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For axial compression in angles without slender elements, 
comprehensive analysis and design of single angles can be car-
ried out using the provisions of Section E3, whereas a simpli-
fied design approach is provided for special cases in Section E5. 
Table 4-11 in the 13th Edition AISC Steel Construction Manual 
applies to the design of single angles for concentric axial loads.

For flexure without slender elements, the comprehensive 
approach is provided in Section F10.2, with subsections (iii) 
and (iv), while the simplified approach is provided in Section 
F10.2, with subsections (i) and (ii). Local buckling and slen-
derness are addressed in Sections E7 and F10.3 for compres-
sion and flexure, respectively.

Single angles also may be loaded in combined axial force 
and flexural. These are designed according to Section H2, and 
the design of single angles with typical end connection con-
figurations that result in eccentric axial loads is addressed in 
Table 4-12 in the 13th Edition AISC Manual. These can be 
used as design aids for single angles with combined loading 
due to end attachments to one leg alone as described in the 
explanation of the table on page 4-7 of the Manual.

Principal Axes
The principal axes of any shape define two orthogonal axes 

that correspond to the maximum and minimum moments of 
inertia for that section. The axis around which one finds the 
minimum moment of inertia is called the minor principal axis 
while the axis about which one finds the maximum moment 
of inertia is called the major principal axis. From a structural 
analysis point of view, bending the section about the minor 
principal axis corresponds with the minimum internal energy 
of the member. This means the structure is completely stable 
when bent about this axis and cannot experience lateral-tor-
sional buckling.

Unlike singly and doubly symmetric wide-flanges and 
channels, single angles have principal axes that do not coincide 
with their geometric axes (see Figure 1). Therefore, the design 
of single angles requires some consideration of both of these 
sets of axes. While loading typically occurs about the geomet-
ric axes, the strength usually is controlled by response that is 
influenced by properties that relate to the principal axes.

Part 1 of the AISC Manual contains properties of single 
angles about both geometric axes (X and Y) and the minor prin-
cipal axis (Z). Part 17 of the AISC Manual contains equations 
that allow for the calculation of section properties about one 
axis when the properties are known about the other.

Working With Single-Angle Members

steelwise

The inherent eccentricities of this popular shape require 
the engineer’s attention and understanding.

Angles have been used in construction almost as 
long as structural steel has been around, and were com-
monly used as components of built-up shapes. For example, 
Bethlehem Steel made I-shaped members and channels 
using angles attached to plates. Other producers used them 
to build similar cross sections and other more exotic shapes. 
More recently, angles have been used as braces, tension 
members, struts and lintels. Angles also have been used in 
double-angle and single-angle connections.

In spite of their long history of usage, the design of mem-
bers composed of angles—and single angles in particular—
has not become as familiar to the engineering profession as 
the design of other, more common shapes. This article high-
lights the information available today to help in this regard.

The AISC Specification
AISC first published a single-angle specification in the 

1980s. Since then more research and testing has helped 
to develop the knowledge base upon which single-angle 
design is covered in the 2005 AISC Specification (and the 
soon-to-be-released 2010 AISC Specification).

The current approach to single-angle design offers two 
alternatives:
1.	 A comprehensive design approach that can be used to 

design any single angle for axial and/or flexural loads. 
This approach is more general and involves more effort 
in calculations that typically are based upon the princi-
pal axes.

2.	 A simplified design approach that can be used with 
greater expediency for specific common cases. Although 
limited in scope, it allows an easier design process.
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The importance of evaluating sec-
tion properties about the principal axes 
for single angles is illustrated in Figure 2. 
Consider a single angle that is bent about 
the geometric axis and not braced against 
lateral deformation other than at the ends. 
As the beam is loaded, it tends to naturally 
deflect in the direction of the load. How-
ever it also tends to deflect in the direction 
of least resistance, which corresponds with 
the minor principal axis. 

This results in a total deflection that 
occurs in the direction of both geometric 
axes. For such cases it is difficult to evaluate 
first yield or the propensity of the member 
to laterally buckle without resolving the 
load and response into components that 
are parallel to the principal axes. Some-
thing similar can be said of an axially loaded 
single angle. Its tendency to fail in Euler 
flexural buckling will be about the axis of 
least resistance which corresponds with the 
minor principal axis.

