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Design Aspects of Single-Angle Members
PIERRE DUMONTEIL

Abstract

Used since the very beginning of steel construction, single-angle members are found in many different kinds of structures. Nearly all single-angle 
members are eccentrically loaded in some fashion, yet truss chords, tower legs and similar members not carrying transverse loads are usually 
designed as centrally loaded members. ANSI/AISC 360-05, Specification for Structural Steel Buildings, prescribes complex design calculations 
for eccentrically loaded single angles, but also provides simplified equations that adjust the KL/r ratio to account for eccentricities and end 
restraints. The purpose of this paper is to examine the possibility of simpler calculations and to explore the behavior of single-angle members.

Keywords: single angles, eccentric loads, lateral-torsional buckling, steel construction.

Introduction

Whether hot-rolled or cold-formed, angles are among the 
simplest steel shapes. Their shape affords simple connec-
tions with other angles or other shapes. Used since the very 
beginning of steel construction, single-angle members are 
found in many different kinds of structures: roof trusses, 
power transmission towers, conveyor trusses, etc.

Nearly all single-angle members are eccentrically loaded 
in some fashion or another. Even so, truss chords, tower legs, 
or similar members that do not carry transverse loads are 
traditionally designed as centrally loaded members. For ec-
centrically loaded single angles in general, the ANSI/AISC 
360-05 specification (also referenced as the AISC Specifica-
tion in this paper) prescribes design calculations that are un-
doubtedly complicated and tedious. Fortunately, AISC 360-
05 follows the example of the ASCE Standard 10-90 and 
provides for most truss web members simple formulae that 
adjust the KL /r ratio to account for eccentricities and end 
restraints. The purpose of this paper is to examine whether 
simpler calculations are possible and to explore to some ex-
tent the behavior of single-angle members.

Points of Consideration: Five or Three?

The first decision facing the designer is at which spe-
cific points in the section or “points of consideration” the  
combined stress should be computed. ANSI/AISC 360-05 is 
silent on this matter.

The elastic section moduli Sw and Sz relative to the principal 
axes are not listed in the AISC Steel Construction Manual, 
in which the section properties of structural steel angles are 
calculated on the simple assumption that the cross-section 
consists of two rectangles. If this model were geometrically 
exact, it would be theoretically necessary to consider the 
elastic section moduli at the five salient corners, numbered 1 
to 5 on Figure 1a. This has been proposed by Yongcong Ding 
and M.K.S. Madugula (2004), who also included tables of 
moduli Sw and Sz for the steel angles listed in the AISC Man-
ual. A different point of view is that of Lutz (1996) and Sak-
la (2001), who base their calculations on three points only, 
numbered 1 to 3 on Figure 1c. Why some experts use three 
points and others five is certainly a valid question, on which 
the following comments are offered.

1.	 The actual cross-section is that shown on Figure 1b. 
While there are no standards governing the fillet radii at 
the tips, it is a fact that the inside tips are always rounded. 
In practice, Points 3 and 4 of Figure 1a do not exist.

2.	 The stipulation of a nominal bending strength Mn = 1.5My 
for compact angles implies a very substantial amount of 
plastic flow, essentially at the leg tips. The actual stress 
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Fig. 1.  Geometry and Points of Consideration
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Fig. 1. Geometry and points of consideration.
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In the geometric axis approach, the worst case is that of 
maximum compression at the toes, in which the elastic later-
al-torsional moment Me is, according to Equation F10-4a:
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This moment must be compared to the yield moment My – 
0.80Sx Fy. For our purpose, a sufficient approximation to Sx 

is Sx = 
b2t

4
. The nondimensional ratio My /Me is then
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At this stage, it will be convenient to introduce the notation

	
bγ
t

F

E

y
= 	 (4)

Equation 3 becomes
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In accordance with Equation F10-3 of the AISC Specifica-
tion, the ratio of the nominal bending strength Mn to the yield 
moment My is:
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distribution is further complicated by residual stresses, 
which, at the tips, are compressive and may reach  
0.25 times the yield stress (ECCS, 1976). As the angle 
reaches the limit state of yielding, the stress distribution 
in the vicinity of the toes is nearly uniform, and is prob-
ably better described by the stresses at Points 2 and 3 of 
Figure 1c.

3.	 For noncompact and slender angles, the limit state of lo-
cal buckling is based on theories that assume a uniform 
stress across the thickness t of the leg. This is better ex-
pressed by the two tips of Figure 1c.

4.	 The limit state of lateral-torsional buckling applies to the 
whole cross-section and is not related to specific points 
in the section.

5.	 Considering only three points is, of course, simpler and 
reduces the amount of computation by at least one third. 
In this respect, the recommendation for equal-leg angles 
of ANSI/ASCE Standard 10-90 (1992) is noteworthy:

The following section moduli based on centerline  
dimensions may be used in lieu of those based on overall 
dimensions:
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In the ASCE document, the index u is used instead of the 
subscript w used in the AISC Manual; and the symbol 
b represents the leg width less half the thickness. Ob-
viously, the ASCE standard wishes to avoid excessive 
accuracy.

For these reasons, it is strongly believed that the points of 
consideration should consist only of the three critical points, 
marked 1, 2 and 3 on Figure 1c. The corner (or heel) of the 
angle, Point 1, is seldom critical, but that possibility cannot 
be ruled out entirely.

Section properties could include fillets if their maximum 
and minimum radii were specified by an industry wide stan-
dard. Even so, more complicated calculations for section 
properties do not seem warranted, particularly in view of 
items 2 and 5 in the preceding paragraphs. Accordingly, the 
section moduli and other properties shown in Table 1 are 
based on the two-rectangle cross-section of Figure 1c.

Lateral-Torsional Buckling About  
Geometric Axes (Equal-Leg Angles)

Equal-leg angles may be treated either with the general 
method, based on the principal axes, or with a simpler 
approach that allows their design using properties about  
geometric axes. The axis of the applied bending moment 
must be parallel to one of the legs, as in Figure 2. Fig. 2.  Bending Moment Orientation
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Fig. 2. Bending moment orientation.
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Table 1. Section Moduli and Lateral-Torsional Constants of Angle Shapes*

Angle Iw Iz α Sw1 Sw2 Sw3 Sz1 Sz2 Sz3 Lw Mw0

Shape (in.4) (in.4) (deg.) (in.3) (in.3) (in.3) (in.3) (in.3) (in.3) (in.) (kip-in.)

