)

Sign Convention

. Angle change obtained from positive
moment is considered negative.

2. Defliection downward

considered positive.

{ 5

3. Downward slope is positive

4, Downward load is negative.

5. Standard moment and shear
conventions are used.

* Procedure

-,
[

I~ End reactions not considered.
¥ = Due to symmetry, correct shear is known.

M = Correct moment.

@ - Angle change at pane! points in relation To
(see sign convention),

= M/EI
- Beam is broken into eguivalent concentrations.
equivaltent angle change concentration.
s 1!.“.*;_';'5.*-' e
- Dot lesfion of

~Z e Q21
\ ]

|u"1r!~‘f.*5 :
Boosant o

3

Trapezaidal

IETISTRTE i

loading
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p % I SR P

vi+%& | ‘& |-% |2 p -

K 2 I 1 4/ o £*
S T S T . - A

ok K - ¢ -|ro - @ 7 é?ﬁ;;;,fﬁk/

(i) ‘I ,S 3 =/ %ff‘? j{‘f/
_ g 11:1* vy H‘L A1Y M F’;éf:;/z _

/:?:?, /- 73
|

Let & be the
is used,
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pags i

Deflection at k&

Y, = 16 Ph3/12E1 = 4/3 Ph-/E] but L = 4h

therefore vy, = PLS/4BE{ which |8 the correct vaiue,

Reflection ot 1/4 point
Visq = 11 Ph3/12E) w || PLO/768 El

(t1) ﬂmmmuw - Use of equivalent concentrations

bt My |
'Eiffimmm“_mﬂmwwﬂm;fLsa_:L_

éﬁ’j e #:im;

a‘ff‘{{f

A

7é - /275 ¢ Mﬁgyi

Procedure

P - Load at any point -~ wi/®

P - Equivalent concentration = wh = at any interior panel point.
¥ - Shear in each pane! obtained from values of P .

M = Moment obtained from shear values.
1ﬁﬁlm1&ﬂg¢n=eﬁungh - M/E| —~*<:aurwwtithk1:
A - Equivalent angle change concentration

Using parabolic load curve Hn_
5> (@ + 10b + ¢}

# ~ Slope of panel.
y - Deflection at panel points.




(i1i) Simple Beam ~ Uniform joad - E! changed due to stiffening
plate aiong 2 center panels.

ey a—
g /4 | = L
- o
| 2 A&/
Mo s b a2
A Mg v24|-2 2R
’, —77 ""-"'12__—- Zg:f' —/FY
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f/&"/‘-f#i' fmw
2 do M Sre

wry

S amwe IF%

iz Fig /-14

b !?1/4/

wh*

Y
“w b3

>3 &/

wh"®
vt ¥ dd

s

A-.’llﬂ fm

AT

Procedure is same as for previous beam except that two separate
sngle change concentrations sre needed due to discontinuity of

M/Ei curve.

Effoct of stiffening plate

on M/EI

diagram.

N

{iv) Simple beam - Unjform locad - variable EI

{see following page)

Resultant M/El disgram
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Procedure

P - Load at any panel polnt = w#/! {end reactions not redquired).

P - Equivalent concentration = wh at any panel point.
V Shear in each panel cobtained from P vatues. Load symnetrica!
about & , therefore, begin to compute values of shear trom L
and proceed each way from t as before.
M - Moment ohtained from shear values by the method that the change
in BM tetween two sections on a beam equals the area under
SF curve hetween the two sections,
- Angle change at any panel point = M/E! at the pane!l point,
- Equivalent angle change concentration using the equivailent
concentration parabolic load curve, i.e. equivalent con=
centration = h/12 (a + 10b + ¢).
# - Siope of panel {analogous To shear). Assume vaiue of shear in first
panel, compute shears in remaining panels and compute deflection.
kKnow bovndary conditions. Therefore apply linear correction to de-

QIR

y = Detlection at panel points {analogous to BM). flection.
Yy = deflections at panel points based on assumed
value of shear in first panel.
Yo = tinear correction fTo Jdeflections at panel pointe,

v; = true values of deflections at panel points.



ivy Simple _besm - with overhanging ends = series of concentrated loads
" - E{ = constant.
30

S'K.

