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Recognizing that the velocity at 4 is x = af, the above equation
becomes

1{J + mb*+Imb?
N.."M 5 .&N

a

Thus the effective mass at 4 is

J + mb* +1mb?

QN

If the push rod is now reduced to a spring and an additional mass at

the end 4, the entire system is reduced to a single spring and a mass
as shown in Fig. 2.2-5,

my =

EXAMPLE 2.2-6

A mmd..%_% supported beam of total mass m has a concentrated mass M
at B_ﬂmﬁm.b. Determine the effective mass of the system at midspan
and find its fundamental frequency. The deflection under the load

9.8 to a concentrated force P applied at midspan is P/®/48EI. (See
Fig. 2.2-6 and table of stiffness at end of chapter.)
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V4 w Figure 2.2-6.

Solution: We will assume the deflection of the beam to be that due
to a concentrated load at midspan or

3x x\3 1
rrm To47)] (F<3)
The maximum kinetic energy of the beam itself is then
v pi/22m | 3x x\37)? 1
Toax = = = —4(= = . )y
max 2 v\nnv / “v\iwx—ﬁ ] A.A / v H—H dx = MAOAWMQ Bv.v\w—.-wx
The effective mass at midspan is then equal to

My = M + 04857 m

and its natural frequency becomes

48EI
I*(M + 0.4857 m)

n

2.3 VISCOUSLY DAMPED FREE VIBRATION

When a linear system of one degree of freedom is excited, its response will
depend on the type of excitation and the damping which is present. The
equation of motion will in general be of the form

m% + F; + kx = F(t) (2.3-1)

where F(7) is the excitation and F, the damping force. Although the actual
description of the damping force is difficult, ideal damping models can be
assumed that will often result in satisfactory prediction of the response. Of
these models, the viscous damping force, proportional to the velocity, leads
to the simplest mathematical treatment.

Viscous damping force is expressed by the equation

Fy = o (232)

where c is a constant of proportionality. Symbolically it is designated by a
dashpot as shown in Fig. 2.3-1. From the free-body diagram the equation
of motion is seen to be \

mx +cx +kx = F(i) (2.3-3)

The solution of the above equation has two parts. If F(r) = 0, we have the
homogeneous differential equation whose solution corresponds physically
to that of free-damped vibration. With F(#) # 0, we obtain the particular
solution that is due to the excitation irrespective of the homogeneous
solution. We will first examine the homogeneous equation that will give us
some understanding of the role of damping.

With the homogeneous equation

mx +cx +kx =0 (2.3-4)
the traditional approach is to assume a solution of the form
x =e¥ (2.3-5)
k c ‘ A
o ‘NW # kx cx
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Figure 2.3-1.
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26  Free Vibration

where s is a constant. Upon substitution into the differential equation, we
obtain
(ms® + ¢es + k)e™ =0
which is satisfied for all values of r when
c k

S —s+—=0 (2.3-6)
m m

Equation (2.3-6), which is known as the characteristic equation, has two
roots

h. m.n \ﬁ
w1= 75V (a) 23-7)

Hence, the general solution is given by the equation
x = Ae*" + Be* (2.3-8)
where 4 and B are constants to be evaluated from the initial conditions
x(0) and x(0).
Equation (2.3-7) substituted into (2.3-8) gives

x = NIQ\NS!A\AN(Q\NS%I*\%. ‘4 Be~ Vie/2m)2~k/m _v ANWu@V
The first term e ~©/2) jg simply an exponentially decaying function of
time. The behavior of the terms in the parentheses, however, depends on
whether the numerical value within the radical is positive, zero, or nega-
tive,

When the damping term (c/2m)? is larger than k /m, the exponents
in the above equation are real numbers and no oscillations are possible.
We refer to this case as overdamped.