L8×8×18 155 40.8 45 – 29.5 29.5 12.0 15.4 15.4 – –

L8×8×1 141 36.7 45 – 26.6 26.6 11.0 13.8 13.8 – –

L8×8×d 127 32.6 45 – 23.7 23.7 9.93 12.1 12.1 – –

L8×8×w 111 28.4 45 – 20.6 20.6 8.81 10.5 10.5 – –

L8×8×s 94.8 24.1 45 – 17.4 17.4 7.62 8.84 8.84 – –

L8×8×b 86.3 21.8 45 – 15.8 15.8 6.99 7.99 7.99 – –

L8×8×2 77.7 19.6 45 – 14.2 14.2 6.34 7.14 7.14 – –

L8×6×1 98.3 21.2 28.49 63.7 24.8 18.7 7.81 7.61 13.8 18.4 29600

L8×6×d 88.3 18.9 28.67 58.2 22 16.7 7.09 6.72 12.1 21.1 20000

L8×6×w 77.7 16.5 28.84 52.1 19.1 14.6 6.32 5.82 10.4 24.8 12700

L8×6×s 66.4 14.0 29.01 45.3 16.2 12.3 5.50 4.92 8.73 30.0 7390

L8×6×b 60.6 12.7 29.09 41.7 14.7 11.2 5.06 4.45 7.89 33.4 5410

L8×6×2 54.5 11.5 29.16 37.8 13.2 10.1 4.60 3.99 7.04 37.8 3810

L8×6×v 48.3 10.1 29.24 33.8 11.6 8.88 4.12 3.52 6.19 43.3 2560

L8×4×1 73.4 7.87 13.89 27.1 23.1 14.9 4.51 3.49 11.9 20.0 15200

L8×4×d 66.0 7.00 14.18 24.8 20.5 13.2 4.11 3.07 10.3 23.1 10300

L8×4×w 58.1 6.12 14.45 22.2 17.8 11.6 3.69 2.65 8.75 27.2 6500

L8×4×s 49.8 5.23 14.71 19.3 15.1 9.8 3.24 2.24 7.27 33.0 3790

L8×4×b 45.4 4.77 14.83 17.7 13.7 8.9 3.00 2.03 6.54 36.8 2770

L8×4×2 40.9 4.30 14.95 16.1 12.3 7.99 2.74 1.82 5.82 41.7 1950

L8×4×v 36.3 3.82 15.07 14.4 10.8 7.05 2.48 1.61 5.11 48.0 1310

L7×4×w 41.2 5.68 17.94 19.8 13.9 9.22 3.28 2.60 7.28 21.8 7450

L7×4×s 35.4 4.85 18.23 17.4 11.8 7.84 2.88 2.19 6.05 26.4 4350

L7×4×2 29.2 3.99 18.50 14.6 9.62 6.40 2.44 1.78 4.85 33.4 2240

L7×4×v 25.9 3.54 18.63 13.1 8.50 5.66 2.20 1.58 4.26 38.4 1510

L7×4×a 22.6 3.09 18.75 11.5 7.35 4.90 1.95 1.36 3.66 45.2 954

L6×6×1 55.9 15.0 45 – 14.4 14.4 5.69 7.65 7.65 – –

L6×6×d 50.5 13.3 45 – 12.8 12.8 5.18 6.73 6.73 – –

L6×6×w 44.7 11.6 45 – 11.2 11.2 4.63 5.82 5.82 – –

L6×6×s 38.4 9.87 45 – 9.56 9.56 4.03 4.89 4.89 – –

L6×6×b 35.2 8.98 45 – 8.69 8.69 3.72 4.43 4.43 – –

L6×6×2 31.7 8.07 45 – 7.81 7.81 3.39 3.96 3.96 – –

L6×6×v 28.2 7.15 45 – 6.9 6.90 3.04 3.49 3.49 – –

L6×6×a 24.6 6.20 45 – 5.98 5.98 2.67 3.01 3.01 – –

L6×6×c 20.8 5.23 45 – 5.03 5.03 2.29 2.53 2.53 – –

* Refer to Figure 1c for applicable geometry
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Table 1. Section Moduli and Lateral-Torsional Constants of Angle Shapes*

Angle Iw Iz α Sw1 Sw2 Sw3 Sz1 Sz2 Sz3 Lw Mw0

Shape (in.4) (in.4) (deg.) (in.3) (in.3) (in.3) (in.3) (in.3) (in.3) (in.) (kip-in.)