E1T Conslaws

zﬁqiy, (~/ &

Frocadure
P - Load on beam at point of foad - reactions not considered.
Vi - Shaar force based on assumed value of shear in first interior panel.

MI - MamenT based oON Vi
M « Correction moment. {Knocw moments at the reactions.)

Mg - True value of moments at panel points.
V.. - Correct shear based on correct moments.

o - Equivalent angle change concentration by use of
trapezoidal load curve h (a 4+ 4b + ¢}

# =~ Slope of pane! (analogous to shear) based on assumed value
of shear in left exterior panel.

Y| - Deflection at panel polints based on assumed value of shear
in left exterlor panel. (Analogous to bending moment.)

Ye = Correction to deflection curve; deflections at reactions
are zero.

y_ =~ Correct value of defliection at panel points.
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2, Maxweil's Theorem of Reciproca | Deformation
(2~1)

, Take two points A and B on a beam. Maxwell's Theorem of Reciprocal
Neformations states that the deflection at point B In the direction D caused
by force | acting at point A in the direction of C is identical with the
deflection which force | acting at point B in the dlirectlion D would cause aft
point A In the direction C. The proof of this is as follows,

Latf M = BM due to | acting at A in direction C
m = BM due 1o unit joad acting at B in direction D
M; = BM due to | acting et B in direction D
m = BM due +o unlt load acting at A in direction C.

The deflection at B in dlrection D is

- Ma dx
ae . | Mo

Mlml adx

The deflection at A in direction C is
AR - E |

L
m is the BM due to a unit load acting at B in the direction C. Therefore the
BM, MI due to a force | acting a2t B in the direction C is force | Times m .

Therefore MI = {Force |)m

By a similar argument M = (Force !3mi

Then
mim{Force |) dx
AB = (MmdX . S WA i
L.E ] £ 1
. L
and Mm, dx mm{Force 1) dx
AR !_I L I
. , €1 L £ |
As can be seen AA = AB which proves Maxwellts Reciprocal Deflection Theorer,
12-23 Use of Maxwell's Reciprocal Theorem to find | jence Lines for
a*i' d 2] m. *E .

Consider a two=span continuous beam.

1 &
! 2.
. SEEE 5 ~ oW E! = constant
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The influence line for the reaction at 2 is defined as ths reaction
at 2 duc to a load acting at any point on the span length. The foliowing
procedure is used in determining the influence line for The reaction at 2 using

Maxwail's Reciprocal Theorem, | BB
(1) Remove the reaction "__ll____.g_____a
AZ#&I = deflection at 2 due 10 ¢

ynit foad at [ 4

(11) Place the unit load at 2.

A,y = deflection at 2 due to 8 unit load at 2.
4

(111) Remove unit load and replace by ‘ — —
reaction due to unit load. '
ll-?

RA ,_, s the deflection at 2
due to the reaction R,

From Maxwel!l's Reciprocal Theorem

Ay = R4,

and L,
—~ R w A which gives ordinates for the Influence line.
| 2w
Exapole |
Method:

l. Place a unit load at 3.

2. Find deflections at all points
due to this unit load at 3.

3. From Maxweli'’s Recliprocal
Theorem & 5 = A, |,

that is, a daflection at |

due to & unit toad at 3 is
- - gqual to o deflection at 5

due to a unlt (oad at |,

4, The ordinates for the In-
fiuence lino are obtained by
dividing the deflections at
various points by The
deflection at 3.
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—  Example Z

Find the influence line for the A | 2 c 4 2

interior reaction. Y e - -
El = constant ? & i!"' E' gt)éi/ ’

The solution is ocbtained by removing reaction C and replacing It with a unlt load.
The deflection at all polnts Is determined then divided by the deflection at C 1o

give the ordinetes of the influence [ine.

