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This publication provides guidance on the design of steel beams subject to torsion.

It owes much to the earlier SCI publication PO57 Design of members subject to
combined bending and torsion prepared by Nethercot, Salter and Malik and published
in 1989. Although the scope is similar and the fundamental theory is unchanged,

the guidance has been revised to facilitate design in accordance with Eurocode 3
Design of steel structures and to accommodate the changes in the ranges of structural
sections for which torsional parameters are provided. The rules for strength verification
in Eurocode 3 differ in important respects from those in BS 5950 and there are many

changes of terminology and symbolism.

The new publication was prepared by Alastair Hughes, of SCI, with significant
contributions from David lles and Abdul Malik, both of SCI. Account has been
taken of feedback from the SCI Members who responded to a request to comment

on publication PO57.

The preparation of this guide was funded by Tata Steel; their support is
gratefully acknowledged.
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In most steel-framed structures, beams are subject only to bending and not to torsion
but situations do arise where torsional effects are significant, typically where the
demands of practical construction result in eccentrically applied loads. The designer
will then need to evaluate the magnitudes of the torsional effects and to consider the
resistances of the members under the combined bending and torsion.

This publication provides a brief overview of the torsional performance of open and
closed structural sections and distinguishes between St Venant torsional effects
(sometimes referred to as pure torsion) and warping torsional effects. It explains that
the interaction between the two types of effect depends on the torsional parameters
for the cross section, the loading and the member length. Expressions and design
curves are given for evaluating the two types of effect and guidance is given on the use

of simplified approaches that avoid the need for detailed evaluation.

Members subject to torsion will in most cases also be subject to bending. Guidance
is given on the verification according to Eurocode 3 of the combined effects due to
bending and torsion, both in terms of resistance of the cross section and in terms of

resistance against lateral torsional buckling.

Torsional parameters for a range of rolled sections are given in an Appendix. Six short

worked examples illustrate the verification for typical design situations.






1.1 Torsion of beams

In most steel-framed structures, beams are subject only to bending and not to torsion.
In buildings, beams are usually hot rolled I or H sections, proportioned for optimum
bending performance about their major axis. These are ‘open’ sections and are
relatively flexible in torsion; it is usually arranged that the loads on such sections act

through the shear centre and thus there are no torsional effects.

However, situations arise where torsional effects are significant, typically where the
demands of practical construction result in eccentrically applied loads. For instance,
precast units are often supported on one side of a flange or on a shelf angle; in the
temporary condition, with one side loaded, most of the load is applied eccentrically.
Another example would be a beam which cannot, for architectural reasons, be placed

concentrically under the wall it supports.

Faced with such situations, the designer will need to evaluate the magnitudes of the
torsional effects and to consider the resistances of the members under the combined
bending and torsion. In some circumstances the designer may choose to used ‘closed’
structural hollow sections, which have a much better performance in torsion; effects
and resistances for these will have to be evaluated. At the ends of members subject to
torsional loads, torsional restraint must be provided and the connections will have to
be designed to resist the forces that provide the restraint.

For simplicity in design and detailing the following approach to steel frame design

is suggested:

1. Take all reasonable steps to eliminate torsional effects, avoiding eccentricity by
placing beams in line with the loads, or adding beams in another direction to carry
the eccentric loads in direct bending.

2. Ifitis not possible to avoid subjecting a member to significant torsional moment,
use a hollow section (typically RHS for a beam), if practical to do so.

3. Where a member is subject to torsion, follow the approach given in this publication
to quantify the torsional effects and to verify the member under combined bending

and torsion.
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1.2 Scope of this publication

Although much of the guidance in this publication is not standard-dependent, it is
assumed that the design of steel beams will be carried out in accordance with
Eurocode 3, principally in accordance with Eurocode 3 Part 1.1, published in the UK as
BS EN 1993-1-1™ and accompanied by its UK National Annex?. A general introduction

to design to the Eurocodes is given in SCI publication P3615!.

The elastic theory of torsion has been discussed in many publications and is not
repeated here. However, the detailed theory and expressions for determining torsional
effects are probably unfamiliar to most building designers. Section 2 therefore sets
out a relatively simple summary of the elastic theory of torsion and makes reference to
Appendices that provide detailed expressions for evaluating torsional parameters and

determining torsional effects in a range of design situations.

Section 3 discusses the design of beams for combined bending and torsional effects,
principally in relation to straight I section beams. Particular design considerations for
channels and asymmetric beams are given in Sections 4 and 5. A brief overview of the
design of structural hollow sections is given in Section 6; the wider considerations for
box girders, including distortional effects, are not covered.

Beams curved on plan will be subject to torsion as well as vertical bending. Guidance
on the design of curved beams is given in SCI Publication P281“ and is not discussed
within the present publication.

To illustrate the application of the guidance six examples are presented, in
calculation sheet format, in Appendix E. These examples illustrate both the simplified
approach to determining torsional effects and the detailed evaluation using the

expressions in Appendix C.

Section properties for rolled steel sections are given in SCI publication P363!% but
not all the parameters needed for evaluation of stresses due to torsional effects are
tabulated there. Appendix A supplements P363 by presenting tables of torsional
parameters for UKB, UKC, PFC and ASB sections; the values have been determined
using the expressions in Appendix B. Only sections currently produced are included.
If properties for older sections are required, reference may be made to the earlier SCI
publication Design of members subject to combined bending and torsion (PO57)™! or
values may be calculated using the general expressions in Appendix B.

Appendix C gives mathematical expressions for determining angle of rotation and its
three derivatives for a range of design situations. As explained in the main text, these
values are used to determine angle of rotation, St Venant torsional moment, warping
torsional moment, and warping moment. For the more common situations, Appendix D

presents graphically values derived using those expressions.



1.3 Terminology and symbols

The terminology and use of symbols in this publication generally follows that in

the Eurwocodes. Generally, terms and symbols are defined where they are used.
Unfortunately, the terms and symbols are not always the same as those used in
classical reference texts. The principal terms used in this publication are given below.

Torque is a commonly used term in relation to torsion but here it is used only in the context

of an applied twisting moment (an action in Eurocode terms). The symbol T is used.

Torsional moment is the internal twisting moment (about the beam’s longitudinal axis).
As explained later, it is usually considered in two components, St Venant torsional
moment and warping torsional moment. In Eurocode terms, the design values of the

total moment and its two components are symbolized as T,

T, and T ., respectively.
Warping Moment is the bending moment in a flange acting as a result of restraint of
warping. The moments in the two flanges are equal and of opposite sign. The design

value is symbolized as M
w,Ed

Note: The term Bimoment is not used in this publication but is found in BS EN 1993-1-1
and is referred to in some texts. It is not a moment but is the product of the warping
moment M ., and the centre-to-centre distance between the flanges. This much
misunderstood term, often confused with the warping moment, is not essential to the
evaluation of effects and resistances. Where it is mentioned in §6.2.7(4), it effectively

means ‘due to the restraint of torsional warping’.

The angle of rotation is given the symbol ¢. Its derivatives d¢/dx, d*¢/dx?, d*¢/dx* are
symbolized ¢, ¢", ¢'"’ respectively.

St Venant torsional constant is the section property relating St Venant torsional
moment to the first derivative of rotation (twist per unit length). In Eurocode 3 it is

given the symbol 7 but in many texts the symbol J is used.

Warping constant is the section property relating warping torsional moment to the
third derivative of rotation. It has dimensions of length to the power six. In Eurocode 3

it is given the symbol I but in many texts the symbol H is used.