L6×4×d 31.6 5.87 22.85 20.8 11.8 8.23 3.16 2.94 6.71 13.3 14800

L6×4×w 28.1 5.13 23.18 18.9 10.3 7.23 2.83 2.54 5.71 15.6 9390

L6×4×s 24.2 4.37 23.49 16.7 8.78 6.17 2.49 2.15 4.75 18.9 5480

L6×4×b 22.2 3.99 23.63 15.4 7.97 5.62 2.3 1.95 4.28 21.1 4020

L6×4×2 20.1 3.59 23.77 14.1 7.16 5.06 2.11 1.75 3.81 23.9 2840

L6×4×v 17.9 3.19 23.90 12.7 6.33 4.48 1.9 1.54 3.34 27.4 1910

L6×4×a 15.6 2.78 24.03 11.2 5.48 3.88 1.68 1.34 2.88 32.2 1210

L6×4×c 13.2 2.36 24.16 9.63 4.61 3.28 1.45 1.13 2.41 38.9 703

L6×32×2 18.2 2.6 18.97 10.7 7.02 4.69 1.77 1.35 3.6 24.4 2290

L6×32×a 14.2 2.01 19.27 8.53 5.37 3.6 1.42 1.03 2.71 33.0 975

L6×32×c 12 1.71 19.42 7.32 4.52 3.04 1.23 0.871 2.27 40.0 567

L5×5×d 28 7.56 45 – 8.67 8.67 3.41 4.64 4.64 – –

L5×5×w 24.9 6.59 45 – 7.61 7.61 3.06 4 4 – –

L5×5×s 21.6 5.6 45 – 6.5 6.5 2.68 3.37 3.37 – –

L5×5×2 17.9 4.59 45 – 5.33 5.33 2.26 2.73 2.73 – –

L5×5×v 16 4.07 45 – 4.72 4.72 2.04 2.4 2.4 – –

L5×5×a 14 3.54 45 – 4.1 4.1 1.8 2.07 2.07 – –

L5×5×c 11.9 2.99 45 – 3.46 3.46 1.55 1.74 1.74 – –

L5×32×w 16.2 3.25 24.89 13.9 7.06 5.05 1.99 1.92 4.04 10.4 10300

L5×32×s 14.1 2.77 25.26 12.4 6.01 4.33 1.75 1.62 3.34 12.6 6020

L5×32×2 11.8 2.28 25.60 10.7 4.92 3.56 1.49 1.32 2.67 15.9 3120

L5×32×a 9.19 1.77 25.90 8.57 3.78 2.75 1.2 1.01 2.02 21.4 1330

L5×32×c 7.82 1.5 26.05 7.39 3.19 2.33 1.03 0.85 1.69 25.8 775

L5×32×14 6.39 1.22 26.18 6.12 2.58 1.89 0.861 0.689 1.36 32.6 399

L5×3×2 10.5 1.57 19.64 7.49 4.82 3.24 1.22 0.975 2.53 16.8 2360

L5×3×v 9.35 1.4 19.84 6.78 4.27 2.88 1.1 0.862 2.22 19.4 1590

L5×3×a 8.19 1.22 20.02 6.02 3.7 2.5 0.983 0.747 1.9 22.8 1010

L5×3×c 6.97 1.04 20.19 5.19 3.12 2.11 0.854 0.631 1.59 27.6 587

L5×3×14 5.7 0.851 20.36 4.3 2.53 1.72 0.714 0.512 1.28 34.8 302

L4×4×w 12 3.29 45 – 4.70 4.70 1.83 2.54 2.54 – –

L4×4×s 10.5 2.80 45 – 4.04 4.04 1.61 2.13 2.13 – –

L4×4×2 8.83 2.29 45 – 3.33 3.33 1.37 1.72 1.72 – –

L4×4×v 7.91 2.04 45 – 2.96 2.96 1.24 1.52 1.52 – –

L4×4×a 6.94 1.77 45 – 2.58 2.58 1.10 1.31 1.31 – –

L4×4×c 5.93 1.50 45 – 2.18 2.18 0.953 1.10 1.10 – –

L4×4×14 4.85 1.22 45 – 1.77 1.77 0.793 0.893 0.893 – –

* Refer to Figure 1c for applicable geometry

(cont’d.)
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Table 1. Section Moduli and Lateral-Torsional Constants of Angle Shapes*

Angle Iw Iz α Sw1 Sw2 Sw3 Sz1 Sz2 Sz3 Lw Mw0

Shape (in.4) (in.4) (deg.) (in.3) (in.3) (in.3) (in.3) (in.3) (in.3) (in.) (kip-in.)

L4×32×2 7.29 1.82 36.87 18.2 3.17 2.75 1.18 1.30 1.74 5.49 7530

L4×32×a 5.75 1.41 37.05 14.9 2.45 2.14 0.948 0.995 1.32 7.38 3230

L4×32×c 4.91 1.20 37.13 12.9 2.07 1.81 0.821 0.838 1.11 8.90 1880

L4×32×14 4.03 0.976 37.21 10.8 1.69 1.47 0.685 0.679 0.893 11.2 973

L4×3×s 7.29 1.62 28.09 9.12 3.77 2.82 1.14 1.17 2.17 7.31 7110

L4×3×2 6.14 1.33 28.49 7.96 3.1 2.34 0.976 0.951 1.73 9.20 3690

L4×3×a 4.85 1.03 28.84 6.51 2.39 1.82 0.79 0.728 1.3 12.4 1580

L4×3×c 4.15 0.876 29.01 5.66 2.02 1.54 0.687 0.614 1.09 15.0 923

L4×3×14 3.41 0.716 29.16 4.73 1.64 1.26 0.575 0.499 0.88 18.9 477

L32×32×2 5.76 1.51 45 – 2.50 2.50 1.01 1.31 1.31 – –

L32×32×v 5.17 1.35 45 – 2.23 2.23 0.919 1.15 1.15 – –

L32×32×a 4.56 1.17 45 – 1.95 1.95 0.818 0.998 0.998 – –

L32×32×c 3.9 0.995 45 – 1.65 1.65 0.71 0.84 0.84 – –

L32×32×14 3.21 0.812 45 – 1.34 1.34 0.593 0.679 0.679 – –

L32×3×2 4.62 1.16 35.54 11.4 2.38 2.01 0.847 0.947 1.33 4.70 6490

L32×3×v 4.17 1.03 35.67 10.4 2.11 1.8 0.769 0.836 1.16 5.38 4390

L32×3×a 3.68 0.896 35.79 9.4 1.84 1.57 0.686 0.724 1.00 6.31 2790

L32×3×c 3.15 0.761 35.90 8.23 1.56 1.34 0.597 0.61 0.842 7.61 1630

L32×3×14 2.6 0.622 36.01 6.91 1.27 1.09 0.500 0.495 0.680 9.57 843

L32×22×2 3.82 0.784 25.92 4.93 2.32 1.69 0.676 0.655 1.32 7.50 3210

L32×22×a 3.04 0.609 26.40 4.08 1.80 1.32 0.55 0.501 0.986 10.1 1380

L32×22×c 2.61 0.519 26.62 3.57 1.53 1.12 0.481 0.423 0.825 12.2 803

L32×22×14 2.15 0.425 26.83 3.00 1.24 0.916 0.405 0.344 0.664 15.4 415

L3×3×2 3.49 0.938 45 – 1.80 1.8 0.712 0.957 0.957 – –

L3×3×v 3.16 0.833 45 – 1.61 1.61 0.647 0.842 0.842 – –

L3×3×a 2.79 0.726 45 – 1.40 1.40 0.579 0.727 0.727 – –

L3×3×c 2.40 0.617 45 – 1.19 1.19 0.504 0.612 0.612 – –

L3×3×14 1.98 0.504 45 – 0.976 0.976 0.423 0.495 0.495 – –

L3×3×x 1.54 0.388 45 – 0.747 0.747 0.334 0.377 0.377 – –

L3×22×2 2.71 0.677 33.69 6.51 1.70 1.40 0.574 0.651 0.977 3.89 5470

L3×22×v 2.45 0.601 33.88 6.04 1.52 1.25 0.523 0.574 0.854 4.46 3700

L3×22×a 2.17 0.525 34.06 5.48 1.32 1.10 0.468 0.497 0.733 5.23 2360

L3×22×c 1.87 0.446 34.22 4.84 1.13 0.935 0.409 0.419 0.614 6.31 1380

L3×22×14 1.55 0.366 34.37 4.1 0.919 0.765 0.345 0.34 0.496 7.94 714

L3×22×x 1.20 0.281 34.52 3.25 0.704 0.587 0.274 0.26 0.376 10.7 305

L3×2×2 2.18 0.413 22.50 2.8 1.66 1.15 0.433 0.417 0.971 5.78 2730

* Refer to Figure 1c for applicable geometry

(cont’d.)
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Substitution of Equation 5 into Equation 6 yields:
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For ϖ ranging of 0.2 to 7.0, the square root in Equation 7 is 
very close to a straight line, within ±2.0%:
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Accordingly, the combination of Equations F10-3 and F10-
4a of the AISC Specification may be expressed with the 
formula:
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For practical spans with the toes in compression, the results 
of Equation 9 compared to those of F10-3 and F10-4a are 
always within 2%.