C | 44' 5 EI‘ C'ﬂwii‘f‘ln’“

L < s we Fro. 1
A B cCouShomr

£ _ , _ 2
& 410 /2o # 30 %E 10 x I5g

[/
L
(;?’FEL ¥ _+4f @ 77 Ll A __4:’ T TEFEr
% 7 2
i
Ec > d 72 P Drclin 3 fes
¢ CENS {:91945' | G“q??-g- o
0.9 £
. . O eAS
IL ‘(:ﬂ'r"* E.:;,
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ample

Inf luence |ine for right-hand reaction of the same beam.

Remove right hand reactlon and replace it with a unit load, Find the
def lactions at all points and divide by the deflection at B to obtain the

ordinastes for the Influence !ine,




..-'-"-l-.,

page
Example 4

Influence line for right-hand reaction with cover plates.

The reaction is removed and replaced with a unit load. The procedure
s the same as before,

782 Dt i

/

/""é' J;"" ?5

- 0. |84 -op 208

i 8
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T (2-3) Muller-Breslau's Principle
This method can be used when the structure is indeterminate to more than
one degree. The method is as fcllowss
. Give the point a unit dispiacsment and work out the moments due o
difterential movenants holdling the jolnts solid,
2. Release the joints and talance by moment distribution.
3. ¢ can be worked out knowing the wtiffnesses.
3. Critical Loads on Colutmng
(3=1) The buckling of columns &8s Wei: as the buek] ing of beams can be freatad
by numerical procedures, Huck!ing of columns ¢ah he detined In saveral
ways. Here the buckling of & column wili bo defined in terms of the critical
load as that compression load which whey appiled to & compressivn ienber, the
member wlll Just support that load and remaln [n stable equilibriam. On  the
addition of a small increment of lcad, however, the systom wi i1 taii.
i+ a column 18 put In a defle~tey form by means of a conpresslve force,
- the doflected form wiil be a simple contiguration., Therefore, If wo azsume a
-~ _ configuration and check to see (f the confliguration Is The same tor the
detlected form, and |f the two conf.gurations are the seme, we have the correct
answer. The followlng example wiil !iiustrate the use of the procedure.
Examplie
- - 2 3 dﬁwa;fﬁﬁ#{? - y—
A . | R, Sm—
4 @ h |z L
AN - ¢ 2 o P ¥ &
Mo ¢ ALl P ® __*Fa
~a
& JP | .73 -3 =/ : -
~— & 4
A -JL- -hE 77 h_-ﬁéls' 7F 5*555 Prn
. fﬁ?Sﬁu‘rﬁﬁ JD& 4.
Fa b
? o, 7 20 285 ‘_leo ¢ rz Ffi—'{é-__
Procedure
. Assume confliguration by assuming vaiues of "A "

. Ze Bending moment equals P xA .
3. Values of a are found by dividing the bending moment at cach section hy EI
4. Values of & are found by the use of equivalent conceatrations and
Simpson’s Rule as before.
5. The values of @ are founa by mssuming a value for the slope In the first panel
and on this basis the remainder are calculated as betore.
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6. The values of the deflection "y" based on the assumed slope in the
first panel are determined.

We now have both the assumed and the resultant configurations. It is
now necessary 1o check one against the other. Suppose we check the conditions
at the first interior panel polnt. Then we have - '

|KB=W'and h-.—h—

El x |2 4
therefore )
P = igmﬁnEJmﬁle. m .ELEWE£
L2 x 20 L2

Checking conditions at the centerline, we have

P o= .lhﬁmﬁngmEjmﬁmlg n.Lgﬁémﬁi
28.5 x L4 K

where the assumed vaive of & Is 1.5 x a .

'+ 15 now necessary to repeat the above procedure for o closer approx-
imation of "A " . The correct value of & p may be found by equating:

Ap x 12 El x 16 9.6 E

P e meee e QP GOYTECT £3t uﬁgﬂﬁi = |43
28.5 L% 12 v
From the above we have a closer vaiue of 14 g'om 1453 x a . Using this value
in the next trial, we will get bettor results,
.;7 ,&ﬁyif CZM¢5?{%ﬂffL | [
» 4@ hsl& |,
L o le /¥3 ‘e & xa& 0
A /0 (¥3 _ fe i@‘ £ “Fa _
Al
oo 43 ~/O ~ /o 3 -/.|0 ¥ TES
3
2Kk s AR x CF
- | __ . 4.
pH | #8556 | # Fees | - Fs | - /9-SF | # ;}" X 7am
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Erom above for the deflection at first interior panel point -

o J2x Eix 16 | 2.03 B

19.58 x 1 £ L4
Using A¢ -
p_ 12 El x 1.43x 16 _ 2,88 E1
27.73 x 12 {2

The above procedures hold for critical focad only. [If P # Pop 5
member does not hold deflected shape and tThe above procedures do not hold.