Shear modulus. The value of the modulus, G, is given by G = E/2(1 + v), where E'is
the modulus of elasticity and v is Poisson’s ratio. For structural steel, E/G = 2.6 and
G =~ 81000 N/mm?.

Torsional bending constant is given the symbol a and its value is given by a = \[EI, /GI, ,
where EI represents the warping stiffness and G/ is the St Venant torsional stiffness.
The parameter has dimensions of length. Although this length cannot readily be
visualized, it generally expresses the rate at which warping torsional moment
diminishes, from a position where warping is restrained. Generally, warping torsional
moments are a very small proportion of the total torsional moment beyond a distance
of about 3a from the position of warping restraint.
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1.4 References to Eurocode 3

For brevity, references to BS EN 1993-1-1 are given in the form §6.4.7, which is a
reference to clause 6.4.7, and NA.3, which is a reference to clause NA.3 in the UK
National Annex. Reference to expressions are given as, for example, Expression (6.21).

References to other Parts of Eurocode 3 are given in full.









Figure 2.1
St Venant
shear stresses

The elastic theory of torsion of uniform bars has been well developed in texts such as
Timoshemko!® and Trahairl” and the theoretical basis will not be explored here. This
Section reviews the elastic theory of torsion from a steelwork designer’s perspective,
particularly in relation to the torsion of I section beams.

Because all the theory outlined in this Section is elastic, the principle of superposition

may be applied when combining effects due to different actions.

2.1 StVenant torsion

A uniform bar or beam that is subject to equal and opposite torques at each end will,
if the ends are free to warp out of their planes, resist the torque at each cross section
by the pattern of shear stresses shown in Figure 2.1. The total effect of the shear
stresses over a cross section is equal to the torsional moment in the beam and the
beam will twist about a longitudinal axis known as its shear centre (see Section 2.5 for
discussion on the location of the shear centre).

Such behaviour is sometimes referred to as ‘pure torsion’ but more commonly as
St Venant torsion, on account of the theory developed initially by St Venant.

7

Stress variation
(in all elements)

Shear stresses in open sections

[l i

Stress variation
(near uniform)

Shear stresses in closed sections
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Figure 2.2

Plan view of

an I section
beam subject to
uniform torsion

The much greater effectiveness of closed sections in torsion can be appreciated

by comparing patterns of shear stresses in open and closed circular sections in
Figure 2.1. For the closed section all the shear stresses are in the same rotational
direction, thus maximizing their effect. In the open section (the circle with a slit) the
shear stresses are in opposite directions at opposite faces and thus are much less

efficient in providing torsional resistance.

Cross sections of a circular bar or a circular hollow section will remain plane as a
result of uniform twisting but all other sections will experience warping of the cross
section, depending on the geometry of the cross section. The warping of solid sections
and hollow sections is generally very small and can be neglected. The warping of

angle and Tee sections is also very small and can be neglected. The warping of open
double-flanged sections, such as an I section or a channel, is much more significant;

it is essentially the effect of counter rotation of the flanges in their planes, such as

illustrated for an I section in Figure 2.2.

) I )

Ends free to warp

Twist

The change of rotation (twist) per unit length (i.e. the first derivative of rotation) of a

beam due to St Venant torsion is given by:

¢' =T1/GI,

where

T is the applied torque

G is the shear modulus

I is the St Venant torsional constant.

The rotation ¢ of one end of the bar relative to the other end is thus TL/GI...

The above expression for rate of change of rotation is valid for both open and closed
sections (but the torsional constant is evaluated differently - see Appendix C for typical

expressions for I sections and hollow sections.)

Stresses

St Venant shear stresses are proportional to ¢'. For an open section, the peak
(surface) stress is given by:



Figure 2.3

Plan view of an

1 section beam
subject to a torque
at mid-span

T =Gtd

where tis ¢ or ¢, as appropriate.

Since ¢’ = T/GI, this can be re-expressed as:

T = Ty/I,
or
T =T/W,

The parameter W, is referred to as the torsional section modulus and is similar to the
section modulus for bending, except that it gives a value of shear stress rather than
direct stress. Its value is not usually tabulated for open sections and the shear stress is
simply evaluated as 7t /I_in the web and Tt /I in the flange.

For a closed section, the same expression (7= T/W) applies, except that the value of
W is evaluated differently and is generally much greater for a closed section. Values for
W, for structural hollow sections are given in Appendix A and expressions for evaluating
W are given in Appendix B.4.

Note that the simple expression 7= Gt¢’ is strictly applicable only to parts of a cross
section where the thickness is uniform. If there are sharp re-entrant corners, the

St Venant shear stress is increased very locally. This does not require any special
consideration for ordinary design at ULS but if the torsion were due to fatigue loading,
more detailed assessment should be carried out at such locations. Such advice is

outside the scope of this publication.

2.2 Warping torsion

When warping of the cross sections is constrained, longitudinal stresses and additional
shear stresses are developed and the torsion is partly resisted by those additional
shear stresses. To illustrate the effect of warping restraint, consider a length of uniform
I section with a torque applied at the middle. The displacement of the beam would
then be as illustrated in Figure 2.3.

If the two halves of the beam had been separate, the left-hand half would have twisted

as in Figure 2.2 and the right-hand half would have twisted in the same manner but in

Ends free to warp
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the opposite sense. The warping displacements of the two halves at the middle would be
in opposite directions. But because the beam in Figure 2.3 is continuous at mid-span,
warping is fully restrained at that location. Both flanges are therefore constrained to bend
in plan and the beam will twist at a varying rate over each half span.

At any point in the span, the torsion is carried partly as St Venant torsion (i.e. by the
St Venant shear stresses) and partly as warping torsion (i.e. by the shear stresses
caused by the restraint of warping). This is expressed in Eurocode terminology
(Clause 6.2.7) as:

T =Tt Topg

Ed tEd

(the suffix Ed denotes design values)

The problem for the designer is how to determine these two design values? The key to

this is in formulating a deflected shape that reflects the various stiffnesses.

The separate torsional moments can be expressed in terms of angle of rotation and its
derivatives as follows:

— ! rr
T, =Gl ¢ —E1W¢
where
T is the torsional moment at a cross section

¢ and ¢'"" are the first and third derivatives of angle of rotation with respect to
distance x along the member
is the warping constant (for a symmetrical I section I = I (h —t,)*/4)

w

IT is the St Venant torsional constant.

Formulating the variation of angle of rotation ¢ for the general case where T, varies
along the beam and allowing for different end conditions is a complex task but for a
range of standard situations, algebraic expressions have been derived and these are
presented in Appendix C. Some of these are also presented as a series of curves in
Appendix D. These curves are readily usable by the designer, without the need to resort
to complex calculation.

Warping stresses

Restraint of warping (due either to internal restraint associated with non-uniform moment
or to external restraint at the ends) produces longitudinal stresses and shear stresses.
For a bi-symmetric I section, warping stresses are shown diagrammatically in Figure 2.4.

The longitudinal warping stresses are greatest at the flange tips and their value is given by:

o =tEW ¢"

w n0

where ¥ is the normalized warping function at the flange tip.



Figure 2.4
Elastic warping
stresses in an
1 section

~

The warping shear stress is greatest at the junction with the web and its value is given by:

r —ES_ ¢t

W

where § | is the warping statical moment.

The terms normalized warping function and warping statical moment, and the symbols
used to represent them, have been in use for some time. Although the terms and
symbols are not used in Eurocode 3, they are retained here for clarity. Their values
depend on the location: for convenience the key locations in the cross section are
labelled O and 1, for the tips of the flanges and the web/flange junction respectively.