In the case of maximum tension at the toes, Equation 5 be-
comes

	
1 0. .

M

M C

y

e b

≈ + −( )0 388 78 1
2

2γ
ϖ

Cb

=
+ +

0.303
0 78

2 2

.

γ ϖ

ϖ22

	 (10)

This leads to 
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Making use of Equation 8 to replace the radical in Equation 
11, the final result for tension at the toes is then, within 2% 
compared to F10-3 and F10-4a,
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Table 1. Section Moduli and Lateral-Torsional Constants of Angle Shapes*

Angle Iw Iz α Sw1 Sw2 Sw3 Sz1 Sz2 Sz3 Lw Mw0

Shape (in.4) (in.4) (deg.) (in.3) (in.3) (in.3) (in.3) (in.3) (in.3) (in.) (kip-in.)

L3×2×a 1.75 0.32 23.18 2.36 1.29 0.904 0.354 0.318 0.713 7.80 1170

L3×2×c 1.51 0.273 23.49 2.08 1.10 0.771 0.311 0.268 0.593 9.44 685

L3×2×14 1.25 0.225 23.77 1.77 0.895 0.632 0.264 0.218 0.476 11.9 354

L3×2×x 0.975 0.174 24.03 1.40 0.685 0.486 0.211 0.167 0.36 16.1 151

L22×22×2 1.92 0.533 45 – 1.21 1.21 0.468 0.662 0.662 – –

L22×22×a 1.56 0.412 45 – 0.952 0.952 0.382 0.5 0.5 – –

L22×22×c 1.35 0.35 45 – 0.813 0.813 0.335 0.421 0.421 – –

L22×22×14 1.12 0.287 45 – 0.667 0.667 0.283 0.341 0.341 – –

L22×22×x 0.872 0.221 45 – 0.513 0.513 0.225 0.259 0.259 – –

L22×2×a 1.15 0.273 31.56 2.85 0.893 0.708 0.294 0.314 0.509 4.14 1930

L22×2×c 1.00 0.233 31.81 2.55 0.762 0.607 0.258 0.264 0.424 4.99 1130

L22×2×14 0.835 0.191 32.05 2.18 0.624 0.500 0.219 0.215 0.341 6.28 587

L22×2×x 0.652 0.148 32.26 1.75 0.48 0.385 0.175 0.164 0.258 8.46 251

L2×2×a 0.752 0.206 45 – 0.587 0.587 0.229 0.318 0.318 – –

L2×2×c 0.658 0.175 45 – 0.504 0.504 0.201 0.266 0.266 – –

L2×2×14 0.552 0.143 45 – 0.416 0.416 0.171 0.215 0.215 – –

L2×2×x 0.434 0.111 45 – 0.322 0.322 0.138 0.164 0.164 – –

L2×2×18 0.303 0.0766 45 – 0.221 0.221 0.0991 0.112 0.112 –  -

* Refer to Figure 1c for applicable geometry

(cont’d.)
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Of all hot-rolled equal-leg angles, the most slender shape 
is the L6×6×c with b/t = 19.2, or γ = 0.676 (Fy = 36 ksi). 
For Me /My to reach the value of 1.0 with the toes in compres-
sion, ϖ must be at least 5, and the beam should have an un-
realistic span of nearly 50 ft. The span would still be at least 
30 ft for Fy = 50 ksi. As mentioned earlier, with hot-rolled 
equal-leg angles, Equation F10-2 never governs. The calcu-
lations are then fairly simple. If the tip of the outstanding leg 
is in compression, consider these factors corresponding to 
the three limit states:

Yielding	 k1 1 5= . 	  (13a)

Lateral-torsional	 k
Cb

2 1 92 0 15 1 0= − +( ). . .ϖ
γ

	 (13b) 
buckling

Local buckling	 k3 2 43 1 72= − γ 	  (13c)

Let km equal the smallest of the three; the design bending 
strength is then φMn = φkmFy(0.80Sx). To avoid having to look 
up the value of Sx, the following approximation will be found 
adequate

	 . .S t b tx ≈ −( )0 276 0 43
2
	 (14)

If the tip of the outstanding leg is in tension, local buckling 
does not occur, and the factor f2 is equal to the right-hand 
side of Equation 12. Single-angle members are not very ef-
ficient beams, and, in many cases, the order of magnitude of 
the deflection should be checked. Without lateral support, 
the vertical deflection may be computed with an equivalent 
moment of inertia Ieq ≈ 0.65Ix ≈ 0.075b3t; in most cases, this 
deflection should not exceed L/300.

Lateral-Torsional Buckling  
About Principal Axes (Equal- and  

Unequal-Leg Angles)

The general method using the principal axes of the angle is 
based on Equation F10-6 of the AISC Specification
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This formula is the specialized result of a bifurcation analy-
sis of the elastic lateral-torsional stability of prismatic mem-
bers (Timoshenko and Gere, 1961). Using the symbols of 
the AISC Specification and adding the moment modification 
factor Cb, the elastic buckling moment of an angle is

	
2 2

β
M C

P
GJP

P
e b

ez w βw
z

ez= + ±
2⎛

⎜
⎜
⎝

⎛
⎜
⎝

⎞
⎟⎜
⎟
⎠

⎞
⎟
⎠

	 (16)

Pez is the Euler buckling load about the minor axis of inertia

	 π
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	 (17)

GJ is the torsional rigidity of the angle

	 = = ( )GJ GAt Gt b t+ −1

3

1

3
2 3 d 	 (18)

For unequal leg angles, ßw is not zero, and Equation 15 may 
be recast in the form
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It is convenient to introduce a parameter u, such that
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The length ℓw is a characteristic of the section, listed in  
Table 1:

	 w
w zr
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= 4ℓ 385.
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From Equation 20, it is easily seen that
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Equation 19 may now be written
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Note that the quantity Mw0 = 2GJ/ βw has the dimensions of 
a moment and is a characteristic of the section, also listed in 
Table 1.