the

A reasonable approximation for the value of P, from the second or third
trial provided an intelligent guess for the values of A |s made., |[f the con-
vergence is slow, several more frials may be necessary. Usually three frials are

sufficient for simple cases. Solutions for more complicated cases may be obtained
by use of Dinnick's Tables.

Another example witl illustrate the use of numerical procedures in
solution for P.,. for columns with varying cross=section.

xam
bl N LLE.. e Eh
b_"—.'!;_—————‘——_-ﬂ.____ﬁ S of rt o e P
. i
e e le %4 = &
L, & Lo AR g/l ]B ,_m.Ls' Alold  *f Al ¢ = &
Ml— ? 1"!’-5" l‘*/'g ) ‘l:‘/:"g 1"-_}5" 'ﬂfll 1:{...?. *I"I’qﬂ o "!{Pq- _ -
~D
= —Ho  —(@-e4 oS ok7Y copy ol __.L_, P &
Fa h
Z, T oz g abs -S4y aglf B3R -hz oA K LG T2
R& .
@, |+33.92| J22.7%| 4.8 | 4403 ~A4.03| 1 F1 | ~R2-74 “F3.02| ’i-‘—;;ﬂ_"":.é';,-
Ao, 4%
%, @ #3392 ~ JEIES LA 1Bl 766 723 3% Ot TH
M
N—— j '- _
o Eele :)&j'
, . ~ P x a x h4
Checking at first interior panei point - 33,92 x = | X 8
12 Ey g
12 £, 1, x 64
and P =_____Q__E___ - 22.8 EQ H{}
cr 23,92 |2 2

This is very much in error. Repeat for new values of Z\ and check as betore.
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| 7
— : 4‘1‘-:36 X }( }( 1 1714 E H{.
— Check ':O X O = —--——-—-—&——i'——’-‘ ﬂﬂd P =
N9 |12 X EGHD X 64 cr Lz

This value of Ptr ts within 6% of actual value.

Checking at center, P, = .!.5_-3.2_5.:;'.2 \
L

From this exemple it is seen that when a cover plate Is placed over
conter 50¢ column length, it is almost as etfective as having cover plates over
fuil length. {n fect thls fype of column is about 85% ms efficient as |f the
cover pl!ates are extended over the full length,

(3"'2) » 11118 ¥ | | d | 1) - (1G] JVINJITIeR L}ty A k- * I

in columns with uniformly varyling moment of Inertia the numerice| procedures
show thelr advantages since columns of this type cannot be solved by the use of
Dinnick Tables., The foliowing exampie will demonstrate the use of the numerical

procedures to solve this problem. @
@
o @ 3 ) 4%'- gE~ ‘ e
gt 0T et P

Y £i . R PO P ST L L S— | vz

o - -

1
% . . 1-

A -0y %6l 0.5

-

-

ooh, M =57
55 wne _ _
& | #se | 4033 #RB.G3| ~543,

=3k —_ —r =t L.

-p‘z i‘ x
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’“ The preblem is to find the losd that is critical in buckling for the beam
shown which has a moment of inertia varying uniformiy from 1, at one end To 7 i,
at the other. Much work can often be saved if the buckled shape of the column is
visualized and an intel!igent guess is made as to the deflections A, . These
deflections are then guessed and all multiplied by an arbitrary factor "a" which
could be feet, inches, etc. The line M is then calculated by M = P A,

The line a is found by dividing the M at each panel point by the EI at that
point. E.G. at point (3) - 22 _ 0.
9’ 3 Egle 0.67 x Pa/El,

The values of ® are found by the use ot equivalent concentrations and Simpson's
Rule. i.e.