(This labelling convention is extended for channel sections - see Section 4.)
Values for W and S are given in Appendix A.
In practice, for I sections, the warping shear stresses are small enough to be neglected.

For the verification of combined bending and torsion, it is more convenient to use the
value of the warping moment in the flange, rather than the longitudinal warping stress.
The value of the warping moment is given by:

M = EIW¢”/(h — 1)

w

Where (h — t,) is the distance between the centroids of the two flanges.
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Figure 2.5

Variation of St Venant
torsional moment in a
beam subject to unit

12

torque at mid-span

For bi-symmetric I sections, this may be re-expressed as:

M, =ELJ"(h—1)2

w

Where [, is the second moment of area of one flange (/.= 1 /2).

Simplified assessment of warping effects

A conservative assessment of warping effects in a flanged beam would be to ignore
the St Venant torsional stiffness and to treat the applied torque as a couple of forces
F (where F=T/(h — t,)). The warping moment in the flange is then simply calculated
as that due to the force F applied to a simply supported beam (M ., = FL/4). For long

w,

beams, this can be very conservative, as discussed in more detail below.

2.3 Relative magnitudes of St Venant torsion
and warping torsion

The above general expression for torsional moment 7, can be rearranged as:

TG, =¢ —a "

where a = |JEI, /GI,

The parameter a is known as the torsional bending constant and has the dimensions
of length. It is an indicator of how quickly the effect of warping restraint dissipates and
may be illustrated by considering the effect in a beam subject to a unit torque at mid-
span, as represented in Figure 2.3.

Figure 2.5 shows the variation of St Venant torsional moment for three values of the
ratio L/a. In each case the warping torsional moment is the difference between the

total torsional moment and the St Venant torsional moment. The curve for L/a = 1

0.6

L/a=1

————————
04 1 L/a=4
I L/a=10
I — = T(total)
02 N

0.0

=)
=3
o
[
o
w
=4
=~
7
b
Lo
=3
o

-0.2

StVenant torsional moment T/T

-04

-0.6

Distance along beam x/L

Ends of beam unrestrained against warping



Figure 2.6

Variation of warping
moment in a beam
subject to unit torque
at mid-span

Table 2.1
Significance of

St Venant torsion
and warping torsion
for different

types of section

0.05

o
P=
S

-~
N~~~ 7
/

-0.05

-0.10

— L/a=1
— l/a=4
— L/a=10

N T 7
AN

N

01 02 03 04 05 06 07 08 09

-0.15

-0.20

Warping moment in flange M, /FL

-0.25

Distance along beam x/L
Ends of beam unrestrained against warping
F=TI(h-t)

represents a fairly short beam, in which most of the torsion is resisted as warping
torsion - i.e. by bending in the flanges. The curve for L/a = 10 represents a much longer
beam; in which the majority of the beam resists torsion by St Venant torsion.

The magnitude of the warping moment in each flange for these three cases is shown
in Figure 2.6. For the short beam, the warping moment is almost equal to that for a
simple beam (FL/4) but for the long beam it is only 20% of FL/4 (for very long beams,
M tends to Fa/2).

From the above discussion, it can be seen that the relative magnitude of St Venant
torsional effects and warping torsional effects depend on the torsional bending
constant @, which in turn depends on the type of cross section. As a rough guide,
Table 2.1 indicates the relative significance of these two means of resisting torsion for
a range of section types.

It should also be remembered that the shorter the member, the greater will be the

significance of torsional warping (because the L/a ratio is smaller).

SECTION TYPE SHAPE ST VENANT WARPING
Circular hollow sections O v -
e ol alile ‘ :
e TL+ ‘ :
T fanged rled and [IC ‘ ‘
Thin cold-formed sections /Y x v

Key: v'= significant; x = negligible; — = does not act

13
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2.4 Example of the variation of rotation for
a cantilever

This example is included to illustrate numerically the variation in rotation and torsional
effects along a hot rolled beam cantilever. It might be noted that the behaviour of two
such cantilevers, joined back-to-back, would be equivalent to that of a single beam with

a central torque, as discussed in general terms in Section 2.3.

Consider the configuration of cantilever of length 1.73 m, using a 305 x 127 UKB42
beam section. For this beam section, the torsional constanta = 1 m.

The values of ¢ and its derivatives, determined from the expressions in Appendix C
are plotted in Figure 2.7 to show how each varies along the length of the member. The
following may be noted:

= The plot for ¢ can be viewed as the deflected shape of the flange, in plan.

= The plot for ¢' shows the variation in twist, to which St Venant shear strains and
stresses are proportional, as is the St Venant torsional moment 7.

= The plot for ¢'' can be viewed as related to the curvature of the flanges and thus as
proportional to the warping moment in one flange. For the other flange, the warping
moment is equal and opposite.

= The plot for ¢'” represents rate of change of curvature and is thus proportional to
the warping shear force in a flange. It is thus also proportional to warping torsional
moment 7' . Since the sum of 7 and T is constant in this example, its shape mirrors
that for ¢'.

If the length of the cantilever were greater, St Venant torsional moment at the tip would
be greater; if the cantilever were shorter the St Venant torsional moment at the tip

would be less.

2.5 The shear centre

When a member of a steel frame is subject to torsion, this is commonly the result of
eccentrically applied load. The torque generated is the product of the force and its perpen-

dicular distance from the shear centre of the section, which is not always its centroid.

For structural sections where there is an axis of symmetry, the shear centre will lie

on it. For structural sections which are doubly symmetric, the shear centre and the
centroid coincide. Figure 2.8 illustrates the shear centre location for various sections.
Dimensions to the shear centre are given in the relevant tables of Appendix A;
Appendix B explains how the location is calculated for typical asymmetric shapes.

A member twists about a longitudinal axis through its shear centre. In a beam,
important secondary effects depend on the position of the load. Loads applied above
the shear centre are ‘destabilizing’ (because the eccentricity increases as the member

twists) and loads applied below the shear centre are ‘stabilizing’ (see Section 3.3).
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2.6 Achieving warping restraint at member ends

The warping stiffness of a beam can - in theory at least - be improved by adopting fixed
ends. However, normal bolted beam end connections, even those designed to transmit
bending moment, cannot be relied upon to provide significant warping fixity. For fixity, it
would be necessary for the connection to prevent contra-rotation of the top and bottom
flanges in plan, either by clamping them together or by clamping both to another, rigid,

element. In practice, this is difficult to arrange.

Connection details designed to provide warping fixity are illustrated in Section 7.6,
but these are fabrication-intensive (and therefore expensive) and rarely, if ever,
employed in ‘normal’ building frames. Consequently, no graphs are presented in this
publication for warping fixity at the ends of the member, except for the cantilever case
(Graph E, Appendix D). Nevertheless, expressions for cases with warping fixity at the
ends are given in Appendix C for use in situations where the designer is confident that
the needed restraint (to both flanges, or one against the other) can be realized. One
case where warping fixity might apply would be a member continuous over two equal
spans with identical torsional actions in each span such that warping restraint could
reasonably be assumed at the central support by virtue of continuity and symmetry.
Continuity alone would not confer warping fixity, as the adjacent span could be loaded
in an asymmetric manner.