In the expression
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the plus sign applies if the long leg is anywhere in compres-
sion, and the minus sign otherwise.

For practical spans with hot-rolled angles, the ratio My /Me 
is smaller than 1.0, and buckling, if it occurs, occurs in the 
inelastic range. In other words, Equation F10-3 of the AISC 
Specification (given as Equation 6 previously) governs. 
Therefore, Equation F10-3 may be written
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. . .= − ≤1 92 1 17 1 5 	 (25)
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Because the parameter u varies over a much larger range 
than ϖ, a linear approximation similar to Equation 8 is not 
possible. The nominal bending strength Mnw must be com-
puted at the three points of consideration i = 1, 2, 3. For 
equal-leg angles, the length βw is nil, and the elastic buckling 
moment is

	 M GJP C E
b t

L
e z b= ≈ 0 46

2 2

. 	 (26)

This approximation is the formula included in the AISC 
Specification. Which is preferable, the geometric or the prin-
cipal axis method. Comparative results are listed in Table 2, 
which shows the design horizontal moment, φMnx , computed 
with both methods. In that comparison, the three limit states 
are included in accordance with the AISC Specification.  
The principal axis method appears more conservative for 
the toe in tension, the geometric axis method for the toe in 
compression.

Combined Forces and Due Regard to Signs

Lutz (1996) and Sakla (2001) have shown the importance of 
attaching the proper signs to the several terms of the inter-
action equations. However, a substantial change from the 
previous specification for single angles—which allowed the 
use of Equations H1-1a and H1-1b—is that the current AISC 
Specification (AISC, 2005) restricts their use to “…singly 
symmetric members…that are constrained to bend about a 
geometric axis (x and/or y)…”. A strict interpretation of the 
AISC Specification is that the governing clause is Section 
H2, and the applicable interaction equation is H2‑1, repro-
duced here:

	
f

F

f

F

f

F
a

a

bw

bw

bz

bz

+ + ≤ 1 0.

The AISC Specification also states that

	 F F F M S Fa cr bw nw w bz= = =ϕ ϕ ϕM Snz z   F F F M S Fa cr bw nw w bz= = =ϕ ϕ ϕM Snz z   F F F M S Fa cr bw nw w bz= = =ϕ ϕ ϕM Snz z 	 (27)

Table 2. Geometric Axis Bending Strength ϕMnx Using Principal and Geometric Axes

Angle 
Shape

L  
(ft)

Design Bending Strength ϕMnx

Principal Axes Geometric Axes

C T C T

L8×8×12 6 315 321 284 325

8 309 315 281 325

10 305 311 278 325

12 300 305 275 325

16 290 295 268 325

20 280 285 260 325

L6×6×c 4 97.5 114 91.7 115

6 97.5 110 90.7 115

8 96.2 107 89.4 115

10 93.4 104 87.9 115

12 91.4 101 86.2 115

16 86.8 95.5 82.8 113

L4×4×14 4 38.8 39.6 35.3 40.8

5 37.9 38.7 34.9 40.8

6 37.6 38.2 34.5 40.8

8 36.0 36.7 33.6 40.8

10 34.8 35.5 32.6 40.8

12 33.8 34.2 31.7 39.6
Horizontal moments Mx are in kip-in., with Cb =1.0 and Fy = 36 ksi.
"C" denotes toe (Point 3) in compression, "T" toe in tension.
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Section H2 adds: “Use the section modulus for the specific 
location in the cross-section and consider the sign of the 
stress.” Accordingly, H2-1 may be written
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± ± ≤ 1 0. 	 (28)

It is always permissible, but often overly conservative, to 
replace the absolute value in Equation 28 with the sum of 
the absolute values of its terms. It is usually advantageous 
to take the sense of the stress into account. The systematic  
use of a sign convention is helpful; the author uses that of Fig-
ure 3 (although it is not the only valid one by any means).

If the toe of the short leg is always taken as Point 2, posi-
tive moments Mw and Mz cause Point 2 to be in compression. 
A positive moment Mx gives Mw > 0 and Mz < 0 as shown 
on Figure 4. A positive moment My gives both Mw > 0 and 
Mz > 0. The combinations for the points of consideration 1, 
2 and 3 are then
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Single-Angle Compression Members

Section E5 of the AISC Specification, entitled “Single Angle 
Compression Members” introduces the notion of an effec-
tive slenderness ratio KL /r to account for the effects of ec-
centricity and end restraints inherent to single angles used as 
web members. Lutz (2006) provides the background for this 
approach, which has been common practice in steel trans-
mission tower design (ASCE, 1988, 1992; ECCS, 1976).

Fig. 3.  System of Principal Axes
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Fig. 3. System of principal axes.
Fig. 4.  Bending about Geometric Axis x-x
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Fig. 4. Bending about geometric axis x-x.

The Appendix recasts Equations E5-1 to E5-4 in what is 
believed to be a slightly clearer form. Note that the valid-
ity of Section E5 is restricted to angles with a leg length 
ratio ρ = bl /bs < 1.7, thereby excluding the sizes L8×4, L7×4 
and L6×3½, which must be handled as eccentrically loaded  
columns.

Normally, connecting through the long leg is less efficient 
than through the short leg. Except for L /ry < 20, the long-leg 
connection has a larger KL /r ratio, hence less strength. The 
reverse situation for L /ry < 20 is due to the length-independent  
terms 4(ρ2 – 1) or 6(ρ2 – 1). However, as this occurs in the 
inelastic range of the column curve, the difference in de-
sign strengths is insignificant. For instance, a 10-in. long 
L3×2×14 strut (an unusually stocky web member) has a  
ratio L /ry = 17.4. Attached through the long leg, KL /r = 73.9 
and φPn = 28.9 kips; connected through the short leg, KL /r 
= 75.9 and φPn = 28.4 kips, a very small difference indeed. 
For members of usual proportions and barring other con-
siderations, web members connected to the chord or gusset 
through the short leg are more efficient.

To help the designer find the minimum-weight equal-leg 
angle, Tables 3 and 4 may be useful. They are limited to 
equal-leg shapes; the former applies to box trusses, the latter 
to planar trusses. The tables list the least-weight sections for 
member lengths ranging from 5 to 16 ft and required axial 
strengths from 10 to 50 kips. Also listed are the unit weight 
and the design axial strength Pc = φPn. The shaded cells in 
the tables cover combinations of lengths and axial forces that 
are, in the writer’s experience, unlikely to occur in practice.