Fig. 2: Deflection of single angle due to load 
about geometric axis.
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The horizontal component of deflection being approximately 60 percent of the
vertical deflection means that the lateral restraining force required to achieve
purely vertical deflection must be 60 percent of the applied load value (or produce
a moment 60 percent of the applied value) which is very significant.

Lateral-torsional buckling is limited by Me (Leigh and Lay, 1978; Leigh and Lay,
1984) in Equation F10-4a, which is based on

Mcr = 2.33Eb4t

(1 + 3 cos2 �)(Kl)2
×

��
sin2 � + 0.156(1 + 3 cos2 �)(Kl)2t2

b4
+ sin �

�
(C-F10-1)

(the general expression for the critical moment of an equal-leg angle) with
� = 45◦ or the condition where the angle tip stress is compressive (see Figure
C-F10.3). Lateral-torsional buckling can also limit the flexural strength of the
cross section when the maximum angle tip stress is tensile from geometric axis
flexure, especially with use of the flexural strength limits in Section F10.2. Using
� = 45◦ in Equation C-F10-1, the resulting expression is Equation F10-4b with
a +1 instead of −1 as the last term.

Stress at the tip of the angle leg parallel to the applied bending axis is of the
same sign as the maximum stress at the tip of the other leg when the single angle
is unrestrained. For an equal-leg angle this stress is about one-third of the max-
imum stress. It is only necessary to check the nominal bending strength based
on the tip of the angle leg with the maximum stress when evaluating such an
angle. Since this maximum moment per Section F10.2(ii) represents combined
principal axis moments and Equation F10-5 represents the design limit for these

Fig. C-F10.2. Geometric axis bending of laterally unrestrained equal-leg angles.
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PROPERTIES OF GEOMETRIC SECTIONS (cont.)
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Iz = Ix sin2 θ + IY cos2 θ + K sin2 θ
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center of gravity, is in 1st or 3rd quadrant, positive
when in 2nd or 4th quadrant.

  I3 = Ix sin2 θ + IY cos2 θ
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
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x
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where M is bending moment due to force F.
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17–38 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION

Properties of Geometric Sections (cont.)
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where M is bending moment due to force F .
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17–38 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION

Properties of Geometric Sections (cont.)
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where M is bending moment due to force F .
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17–38 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION

Properties of Geometric Sections (cont.)
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Table 17–27 (continued)
Properties of Geometric Sections

Fig. 1: Geometric (X and Y) axes and principal 
(W and Z) axes of single angle.

Other Important Section Properties
If the evaluation of the moment of iner-

tia of single angles about the principal axes 
is important, the evaluation of the section 
moduli about the same axes is even more 
useful. Additionally, it is important to recog-
nize that the single angle can have as many 
as three section moduli about one axis. For 
unequal-leg angles two correspond to the 
toes of the legs while one relates to the heel. 
When evaluating unequal-leg single angles 
for combined axial and flexural loading, 
this can make the calculation quite lengthy.

Several articles published in AISC’s 
Engineering Journal provide further insight 
into working with single-angle mem-
bers: “Evaluating Single-Angle Compres-
sion Struts Using an Effective Slenderness 
Approach,” by Leroy A. Lutz (4th Quarter 
2006), “Towards the Simplified Design of 
Single-Angle Beam Columns,” by Chris-
topher J. Earls and D. Christian Keelor 
(1st Quarter 2007), and “Design of Single 
Angles Bent About the Major Principal Axis,” 
by Christopher J. Earls. All are available at 
www.aisc.org/epubs as free downloads to 
AISC members and may be purchased by 
others. 

Another Reference
In addition to the information available in 

the AISC Specification and Manual, Whitney 
McNulty, P.E., recently self-published a guide 
to single-angle design called the Single-Angle 
Design Manual. It is devoted to the specifics 
of the design of angles and has chapters that 
get into the details of equal-leg and unequal-
leg single angles in tension, shear, compres-
sion, and flexure (including interaction). The 
interested reader can find this reference at 
www.lulu.com/singleangle.

Conclusion
The design of single angles is more com-

plicated than that of other more common 
shapes. Nonetheless, the versatility of single 
angles in construction has made them pop-
ular. Provisions and recommendations exist 
in the AISC Specification, AISC Manual, and 
other references to assist the engineer who 
wants to design single angles. �  

http://www.lulu.com/singleangle