In reality, flanges attached to full depth end plates do have a certain amount of in-plane
rotational restraint from their connection to the adjacent structure. The ends are thus
neither restrained nor free but somewhere in between. Elastic theory could generate
solutions for less-than-total restraint against warping, even including different restraint
conditions for the two flanges (though this would invalidate the hitherto implied
assumption that the warping moments, not just the associated shear forces, are equal
and opposite). However, the added complication and the near-impossibility of reliable
prediction of rotational spring values make the pursuit of ‘partial warping restraint’ an

unattractive one. The choice is between all or nothing, and the safe choice is nothing.
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This Section considers the verification of steel beams in accordance with
BS EN 1993-1-1, when subject to combined bending and torsion. It is assumed that

elastic global analysis is used for determining bending moments and shear forces.

For torsional effects, §6.2.7(3) permits the values of T andT ., (St Venant torsional
moment and warping torsional moment) to be determined by elastic analysis. Thus the
interaction discussed in Section 2 and the graphs and expressions in the Appendices

may be used.

Alternatively, §6.2.7(7) allows the simplifications of neglecting torsional warping for a
closed hollow section or of neglecting St Venant torsion for an open section. In either
case, this completely avoids the process of determining the relative magnitudes of the
two types of torsional moment, although this can be conservative for long open section
members and is inappropriate for angle and Tee sections (where warping resistance is

very small).

At the ultimate limit state, BS EN 1993-1-1 requires verification of the resistance of the
cross section and resistance against buckling. For beams, the latter means that lateral
torsional buckling resistance needs to be determined; interaction with torsional effects
must also be considered.

At the serviceability limit state, BS EN 1993-1-1 and the UK NA only refer to compliance
with limits on deflection and vibration. There is no requirement to limit stresses at SLS
to the yield strength.

3.1 Resistance of cross sections

According to §6.2.5, the bending resistance of Class 1 and 2 cross sections may be
taken as the plastic moment resistance. Class 3 sections can only use the elastic
bending resistance. The shear resistance for rolled sections can usually be taken as
the plastic shear resistance according to §6.2.6, since such sections are not limited
by shear buckling. Bending resistance can be reduced by the presence of a high shear
force, according to §6.2.8; biaxial bending is considered in §6.2.9.

Where torsional effects are also present, §6.2.7(1) simply requires that T, /T, , < 1 but
does not give a rule for evaluating 7, .. Additionally, §6.2.7(4) says that the stresses due to

torsion should be taken into account, without being specific about how they are to be taken
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into account. §6.2.7(5) says that for elastic verification, the yield criterion of §6.2.1(5) may
be used; but where the section is Class 1 or 2, which most rolled I and H sections are, in

bending, the designer will often want to use the plastic bending resistance.

8§6.2.7(6) does cover the plastic bending resistance when torsion is present but it only
says that the torsional effects B, (by which it refers only to the stresses due to warping
torsion, not the shear stresses due to St Venant torsion, since B, is the bimoment)
should be determined by elastic analysis; it does not offer an interaction criterion. In
practice, at positions of maximum bending moment the torsional moment is usually
wholly warping torsional moment, with no St Venant torsional moment, so the latter
does not need to be considered.

3.1.1 Elastic verification

From either the detailed evaluation of the interaction between warping and St Venant
torsion or the simplifications allowed in §6.2.7(7), direct and shear stresses can be

determined at critical cross sections.

Open sections

Typical stress patterns for a beam loaded eccentrically at mid-span are shown
diagrammatically in Figure 3.1 and Figure 3.2.

The maximum direct (longitudinal) stresses occur at the tips of the flanges. At these
locations the shear stress is zero (where there is warping restraint, the St Venant shear
stresses will generally be negligible and especially so at the tips). The verification
according to §6.2.9.2 may be performed. In doing so, minor axis bending due to the
rotation of the section (i.e. M, ,, = ¢M, ) should be taken into account. The criterion
may be expressed in terms of moments:

My,Ed + Mz,Ed + MW,Ed < 1

My,el,Rd Mz,el,Rd

Where MﬂRd ~M /2

zel,Rd
Shear stresses due to warping torsion are very rarely significant. The (transverse) shear
force due to warping restraint is given simply by 7, ., /(7 -1, ). This is usually much less
than the (transverse) plastic shear resistance of the flange and may be neglected, as
permitted by §6.2.10.

Shear stress due to St Venant torsion will give rise to a small reduction in the plastic

shear resistance of the web, according to §6.2.7 (9).

Closed sections

Warping stresses in closed sections are very small and may be neglected. The
St Venant shear stresses will also usually be small but where they are significant
the interaction permitted by §6.2.10 is not appropriate for this situation, since the
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shear stress is constant across the flange and will coexist with maximum bending
stresses (unlike open sections where peak effects occur at different locations). It is
more appropriate to use the criterion in §6.2.1(5), which, in the absence of transverse
stresses, reduces to the following:

o 2 . 2
= +3] —X <1
[.fy/yMOJ (fy/ymoJ

Where O, 14 is the direct stress (longitudinal) due to biaxial bending.

By inspection, it can be seen that small values of St Venant shear stress (7, ;) would

not lead to significant limitation of direct stress.

3.1.2 Plastic verification

Designers will usually wish to utilize the plastic bending resistance of Class 1 and 2
cross sections, for economy. Where there is torsion, direct and shear stresses will
usually have been determined elastically. It is therefore necessary to consider the
potential effect of the plastification (due to bending) on this determination of torsional

moments and on verification of resistance.

Open sections

Where the simplification allowed by §6.2.7(7) for open sections has been adopted,

the torsional moment is assumed to be resisted by warping torsion alone; the warping
moment in the flange is then easily determined. Minor axis bending due to the rotation
of the section (i.e. M, = ¢M, ;) must also be taken into account but a note of caution
must be given about the value of the rotation of the beam when plastic resistance of
the flange is utilized: the rotation will be greater than the elastic value. An allowance for

increased rotation should be made, depending on the situation.

Where the interaction between St Venant torsion and warping torsion has been determined
according to elastic theory (as in Section 2), it would seem obvious that plastification due
to combined major axis bending and warping moment would affect the sharing of the
torsional moment. However its effect is to soften the warping stiffness (effectively reducing
the value of @) and thus to lead to a reduced value of warping moment. The value of MW,Ed
determined by the elastic analysis may thus be used as a conservative value. However, the
plastification will also lead to a slightly larger rotation (as noted above) and this should be

taken into account when determining the minor axis moment due to rotation.

Where plastic bending resistance is to be utilized, a plastic interaction criterion can be
used and the criterion in Expression (6.41) may be adapted for this purpose; assuming

that there is no axial force on the beam the criterion is:

<1

2
M M M
y.Ed + z,Ed + w,Ed
M M M, ra

pLy.Rd pl.z,Rd

where M M /2

~
pLERd ~ M plzRd



Note that this criterion is for a symmetrical I or H section; for channel sections see

Section 4 and for asymmetric beams see Section 5.

The (transverse) shear force due to warping restraint is usually much less than the
(transverse) plastic shear resistance of the flange and may be neglected, as permitted
by §6.2.10.

Shear stress due to St Venant torsion will give rise to a small reduction in the plastic
shear resistance of the web, according to §6.2.7(9).

Hollow sections

For hollow sections, the torsion will be resisted as St Venant torsion and the shear
stress will be constant around the section, although in most cases the shear stress
will be small. The plastic interaction criterion for hollow sections in §6.2.9.1(6) is
appropriate for biaxial bending but allowance for the shear stress should be made
by reducing the bending resistances using Expression (6.28). This means that the

criterion for rectangular hollow sections becomes:

1.66 1.66
M y,Ed + M z,Ed S 1
M M

v,y,Rd

Where nyRd and M . are the bending resistances about the major and minor axes,

each reduced by a factor:

T Ed

|-t

(£/3) /7w

For circular hollow sections, the bending resistance should be reduced by the
same factor.