The tables do not address the question of whether equal-
leg web members are more efficient than unequal-leg angles 
connected through the short leg, a question without a clear 
answer. In general, an equal-leg angle will be stronger than 
the unequal-leg angle of the same weight, but not always. 
In most cases, the differences are small enough to make it 
reasonable to standardize on only a few equal-leg sizes for 
a given job.
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Table 3. Single Equal-Leg Angles as Web Members of Box or Space Trusses: Least-Weight Sections

Length 
L, ft

Required Axial Strength Pr, kips (LRFD)

10 15 20 25 30 40 50

5

Size L212×22×x L3×3×x L3×3×4 L32×32×4 L32×32×4 L4×4×c L4×4×a

lb/ft 3.07 3.71 4.89 5.74 5.74 8.17 9.72

Pc 13.3 17.8 24.2 30.5 30.5 46.6 55.4

6

Size L22×22×x L3×3×x L3×3×4 L32×32×4 L4×4×4 L4×4×c L4×4×a

lb/ft 3.07 3.71 4.89 5.74 6.59 8.17 9.72

Pc 10.8 15.8 21.2 27.7 33.4 42.9 50.9

7

Size L3×3×x L3×3×4 L32×32×4 L4×4×4 L4×4×4 L4×4×a L5×5×c

lb/ft 3.71 4.89 5.74 6.59 6.59 9.72 10.3

Pc 13.5 17.7 24.8 30.8 30.8 46.5 53.8

8

Size L3×3×x L32×32×4 L32×32×4 L4×4×4 L4×4×c L4×4×a L5×5×c

lb/ft 3.71 5.74 5.74 6.59 8.17 9.72 10.3

Pc 11.4 21.5 21.5 28.1 35.4 41.9 50.5

10

Size L3×3×14 L32×32×4 L4×4×4 L4×4×c L4×4×a L5×5×c L5×5×a

lb/ft 4.89 5.74 6.59 8.17 9.72 10.3 12.3

Pc 10.7 15.9 22.1 27.1 31.9 44.0 53.1

12

Size L32×32×4 L4×4×4 L4×4×c L5×5×c L5×5×c L5×5×a L6×6×c

lb/ft 5.74 6.59 8.17 10.3 10.3 12.3 12.4

Pc 12.2 17.1 21.0 36.3 36.3 43.1 51.6

14

Size L4×4×4 L4×4×c L5×5×c L5×5×c L5×5×a L6×6×c L6×6×a

lb/ft 6.59 8.17 10.3 10.3 12.3 12.4 14.8

Pc 13.6 16.7 29.5 29.5 34.9 44.8 54.1

16

Size L4×4×4 L5×5×c L5×5×c L5×5×a L6×6×c L6×6×a L6×6×7/16

lb/ft 6.59 10.3 10.3 12.3 12.4 14.8 17.2

Pc 11.1 24.3 24.3 28.8 38.3 45.5 52.4

Notes:	1. Pc = ϕPn is the design compressive axial strength (LRFD), kips, using ASTM A36 steel ( Fy = 36 ksi).
		  2. Web members must be welded or bolted (two bolts minimum) on same side of chord or gusset.

The AISC Specification is silent on the subject of single-
angle truss chords or legs. Both the ASCE Manual (1988) 
and the ASCE Standard ANSI/ASCE 10-90 specify that 
single-angle tower leg members (i.e., chords braced in both 
directions) may be designed using KL /r = L /rz , where L is 
the system length and rz the minor radius of inertia. In addi-
tion, both documents limit the ratio L /rz to a maximum value 
of 150. This recommendation is followed in Table 5, which 
lists least-weight equal-leg angles for chord members. 

Behavior of Axially Loaded  
Single Angles

The behavior predicted by Chapter H for unsymmetrical 
angles is in contradiction with what Section E5 leads one 
to expect. According to Section E5, angles with practical 

slenderness ratios are substantially stronger if they are con-
nected through the short leg. The beam-column approach of 
Chapter H leads to the opposite conclusion (Sakla, 2001): 
from a maximum if the load is applied at the centroid, the 
axial strength would fall off rapidly away from the centroid. 
Dr. Lutz’s comments (2006) show how difficult it is to rec-
oncile the experimental evidence embodied in Section E5 
with the beam-column approach of Chapter H. Section E5 
is based on an experimental program intended to validate 
a simpler approach, similar to that in the ASCE Standard 
(Mengelkoch and Yura, 2002). More recently, finite element 
models have been used to further support Section E5 (Earls 
and Keelor, 2007).

To gain some insight into the behavior of an axially load-
ed single angle, consider such an angle hinged at both ends. 
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The elastic bifurcation buckling load P may be found from a 
general equation developed in Timoshenko and Gere (1961), 
specialized for axially loaded angles by dropping the bend-
ing moments M1 and M2 and setting Cw = 0:
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In this equation, w0 and z0 are the coordinates of the shear 
center, and ew and ez are the eccentricities of the point of ap-
plication, relative to the centroid. The other symbols are:
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Care must be taken to apply the proper signs to the torsional 
parameters βw and βz and to the coordinates w0 and z0 of the 
shear center. For instance with the sign conventions of Fig-
ure 3, βw and βz are positive, w0 and z0 negative. Equation 30 

Table 4. Single Equal-Leg Angles as Web Members of Planar Trusses: Least-Weight Sections

Length 
L, ft

Required Axial Strength Pr, kips (LRFD)