A A
A Tt 4 ;
E'-"v-(m*““ ¢) % (a » 06 sc) 24 (7C “ &4 &)

The values for o at the various panel points are the values used for &, b and ¢ .
I+ is necessary to assume vaiue for the siope so a value of 416 ts used between
panel points (i) and (2). Then on this basis the other slopes are caiculated.

For example, the siope between pane! points (2) and (3) is 16 + a at (2) =
|16 = 5,67 = 10.33 Pa.h/12 E.1, . The deflections y| , based on the assumed values
of @ calculated by X @ up 1o the point concerned times h . [T is known that

1+he deflection at point (1} = 0 so this is the starting point. Es. to find vy
at point (4)

.-"‘.--""‘-.I

> @ up to point (4) = 16.00 + [0.33 4 2.63 = 28.96

Therefore vy, at (4) = 28.96 Pa.h“/12 L), -

However, in this way vy, at point {73 turns out to be
10.53 Pa.h4/12 Eglg » Since the support at (7) is non-ylelding the def lection
there must be O. This error is due to the fact that the values of @ were merely

assumed ones and necessitates the application of a linear correction which will be
called y. . Since The deflection at (7} = Q, vy, = Yy = -§i0.553., The values of
Y at the other points are found by simple ratio. The final deflection vy s

found by vy = Yi + Yeo

if these final deflections {y) are equal to the ones originally assumed
( Ay), then the original assumptions were correct and £3| a = ylPa.he/i2 E g

at every point on the column. Checking this at point {2)

2
| % 5 = 42:24 Pa.h and h ﬁ'%

17 i
12 E '

P - 12 E:HQ X 36 _ h_"')Ou.'SkE
2

14,24 L2 1

olo
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—7 At point (3)

2 x 12 x 36 Ejlg  37.8 Eylo

© T 22,81 (2 } X:

in order 40 get a more accurate value for P tThe procedure is repeated
using new values for & which wiil be catled A 5 . These values are found by

ratio as foilows:

At point (1) let Ao a 4l
At polnt (2) A, = XRLARA) . S&EL . 4,60

y at (1) 14,24
At point (3) A , HW% - % . +1.66

and so forth. The remainder of this problem will be left as an exercise for the
reader. The value of P obtalned by thls second trial wiil be considerably more
accurete than the value obteined by the first trial end P may be found to any
degree of accuracy depending on how many trials are made.

Let us assume that P ig;iﬁiﬁlﬁ_ , &8lthough this is heing conservative.
L

e >
A column with a moment of inertis of |, would have a criticel locad of
Pop = ;72 E,:,IG/L2 - 9,87 Eoﬂgltz . it ls Interesting 1o note thet & column
with moment of Inertla varying from 1, te <71, hes a critical lcad more than
three Times as great es the column with moment of (nertia lgq « Thus, In calcue«
la¥ing the critical load It would be more correct to use the average | fhen to
use the minimum | « It can eas!ly be seen from this problem and the previous one
whore & cover plate was put over the centre section of the column that the moment
of [nertin at the centre of the column |6 the important thing.

One problom which arises when a coiumn of varying EI is used is The
determination of the sllowable stress on the columae  Formulae for allowable
stresses on columns usually glve tho allawable
stress as a function of the L/r ratio,

However, the expression L/r begins to lose
[+s meaning when & column of the shape shown
s encountered,
One possible soiution to this problem is to
find the critical load ot tThe column shown
and then to find the column with the same
length but of uniform Ei which will have
the same critical load as the column shown,
. The L/r ratlo of this column with uniform

= Ei 1is then used as the L/r ratio of the
column shown for the purpose of calculating
the allowable stross.
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This discussion is not meant tT0o be a course in numerical procedures
but is meant to outiine the basic principles used and to indicate some of the

problems to which these procedures may be applied.

Since many of these simpler

problems may be solved more easily by other means, the numerical procedures do

not show their true advantage.

However, they are extremely useful in many more

complicated problems, e.g. design of buildings to withstand earthquake vibrations.

*¥Djagram for top of page 22
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