3.2 Buckling resistance

Where buckling of a member can occur, the buckling resistance must be verified. For
steel beams without axial force, lateral torsional buckling (LTB) must be considered,
unless the compression flange is continuously restrained. As well as determining
buckling resistance for bending about the major axis, interaction with other effects
needs to be considered. In BS EN 1993-1-1 Expressions (6.61) and (6.62) provide
limiting criteria for the interaction of axial force and biaxial bending; in the absence of
axial force these reduce to a simple linear interaction relationship between bending
about the two axes.

Interaction of bending with torsion is not covered in BS EN 1993-1-1 but this omission
has been addressed in BS EN 1993-6 (concerned with crane supporting structures).
In its Annex A it gives a criterion in which the torsional effect and resistance are
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expressed as the bimoment (see terminology in Section 1.3) but it is perhaps more

helpful to re-express the criterion as:

wzw o

My,Ed + szMz,Ed +k k k MW,Ed <
ZLTMy,Rk/Vm Mz,Rk/}/Ml Mw,Rk/;/Ml

where:

C., is the equivalent uniform moment factor for bending about the z-axis
according to EN 1993-1-1 Table B.3. (For a simply supported beam with a
parabolic bending moment diagram due to uniformly distributed loading,
C_,=0.95; for a triangular bending moment diagram due to a single point
load, C_ =0.9.)

k, =07-02M ., /(M /)

k., =1- Mz,Ed/Mz,Rd

k, =UV[1=M,,/M,]

M is the elastic critical moment about the y-axis.

cr

M .,and M . arethe warping moment and characteristic bending resistance in the

(weaker) flange.
k, can conservatively be taken as 0.7; C_ and k  can conservatively be taken as 1,

but ka does need to be evaluated.

The background to the derivation of this criterion is given by Lindner!®., While this
expression was originally intended for crane runway beams, it may be used for other

simply supported beams of uniform cross-section that are subject to torsion.

As noted earlier, bending about the minor axis will result from rotation of the section
(= ¢M_ ) and this needs to be included in M, .

3.3 Stabilizing and destabilizing loads

Torsion is more often than not the result of eccentric load. It is preferable to arrange for
such a load to be applied at or below the level of the shear centre, the axis about which
the member twists, to avoid the secondary effect of increasing eccentricity as the
cross-section rotates. If the load is applied below the shear centre (e.g. on the bottom
flange) the eccentricity will actually reduce with rotation, though this favourable effect
may safely be ignored. However the unfavourable effect of load application above the

shear centre (‘destabilizing’ load) must not be ignored.

If necessary, the effect of destabilizing load can be accounted for by repeating the
calculation using a magnified eccentricity, determined from the calculated rotation. A

single iteration is normally sufficient.

Destabilizing load also affects the elastic critical moment. It can be allowed for by
using the freely downloadable software LTBeam'™..
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3.4 Serviceability limit state

3.4.1 Limiting criteria for rotation

EN 1990 sets out the principle that ‘serviceability criteria for deformations and
vibrations shall be defined’ but only mentions vertical and horizontal deflections

in general terms; no mention is made of rotation. BS EN 1993-1-1 offers no
recommendations for deflection limits of beams and the UK NA only offers suggested

limits for vertical and horizontal deflections; again, no mention is made of rotation.

In PO57, it was suggested in a footnote to one of the worked examples that a 2 degree
limit to the angle of rotation would seem appropriate. The intention was to offer practical
advice without being definitive. This ‘limit’ has been in print for over 20 years and SCI’'s
Advisory Desk has directed enquirers to it. There has been little feedback on its application
in practice, successful or otherwise, but, in the absence of any other guidance, it may be
accorded some respect by virtue of long existence without negative comment.

A note of caution is needed, perhaps, where facades are concerned. A rotation of

2 degrees under a 4 m high masonry wall translates into a 14 mm displacement at the
top, which seems unacceptable. It would be hard to resist the conclusion that a more
restrictive limit should apply in sensitive situations. What that limit is must continue to

be a matter for case-by-case judgement.

3.4.2 The likelihood of serviceability governing

An I section is generally very flexible in torsion and the limitation of rotation at SLS

is likely to govern when there are significant torsional moments. Hollow sections are
very stiff in torsion but if the torsional moments become a significant proportion of the
torsional resistance, the rotation would nevertheless be large - if, for example, a square
hollow section were designed to use the full torsional resistance at ULS, then at SLS a

twist of 2° would be generated over a relatively short length of about 10 times its width.

It should also be noted that a 2° rotation at SLS would be about 3° at ULS and that

rotation would introduce a minor axis moment of about 5% of the major axis moment.
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Figure 4.1
A channel twisting
about its shear centre

Channels are open sections and, like I sections, are flexible in torsion and resist it by
a combination of St Venant and warping torsion. However, because of their asymmetry

about the z-axis, they are more likely to be subject to torsion than are I sections.

A channel will twist about its shear
centre, which lies outside the section on
the web side (as shown in Figure 4.1).

A channel loaded on its top flange or
directly over its web would, according to
elastic theory, be subject to torsion. Only
if load acts in line with the shear centre
would it be torsion-free. Dimensions from
the centroid to the shear centre are given
in Appendix A for parallel flange channel
sections (UKPFC).

When a channel section is subject to
bending due to a point load that acts
through the shear centre and parallel
to the web, the bending stress in the

flanges is uniform across their width

and the shear stress varies as shown
in Figure 4.2.

4.1 StVenanttorsion

As for other open sections, the twist per unit length due to uniform torsion when warping
is not restrained (i.e. St Venant torsion) is given by ¢' = T/GI and the St Venant shear

stress is given by 7= T#/1_. Values of I for UKPFC sections are given in Appendix A.

4.2 Warping torsion

Channels possess warping resistance in the same way as do I sections, though they
have narrower flanges. The web participates in the warping resistance, effectively
forming an L section with each flange. The variation of warping stresses in a channel
section is shown in Figure 4.3. As for I sections the magnitudes of the direct and shear
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Figure 4.2
Shear stress
distribution for a
channel loaded
through its
shear centre
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stresses depend on the normalized warping function and warping statical moment
parameters but there are additional key locations for these parameters, as shown in
the Figure. The peak warping stress occurs at the flange tip (where o, = EWHO¢") and
the peak shear stresses occur at location 1 in the flange (7, = ES_ ¢'"'/t ) and at the
top of the web (7, = ES_,¢'""/t ). These effects are summarized in Table 4.1.

Where plastic resistance is considered when evaluating the interaction of bending with
torsion (see Section 3.1.2), the plastic resistance to warping moment should be based

on the flanges alone, ignoring the web.

4.3 Practical considerations

Despite the eccentric location of the shear centre, there is little evidence of channel
section beams rotating when they are directly loaded by concrete slabs on the top
flange. This is because the top flange is restrained against horizontal movement by
friction and the bottom flange is under tension. For short span trimmer beams it is
common practice to ignore torsional effects and to rely on this restraint.

UKPFC sections are sometimes used as lintels, placed under the inner leaf of a cavity
wall with a plate welded to the bottom flange (or an angle welded to the web) to provide
unobtrusive support for the outer leaf. Customarily, the effect on the shear centre of the

additional bottom flange is ignored. Example 4 (Appendix E) demonstrates this approach.