10 15 20 25 30 40 50

5

Size L22×22×x L3×3×x L3×3×14 L32×32×4 L4×4×4 L4×4×c L5×5×c

lb/ft 3.07 3.71 4.89 5.74 6.59 8.17 10.3

Pc 12.0 16.1 21.7 27.5 32.7 42.0 55.0

6

Size L3×3×x L3×3×4 L32×32×4 L4×4×4 L4×4×4 L4×4×a L5×5×c

lb/ft 3.71 4.89 5.74 6.59 6.59 9.72 10.3

Pc 14.4 19.1 24.9 30.3 30.3 45.8 51.9

7

Size L3×3×x L3×3×4 L32×32×4 L4×4×4 L4×4×c L4×4×a L5×5×a

lb/ft 3.71 4.89 5.74 6.59 8.17 9.72 12.3

Pc 11.9 15.5 22.4 27.9 35.2 41.8 59.7

8

Size L3×3×4 L32×32×4 L4×4×4 L4×4×4 L4×4×c L5×5×c L5×5×a

lb/ft 4.89 5.74 6.59 6.59 8.17 10.3 12.3

Pc 12.5 18.9 25.6 25.6 32.0 45.8 55.7

10

Size L32×32×4 L4×4×4 L4×4×c L4×4×a L5×5×c L5×5×c L6×6×c

lb/ft 5.74 6.59 8.17 9.72 10.3 10.3 12.4

Pc 13.3 19.0 23.3 27.4 40.0 40.0 52.4

12

Size L4×4×4 L4×4×c L4×4×a L5×5×c L5×5×c L6×6×c L6×6×a

lb/ft 6.59 8.17 9.72 10.3 10.3 12.4 14.8

Pc 14.2 17.4 20.4 31.7 31.7 47.3 57.6

14

Size L5×5×c L5×5×c L5×5×c L5×5×a L6×6×c L6×6×c L6×6×v

lb/ft 10.3 10.3 10.3 12.3 12.4 12.4 17.2

Pc 24.8 24.8 24.8 29.3 40.1 40.1 54.9

16

Size L5×5×c L5×5×c L5×5×a L6×6×c L6×6×c L6×6×v L6×6×2

lb/ft 10.3 10.3 12.3 12.4 12.4 17.2 19.6

Pc 19.9 19.9 23.5 32.6 32.6 44.4 50.1

Notes:	1. Pc = ϕPn is the design compressive axial strength (LRFD), kips, using ASTM A36 steel ( Fy = 36 ksi).
		  2. Web members must be welded or bolted (two bolts minimum) on same side of chord or gusset.
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Table 5. Single Equal-Leg Angles as Chord Members of Box Trusses: Least-Weight Sections

Length 
L, ft

Required Axial Strength Pr, kips (LRFD)

20 25 30 40 50 65 80

4

Size L3×3×x L3×3×4 L3×3×4 L32×3/2×4 L32×3/2×c L4×4×a L32×3/2×2

lb/ft 3.71 4.89 4.89 5.74 7.11 9.72 11.0

Pc 23.6 33.0 33.0 41.4 52.5 76.2 81.2

5

Size L3×3×4 L3×3×4 L32×32×4 L4×4×4 L4×4×c L4×4×a L5×5×a

lb/ft 4.89 4.89 5.74 6.59 8.17 9.72 12.3

Pc 27.1 27.1 36.1 43.5 57.4 68.3 95.0

6

Size L3×3×4 L32×32×4 L32×32×4 L4×4×c L4×4×c L5×5×c L5×5×a

lb/ft 4.89 5.74 5.74 8.17 8.17 10.3 12.3

Pc 21.4 30.5 30.5 50.2 50.2 69.5 87.4

7

Size L32×32×4 L32×32×4 L4×4×4 L4×4×c L4×4×a L5×5×a L5×5×v

lb/ft 5.74 5.74 6.59 lb/ft 8.17 9.72 12.3 14.2

Pc 25.0 25.0 33.5 42.9 50.9 79.2 92.5

8

Size L4×4×4 L4×4×4 L4×4×c L4×4×a L5×5×c L5×5×a L5×5×v

lb/ft 6.59 6.59 8.17 9.72 10.3 12.3 14.2

Pc 28.4 28.4 35.8 42.4 57.1 70.6 82.3

10

Size L5×5×c L5×5×c L5×5×c L5×5×c L5×5×a L6×6×a L6×6×v

lb/ft 10.3 10.3 10.3 10.3 12.3 14.8 17.2

Pc 44.4 44.4 44.4 44.4 53.7 79.2 94.6

12

Size L5×5×c L5×5×c L5×5×c L6×6×c L6×6×c L6×6×v L6×6×2

lb/ft 10.3 10.3 10.3 12.4 12.4 17.2 19.6

Pc 32.6 32.6 32.6 52.1 52.1 75.2 85.6

14

Size L6×6×c L6×6×c L6×6×c L6×6×c L6×6×v L6×6×b L8×8×2

lb/ft 12.4 12.4 12.4 12.4 17.2 21.9 26.4

Pc 41.5 41.5 41.5 41.5 57.2 71.9 134

Notes:	1. Pc = ϕPn  is the design compressive axial strength (LRFD), kips, using A36 steel ( Fy = 36 ksi).
		  2. KL/rz is limited to 150.	

is a cubic equation in P, whose smallest positive root is the 
critical or elastic buckling load P. Knowing that 0 < P ≤ Pez, 
the equation may be solved by a numerical method such as 
the Birge-Vieta iteration (Hildebrand, 1987).

If the ends of the angle are fully restrained, Equation 30 
still applies, except that Pew and Pez are multiplied by 4. Yu 
(1985) lists similar equations that include certain factors re-
flecting different end restraints. All these equations have the 
same form, which shows that while the quantitative results 
will be somewhere between the two extremes of full re-
strained or hinged ends, the qualitative behavior will remain 
the same. Therefore, Equation 30 provides a good behavioral 
model for an axially loaded single-angle member.

If ez = z0, Equation 30 breaks down into two equations

	

( )( )( )

P P

P P GJ Ps P e w

ez

ew w

=

− − − − =1
2

0
2 0

	 (32a)

		  (32b)

The condition ez = z0 means that the load is applied on a line  
S – w' issued from the shear center S parallel to w-w as 
shown on Figure 5. Furthermore, if the coordinate ew is not 
larger that a certain value ew1, the critical load is constant and 
equal to Pez. If the load is applied to the right of point M, then 
Equation 32b has a root smaller than Pez, and that root is the 
critical load. Since an equal-leg angle is singly symmetric, 
line S – w' is of course the principal axis w-w. Note, however, 
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that the sign of the coordinate ew1 depends on several param-
eters, in particular the length L of the member. For instance, 
for a L5×5×c angle, ew1 = −0.54 in. for L = 60 in., +0.03 in. 
for L = 84 in., and +0.39 in. for L = 96 in. For shorter spans 
and thinner angles, the critical load at the centroid may be 
considerably less than that at the shear center.

The general case of an axially loaded unequal-leg angle (or  
of an unsymmetrical open shape in general) does not seem to 
have been investigated to any extent. Usually, the discussion 
is limited to the fact that if the load is applied at the shear 
center, Equations 32 replace Equation 30, and the buckling 
modes are uncoupled (Timoshenko and Gere, 1961). Since 
the centroid of a unequal-leg angle is not on line S-w', apply-
ing the axial thrust at the centroid results in a critical load  
always less than at the shear center, Pez. For instance, a 96-in.-
long L6×4×a has an elastic buckling load P = Pez = 86.3 kips 
if the thrust is applied at the shear center, and P = 0.90Pez = 
77.1 kips if it is applied at the centroid.