When the damping term (c/2m)? is less than k/m, the exponent

becomes an imaginary number, + J\w /m — (c/2m)* 1. Since

exiVi/m=(e/zmf i - o [ K _ Alquvn % ismy /X Ahvn
m 2m m 2m
the terms of Eq. (2.3-9) within the parentheses are oscillatory. We refer to
this case as underdamped.
As a limiting case between the oscillatory and nonoscillatory motion,

we define critical damping as the value of ¢ which reduces the radical to
zero.

t

It is now advisable to examine these three cases in detail, and in
terms of quantities used in practice. We begin with the critical damping,

Critical Damping. For critical damping c,, the radical in Eq. (2.3-9

is zero.
A c, V,N _k -2
2m m n
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or
¢, = 2Vkm = 2ma, (2.3-10)

Itis no=<oag,~ to express the value of any damping in terms of the critical
damping by the nondimensional ratio

¢ = (2.3-11)

oo

which is called the damping ratio. We now express the roots of Eq. (2.3-7)
in terms of { by noting that

2m
Equation (2.3-7) then becomes

s12=(=¢ 82— 1 o, (2.3-12)

and the three cases of damping previously discussed now depend on
i 1 to unity.
hether ¢ is greater than, less than, or equal . .
" Figure 2.3-2 shows Eq. (2.3-12) plotted in a complex plane with ¢

along the horizontal axis. If { = 0, Eq. (2.3-12) reduces to s, , Jw, = %= Mu so
that the roots on the imaginary axis correspond to the undamped case. For

0 < ¢ < 1, Eq. (2.3-12) can be rewritten as

RVl

Wy

j ints on a circular arc
The roots s, and s, are then conjugate complex pot
Imaginary axis

1.0

Real
axis

Figure 2.3-2.
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converging at the point s, ,/ W, = — 1.0. As ¢ increases beyond unity, the
roots separate along the horizontal axis and remain real numbers. With

this diagram in mind, we are now read i .
? to exa ;
Eq. (2.3-9). y mine the solution given by

Oscillatory Motion. [{ < 1.0 (Underdam ituti
: . . ped Case).] Substituting Eq.
(2.3-12) into (2.3-8), the general solution becomes . e

x = et geV1=F it 4 po=iVI-E? ') (2.3-13)

The above equation can also be written in either of the following two

forms
Xe =S sin(\1 — ¢2 w,r + 3) (2.3-14)
= m#e;AD mm:/\_llﬂsi + G, oom/\”wlme‘\v (2.3-15)
where the arbitrary constants X » ¢, or C,, C, are determined from initial

conditions. With initial conditions x(0) and %(0). E -
ponditions. | (9] x(0), Eq. (2.3-15) can be shown

ot 0 + £, x(0) |
x = et e simy1 = §7 w, + x(0) cosy1 — {2 wyr

=
]

(2.3-16)

The equation indicates that the Srequency of damped oscillation is equal to

27
“a == eVl - §? (23-17)

Figure 2.3-3 shows the general nature of the oscillatory motion.
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Figure 2.3-3. Damped oscillation { < 1.0.
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Nonoscillatory Motion. [{ > 1.0 (Overdamped Case).] As § exceeds
unity, the two roots remain on the real axis of Fig. 2.3-2 and separate, one
increasing and the other decreasing. The general solution then becomes

x = Ae(=$+ Ve =)ot o go(=§= V=1 Jous (2.3-18)

where
L0+ (¢ +8% = 1 )w,x(0)
282 — 1
and
o _ 30 = (5 VP - 1 Jax(©)

NSL\W.N -1

The motion is an exponentially decreasing function of time as shown in
Fig. 2.3-4, and is referred to as aperiodic.
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Figure 23-4. Aperiodic motion §{ > 1.0. B

Critically Damped Motion. [{ = 1.0] For { = 1, we obtain a double
root s; = s, = — w,, and the two terms of Eq. (2.3-8) combine to form a

single term
x=(A4 + B)e ' = Ce™“*
which is lacking in the number of constants required to satisfy the two

initial conditions. The solution for the initial conditions x(0) and x(0) can
be found from Eq. (2.3-16) by letting { — 1

x = e~ {[%(0) + w,x(0)]¢ + x(0)} (2.3-19)

Figure 2.3-5 shows three types of response with initial displacement x(0).
The moving parts of many electrical meters and instruments are critically
damped to avoid overshoot and oscillation.