Shear force e
per unit length SF/UL
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Simplification into Maximum longitudinal warping Maximum warping shear
three elements stress at (0) (flange tip) in the web at (2) (junction)
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Figure 4.3
Elastic warping
effects in a
channel section
STRESS IN WEB IN FLANGE
Longitudinal NONE NONE
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(at element surface) =Gt ¢ 7.=Gt g
Table 4.1 LongitUdinaI Gw = EWn2¢” Gw = EWn0¢”
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channel section

For the location of points O, 1 and 2 see Figure 4.3






Beams used in Slimflor® and Slimdek® solutions are subject to torsion at various
stages of the construction sequence. With both fabricated and rolled asymmetric
sections, the shear centre is below mid-depth and the calculation of warping moment

is slightly more complicated than for doubly symmetric I sections.

5.1 Types of asymmetric beam

Where a suitable ASB rolled section is available, it will usually provide the most cost-
effective solution. For details of the ASB range, see SCI publication P363!'* or the

Tata Steel website.

Slimflor® fabricated beams (SFB), comprising a 15 mm plate welded to the underside
of a UKC section, offer a wider range of asymmetric beam sizes, providing bottom

flange outstands of 100 mm for the deep decking or precast unit.

A third option is to fabricate a bespoke section from three plates. This allows near-total

freedom of dimensional choice, constrained only by available plate thicknesses.

5.2 Section properties

Section properties for ASB sections are given in P363, in Tata Steel literature and the
Tata Steel website. However, not all the necessary torsional parameters are given in
those sources. Torsional parameters are therefore given in Appendix A. It will be noticed
that some of the values given in Appendix A differ slightly from values given in the other
sources. The values in this publication have been accurately calculated using Appendix B

and should be used in preference to those in the other sources, where they differ.

Property tables for a range of 36 Slimflor® fabricated beams (SFB) are published by
Tata Steel*Y,

For sections welded from three plates, /. may be conservatively approximated as

2(L#/3) for the three constituent rectangles. A formula for I is given in Appendix B.3.

5.3 Transient and permanent design situations

Asymmetric beams employed in Slimflor® solutions may be used together with either

deep decking or precast units, as illustrated in Figure 5.1. The beams can be subject
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to considerable torsional loading at various stages, such as when the wet concrete and
constructional loads are present on one side only.

Internal beams are normally designed for this condition (as a transient situation) and
are verified for lateral-torsional buckling resistance; it is not then necessary to restrict
the construction sequence to one that maintains balanced loading. It is generally
considered impractical and potentially unsafe to do otherwise. On the other hand,
where precast units are used it would normally be considered both practical and safe
to require that the units are in place on both sides before in-situ topping is cast (which
might be on one side before the other). Design Example 3 in Appendix E illustrates a
range of temporary load cases.

30 min Top of in-situ concrete

75 nominal
bearing

With deep decking

30 min Top of in-situ concrete

Hollowcore unit

= 80 nominal S
bearing
40 minimum
bearing
Figure 5.1
Typical solutions With precast hollowcore
using ASB sections

(all dimensions in mm)
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Once the in-situ concrete has hardened, an internal beam may be considered to be
restrained against lateral-torsional buckling. Further, it would seem reasonable, where

the section is fully surrounded by infill concrete on both sides, to rely on this floor plate for
restraint against twisting under load imbalance. Accordingly, in the final condition, a typical

internal beam need only be verified for resistance of its cross section in bending and shear.

Edge beams will need to be verified for the effects of torsion in the final condition
unless they are effectively tied to the adjacent slab at low level (which could be a cost-
effective alternative, especially if the ties serve more than one function). Beams with
deep decking spanning parallel on one side should be treated as edge beams in this
respect, whereas parallel precast units can be considered to provide restraint.

For an edge (or quasi-edge such as when parallel decking is present) beam in the

final condition, a top flange set against a plate of hardened concrete is obviously not
going to deflect inwards. Effectively, the shear centre is forced up to top flange level.
Any rotation must be due to the bottom flange deflecting outwards, having overcome
considerable (but unreliable) bond and friction resistance. In warping terms, the full
flexural rigidity and resistance of the larger flange can act at a lever arm of (2 - ¢) to
oppose torsion. It is clear that results from a conventional torsion calculation will be

very conservative.

5.4 Design effects

The shear centre of a monosymmetric beam remains on the z-axis (the axis of
symmetry) but is offset from the centroid, towards the bottom flange but still above

it. This means that load applied at bottom flange level is not destabilising (though the
beam’s own weight is).

Beams used in Slimflor® solutions are normally not subject to the rotation-induced
weak-direction bending which would apply to a beam with a freely suspended eccentric
gravity load. This is because, for the case where the beam supports the decking or
precast unit (i.e. the decking or unit is transverse to the beam) the decking (if it is
adequately fixed to the beam) or the precast unit provides the lateral restraint necessary
to resist this component.

Asymmetry does not change the process of calculating ¢ and its derivatives, which is
carried out as for a doubly symmetric section using tabulated values of / and a. The
difference arises at the stage of quantifying the warping moment in the flanges. The
following expression should be used for the warping moment in the top flange (the value
of M, . is numerically the same for both flanges but it is the top flange that governs).
Mw,Ed = Itf¢”es,f

where e is the height of the centroid of the top flange above the shear centre and /. is

the second moment of area of the top flange (bending in its plane).
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5.5 \Verification at ULS

Verification of the cross-section resistance follows the same procedure as for
a symmetric I section beam. ASB sections are Class 1 sections and the plastic

interaction criterion given in Section 3.1.2 may be used.

Buckling resistance will nearly always need to be considered with a Slimflor® beam

at the wet concrete stage, since anything which could provide restraint (such as a
precast slab unit) is attached below the shear centre. The interaction formula from

BS EN 1993-6 (discussed in Section 3.2) is valid for asymmetric sections. LTBeam'®
can compute M_for asymmetric I sections (as explained in an article!? giving
guidance for first-time users). LTBeam will allow for the favourable (stabilizing) effect of
loads applied below the shear centre, and provides for a second UDL at a higher level,
to represent the beam’s self weight. Moreover, it computes the levels of the centroid

and the shear centre for this purpose.

For ASB sections, the requirements in NA.2.17 mean that curve a in Table 6.4 should
be used to determine the reduction factor Ko For a beam welded from three plates,
§6.3.2.2 leads to the use of either curve c or d, depending on the A/b ratio.

5.6 Serviceability limit state

Previous design guidance for Slimflor® solutions!*® 4] has suggested limiting lateral
deflection of the top flange to span/500. For a typical 7.5 m span this is 15 mm, which
could correspond to over 3 degrees rotation. While this is higher than might be judged
tolerable in other situations, no problems have been reported in practice. This is the
limit applied in the temporary (wet concrete) load case. Since part of the loading (the
construction loads) disappears before the concrete sets, the twist actually locked into
the completed structure is due to the weight of concrete alone.

In the case of an edge beam in its final condition, the top flange is prevented from
deflecting inwards by hardened concrete. Even if torsion were significant in the
verification at ULS, the prime concern for SLS is likely to be vertical deflection. Note
that some outwards deflection of the bottom flange may have been locked in due to the
eccentric loading during construction but with typical asymmetric beam proportions
any intrusion into the cladding zone should not exceed 20 to 30% of the span/500

limit recommended for the top flange.
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With structural hollow sections, torsional warping displacements are generally
negligible or absent (in CHS) and torsional moments are entirely St Venant effects.
Distortion of the cross section of rectangular hollow sections might occur when
eccentric moments are introduced through a connection on only one face of the
section but such effects are outside the scope of this publication. Torsion of box girders

is also outside the scope of this publication.