The behavior of eccentrically loaded angles predicted 
by Section E5 is qualitatively confirmed by the results of 
Equation 30. Examining these results is easier if we use the 
distances δx and δy shown on Figure 6. Consider again the 
96-in.-long L6×4×a. If it is attached through its long leg to a 
chord or gusset 2 in. thick, it could be assumed that the load 
is applied in the plane of contact (δx = 0) at the middle of the 

long leg (δy = 3 in.). This assumption leads to P = 63.5 kips. 
If applying the load in the plane of contact might be judged 
too optimistic, move the axial force to the centerline of the 
gusset, or δx = −0.25 in. away; the critical load becomes P 
= 63.3 kips, a negligible decrease. On the other hand, if the 
angle is connected through its short leg so that δx = 2 in. and 
δy = 0, the critical load is P = 83.9 kips for δy = 0, decreasing 
to P = 82.9 kips for δy = −0.25 in. Since there is no apparent 
reason why the axial force should be acting at mid-thickness 
of the chord rather than at mid-thickness of the web member, 
it seems reasonable to assume that the transfer of force takes 
place in the plane of contact. In any case, theory confirms 
that connecting an angle through its short leg is more effi-
cient than attaching it through its long leg.

Figure 7 presents results obtained by moving the axial load 
in the plane of contact, that is, along the outside perimeter 
of the angle. The curve for an L5×5×a is not shown, as it is 
practically identical to that for an L6×4×a attached through 
the long leg, shown on the figure. The elastic buckling load 
for either short- or long-leg connection does not vary much 
in the vicinity of the shear center, but falls off rather rap-
idly for equal-leg angles or unequal-leg angles attached 
through the long leg. From a stability standpoint, a single-
angle member, web or chord, is more efficiently loaded at or 
near its shear center. Flexural yielding considerations may 
modify this conclusion.

The elastic critical load depends on the thickness t of the 
angle. In the determinant of Equation 30, the parameter s1 
is nearly independent of t, the Euler loads are roughly pro-
portional to t, while the torsional rigidity GJ increases with 
the cube of t. Increasing the thickness reduces the twisting 
tendency of the member, which is translated by flatter curves 
than those shown on Figure 7. In other words, thicker angles 
are less sensitive to axial load location; the L5×5×a, whose 
curve is the same as that of the L6×4×a attached through the 
long leg, has a smaller fall-off than the thinner L5×5×c.

Fig. 7.  Relative Critical Load of 8-ft long Single
Angle Loaded in Plane of Contact
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Fig. 5.  Shear Center S and Line S-w'

z

w

x

y

�

C
w'

S

M

ew1

z0

Fig. 5. Shear center S and line S-w'.

Fig. 6.  Point of Application of Axial Load
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The complete differential equations derived by Timosh-
enko and Gere (1961) include not only the thrust, P, which 
may be eccentric, but also two end moments about the prin-
cipal axes, M1 and M2 (M1 is the buckling moment listed in 
Equation 15). It is obvious from the very form of these equa-
tions that there is a strong interaction between axial force 
and moments. If there is an axial thrust P, the presence of 
constant moments has for only effect to increase or decrease 
the eccentricities ew and ez. While it may lead to a safe de-
sign, simply adding the effects of the two types of loads as in 
a beam-column does not seem consistent with the behavior 
of a single angle.

Conclusions

Several arguments, not the least being simplicity, are pre-
sented to limit the number of critical points or “points of 
consideration” in the cross- section of a steel angle to three. 
Table 1 lists the corresponding section moduli.

The several clauses in the AISC Specification governing 
lateral-torsional buckling are examined, and some simplifi-
cations are proposed. Calculations summarized in Table 2 
show that the geometric and principal axis approaches lead 
to somewhat different results, but not exceedingly so. Sug-
gestions are made regarding due regard to stress signs rec-
ommended by the AISC Specification.

Section E5 of the AISC Specification is a very welcome 
simplification for the design of single-angle web members. 
Tables 3, 4 and 5 are presented to aid the designer in the 
selection of economical sizes in accordance with the require-
ments of that Section.

Not only has Section E5 introduced a new approach in to 
the design of eccentrically loaded single-angle web mem-
bers, it also shows that connecting such members through 
the short leg is a more efficient use of material. This, how-
ever, is in contradiction with the results of beam-column cal-
culations specified in Sections E3 or E7, according to which 
connecting an angle through its long leg would indicate a 
stronger member. A theoretical equation presented by Ti-
moshenko and Gere (1961)is used to examine the qualitative 
behavior of eccentrically loaded single angles. According to 
it, the shear center plays a key role in the behavior of a steel 
angle, and the load transfer from chord to web may be as-
sumed to take place in the plane of contact. The elastic criti-
cal load is not too sensitive to the position of the load along 
the connected leg. Finally, it confirms the experimental evi-
dence that an angle is stronger if it is connected through its 
short leg.
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Appendix

Effective Slenderness Ratio of Single-Angle Web Members

In this Appendix, the symbols rx, ry and rz are the radii of gyration listed in the tables of dimensions  
of the AISC manuals.

1. Planar Trusses

For web members of planar trusses, the relevant equations are E5-1 and E5-2. For equal-leg angles  
( )r r ru x y= =  or unequal-leg angles connected through the long leg ( )r ru y= :

a. When L /ru ≤ 80

b. When L /ru > 80

KL

r

L

r
= +72 0.75

u

KL

r
= +32 1.25

LL

ru

≤ 200
	

(A2-1)

(A2-2)

For unequal-leg angles connected through the short leg, with ρ = <b bl s/ 1.7:

1 0. ( ) .

1 0( )
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≥4 2 95.ρ

KL

r

L

rx

L

rz

= + + ≥ ≤32 1 25 4 2 95 200ρ

a. When L /rx ≤ 80

b. When L /rx > 80
	

(A2-3)

(A2-4)

2. Box or Space Trusses

For web members of box trusses, the relevant equations are E5-3 and E5-4. For equal-leg angles  
( )r r ru x y= =  or unequal-leg angles connected through the long leg ( )r ru y= :

KL

r

L

r
= +60 0.8

u

KL

r

L

ru

≤= +45 200

a. When L /ru ≤ 75

b. When L /ru > 75
	

(A2-5)

(A2-6)

For unequal-leg angles connected through the short leg, with ρ = <b bl s/ 1.7:

+
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− 1 0( )
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= +45 6 2 82 200.ρ

a. When L /rx ≤ 75

b. When L /rx > 75
	

(A2-7)

(A2-8)
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