6.1 Elastic behaviour of hollow sections

As can be seen from the Tables in Appendix A and the expressions for torsional
constant 7 in Appendix B, the torsional stiffness of hollow sections is much greater
than that of open sections of comparable size. The same general expression for
torsional shear stress applies, thatis 7= 7/W, but now the value of W is much greater
than for an open section. Strictly, the torsional shear stress is slightly greater on the
outer surface than on the inner but the difference is small in a thin-walled section and

in practice the stresses would redistribute at yield.

6.2 Resistance to combined bending and torsion

Since structural hollow sections are often chosen to resist large torsional moments, the
torsional resistance may be substantially utilized in such cases and this would affect

the resistance to bending and shear.

In §6.2.7(9) the plastic shear resistance is reduced due to the presence of St Venant
torsional shear stress. The reduction factor for hollow sections makes a simple
reduction that is appropriate when the vertical shear and torsional shear act in the
same direction; there is no benefit from the fact that the shears act in opposite

directions on the other side of the hollow section.

There is no mention in BS EN 1993-1-1 of how to take account of the effect of large
St Venant shear stresses in the flanges of hollow sections on the bending resistance
but, as noted in Section 3.1.2, it would seem appropriate to apply to the flange area the

same factor as applied in Expression (6.28) to VpLRd.

For almost all practical situations lateral torsional buckling is not a concern for RHS

sections. According to ECCS Publication 11915, RHS sections may be considered to
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be non-susceptible up to a non-dimensional slenderness of /T= 10b/h. Even with
h/b = 3.333, currently the slimmest RHS in the range produced by Tata Steel, this
corresponds to an uncommonly high slenderness.

It should also be noted that a few RHS sections have wall thicknesses that would make
them susceptible to shear buckling. According to Clause 5.1(2) of BS EN 1993-1-51¢,
a plate is susceptible to shear buckling if the value of _/t exceeds 72&/n (= 59 for
S355 steel, with 71 =1, as set by the UK National Annex). For the current (2010)
Celsius® SHS range, only 400 x 150 x 6.3, 400 x 200 X 6.3, 500 X 200 x 8 and

500 x 300 x 8 sections exceed this limit. Any reduction for shear buckling should

be applied to both the vertical shear resistance and the resistance of the RHS to

St Venant shear.
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Figure 7.1

Types of end

plate connections
suitable for torsional
resistance

End plates offer a simple solution where a bolted connection is required to transmit
torque. An arrangement of four or more bolts will be able to resist a combination of
torque and shear force. End plate connections with relatively thin end plates may be

considered as nominally pinned connections in simple construction. Where thicker end

plates are used in moment-resisting connections, the bolt tension forces will reduce

their shear resistance.

As an alternative to an end plate connection, cleats to both flanges would provide

reliable torsion resistance. Other connection types traditionally associated with simple

construction (fin plates or double angle cleats) are best avoided for connections
designed to transmit more than nominal torsion.

7.1 Types of end plate connection

There are three basic types of end plate connection: partial depth, full depth and
extended. Partial depth end plates are not suitable for providing significant torsional
resistance, because they are not connected to both flanges. Typical full depth and
extended end plate connections are shown in Figure 7.1.

If the beam is a hollow section, the end plate can extend horizontally or vertically,
depending on what is available to connect to.
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7.2 Choice of end plate thickness

It is unlikely that the choice of end plate thickness would be governed by the torsional
moment at the connection. The thickness required for the design of the connection
as a nominally pinned or moment-resisting connection will normally be suitable for
resistance to torsion combined with the other effects.

Guidance on the design of nominally pinned end plate connections is given in SCI
publication P358, Joints in steel construction - Simple connections (Eurocode
version)*”). That publication advises that, for nominally pinned joints, end plates of
10 mm or 12 mm should be used. End plates of this thickness, with reasonable edge

and end distances, will be adequate in most situations.

For moment-resisting connections (see SCI publication P207/95 Joints in steel
construction - Moment connections*®), an end plate thickness approximately equal
to the bolt diameter is appropriate (i.e. 20 mm thick with M20 bolts, 25 mm thick with
M24 bolts). It should, however, be recognized that the tension developed in the upper

bolts will reduce available shear resistance.

7.3 Design resistance of end plate connections to
combined shear and torsion

It is possible, but not altogether desirable, to lay down hard and fast rules for distribution
of force among the bolts of a group resisting torsion in an end plate connection. A commonly
adopted approach is to use a quasi-elastic calculation in which force in each bolt is
proportional to its radial distance from a notional centre of rotation. Although the real
force distribution will not match this calculation exactly, the divergence is no cause for
concern. In reality, initial bolt forces will owe much to how perfectly (or otherwise) the
holes align and there is considerable scope for plastic redistribution as the bolts bed

themselves into the softer and more resilient plates they pass through.

In practice, a reasonable bolt force distribution is a matter for designer judgement.
Equilibrium must always be satisfied. Outer bolts should not be expected to resist less
force than inner ones, and a cautious view is advisable where the connection is (by
accident or design) moment resisting. Upper bolt rows are liable to attract a certain
amount of tension, which will reduce the available shear resistance (see Table 3.4 of
BS EN 1993-1-81%9),

A simple option for bolt forces due to torque on the end plate, with four symmetrically
located bolts, is for each to be assigned one quarter of the torque divided by its radial
distance from the centre of the group. Vertical shear can be added vectorially and the

resultant compared with shear and bearing resistances in the normal way.

An alternative approach is to assume that the combined torsional moment and shear
force is similar to the case of a shear force acting at an eccentricity from the centroid
on the beam, as shown in Figure 7.2. In this approach, the design procedure may be



Figure 7.2
Alternative model

for determining

connection resistance
to combined torsional
moment and

shear force

considered to be similar to that for a fin plate connection with two vertical lines of
bolts. The procedure is described in SCI publication P358171,

7.4 Boltslip

Although there will be little in-plane distortion of the end plate itself, normal 2 mm
oversize bolt holes inevitably permit some rotation of the beam. If this is a concern for
serviceability reasons, an obvious solution would be to specify preloaded bolts.

7.5 The effect of bolt tension on shear resistance

Moment resisting connections with shear, both vertical and torsion-induced, should
be verified, using the interaction criterion in Table 3.4 of BS EN 1993-1-8 (this allows
a bolt fully utilized in tension to resist a coexisting shear force of up to 28% of its

shear resistance).

7.6 Restraint against warping at member ends

It is important to recognize that a conventional moment connection, even one with

a thick and extended end plate, does not provide warping fixity. For this purpose it is
required that both top and bottom flanges are prevented from rotating (in opposite
directions) in the plan view. Surrounding structure is unlikely to be in a position to
provide such restraint, so an approach that has been put forward is to connect the two

flanges rigidly together so that they may react against one another.

The details shown in Figure 7.3 illustrate two ways in which warping restraint might
be provided, although such details will rarely be practical and cost-effective. Warping
restraint can also be provided by casting a length of beam in a thick wall, though this

too will rarely be a practical option.
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Warping fixity
demands prevention Ghannel section
of flange contra- (on both sides)
rotation in the
plan view

)

While it is usually preferable not to rely on warping fixity, there is no need to take active
steps to avoid it. Any warping restraint can only increase torsional resistance and

reduce rotation.
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These tables supplement the section properties in SCI P3631° and other publications,
whose coverage is not comprehensive for torsion calculations which involve warping.
Additional properties tabulated here include Torsional Bending Constant, Normalized
Warping Function(s) and Warping Statical Moment(s). Dimensions to the centroid and
shear centre are given for non-doubly symmetric sections. All values are rounded to

three significant figures.

The following properties are tabulated.

Open sections Hollow sections
UKB UKC PFC ASB | Circular Elliptical Square Rectangular

ST VENANT
TORSIONAL v v v v v v v v
CONSTANT

WARPING
CONSTANT

TORSIONAL
BENDING v v v v
CONSTANT

NORMALIZED
WARPING 4 v v
FUNCTION

WARPING
STATICAL v v v
MOMENT

TORSIONAL
SECTION v v v v
MODULUS

LOCATION OF N
SHEAR CENTRE

The properties needed for torsion calculations for hollow sections (/. and W) are
available in brochures and handbooks, but tables are included here for ease of
reference. For square and rectangular hollow sections the properties are based on
the corner geometry of Celsius® and similar hot finished sections. Properties for

cold-formed corner geometry differ very slightly.

Properties for obsolete sections with tapering flanges (channels and joists) can be
found in PO57,

Appendix B gives information on methods of calculating section properties.
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APPENDIX A: TABLES

Table A.1  Universal beams (UKB) - Torsional Properties

ST VENANT TORSIONAL NORMALIZED WARPING

MASS TORSIONAL BENDING MU\EING  WARPING  STATICAL
SECTION PER  CONSTANT CONSTANT FUNCTION  MOMENT
DESIGNATION METRE I. . I W s,
kg/m cm* m dmé® cm? cm*
1016 x 305 487 4300 1.97 64.4 758 31600
437 3180 2.13 55.9 746 27900
393 2330 2.32 48.4 736 24500
349 1720 2.56 43.3 731 22100
314 1260 2.78 37.6 723 19500
272 835 3.16 32.2 719 16700
249 582 3.46 26.9 716 14000
222 390 3.78 215 712 11300
914 x 419 388 1730 3.64 88.8 930 35800
343 1190 4.06 75.9 920 30800
914 x 305 289 926 2.96 31.2 688 16900
253 626 3.30 26.4 680 14500
224 422 3.68 22.0 674 12200
201 291 4.04 18.4 669 10300
838 x 292 227 514 3.13 19.4 605 11900
194 306 3.59 15.2 599 9500
176 221 3.90 13.0 595 8160
762 x 267 197 404 2.69 11.3 499 8490
173 267 3.02 9.39 494 7110
147 159 3.47 7.40 488 5670
134 119 3.75 6.46 486 4970
686 x 254 170 308 2.50 7.42 428 6490
152 220 2.75 6.42 424 5670
140 169 2.96 5.72 421 5080
125 116 3.27 4.79 419 4290
610 x 305 238 785 2.18 14.4 471 11500
179 340 2.78 10.1 458 8300
149 200 3.26 8.18 452 6780
610 x 229 140 216 2.19 3.99 342 4360
125 154 2.41 3.45 339 3810
113 111 2.64 2.99 337 3320
101 77.0 2.91 2.51 334 2820
610 x 178 100 95.0 1.99 1.45 264 2040
92 71.0 2.13 1.24 263 1760
82 48.8 2.35 1.04 261 1480
533 x 312 273 1290 1.74 15.0 432 13000
219 642 2.11 11.0 422 9770
182 373 2.47 8.79 414 7950
151 216 2.90 7.03 408 6460

kg/m X108 m* m X106 mé X10* m? X108 m*
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Table A.1

Universal beams (UKB) - Torsional Properties (continued)

ST VENANT TORSIONAL

NORMALIZED WARPING

MASS TORSIONAL BENDING MU\EING  WARPING  STATICAL
SECTION PER  CONSTANT CONSTANT FUNCTION  MOMENT
DESIGNATION METRE I. . ] W s,
kg/m cm* m dmé® cm? cm*
533 x 210 138 250 1.66 267 281 3550
122 178 1.84 2.32 277 3130
109 126 2.02 1.99 274 2720
101 101 2.16 1.81 273 2490
92 76 2.34 1.60 271 2210
82 52 2.59 1.33 269 1850
533 x 165 85 73.8 1.73 0.85 215 1480
75 47.9 1.93 0.69 214 1210
66 32.0 214 0.57 212 997
457 x 191 161 515 1.06 2.25 229 3660
133 292 1.24 1.73 223 2890
106 146 1.50 1.27 218 2170
98 121 1.59 1.18 216 2040
89 90.7 1.72 1.04 214 1820
82 69.2 1.86 0.922 212 1620
74 51.8 2.02 0.818 211 1450
67 37.1 2.22 0.705 209 1260
457 x 152 82 89.2 1.31 0.592 174 1270
74 65.9 1.43 0.518 172 1130
67 47.7 1.56 0.448 170 982
60 33.8 1.72 0.387 169 858
52 21.4 1.94 0.311 167 694
406 x 178 85 93.0 1.43 0.728 181 1500
74 62.8 1.58 0.608 178 1280
67 46.1 1.73 0.533 177 1130
60 33.3 1.90 0.466 175 997
54 23.1 2.10 0.392 174 843
406 x 140 53 29.0 1.48 0.246 141 652
46 19.0 1.68 0.207 139 555
39 10.7 1.94 0.155 138 421
356 x 171 67 55.7 1.38 0.412 151 1020
57 33.4 1.60 0.330 149 831
51 23.8 1.76 0.286 147 726
45 15.8 1.97 0.237 146 606
356 x 127 39 15.1 1.34 0.105 108 364
33 8.79 1.55 0.081 107 284
305 x 165 54 34.8 1.32 0.234 124 708
46 22.2 1.51 0.195 122 597
40 14.7 1.70 0.164 121 509
kg/m X108 m* m X106 mé X10* m? X108 m*
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Table A.1  Universal beams (UKB) - Torsional Properties (continued)

ST VENANT TORSIONAL NORMALIZED WARPING

MASS TORSIONAL BENDING (¥VO¢\I|:!S|:',I'II'\\II\?T WARPING  STATICAL
SECTION PER  CONSTANT CONSTANT FUNCTION  MOMENT
DESIGNATION METRE 1, p I W s..
kg/m cm* m dmé® cm? cm*
305 x 127 48 31.8 0.91 0.102 93.0 408
42 21.1 1.02 0.085 91.7 345
37 14.8 1.13 0.072 90.6 299
305 x 102 33 12.2 0.97 0.0442 77.3 214
28 7.40 1.1 0.0349 76.3 171
25 477 1.22 0.0273 75.7 135
254 x 146 43 23.9 1.06 0.103 90.9 425
37 15.3 1.20 0.0858 89.7 358
31 8.55 1.41 0.0660 88.7 279
254 x 102 28 9.57 0.87 0.0281 64.0 163
25 6.42 0.97 0.0231 63.4 136
22 415 1.07 0.0182 62.8 108
203 x 133 30 10.3 0.97 0.0374 66.0 212
25 5.96 1.13 0.0294 65.1 169
203 x 102 23 7.02 0.75 0.0154 49.3 117
178 x 102 19 4.41 0.76 0.0099 43.0 85.9
152 x 89 16 3.56 0.59 0.0047 32.1 54.8
127 X 76 13 2.85 0.43 0.0020 22.7 32.8

kg/m x10% m* m X106 mé X10* m? X108 m*
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Table A.2  Universal columns (UKC) - Torsional properties

ST VENANT TORSIONAL NORMALIZED WARPING

MASS TORSIONAL BENDING c‘:’g’,‘\le';'XﬁT WARPING  STATICAL
SECTION PER  CONSTANT CONSTANT FUNCTION  MOMENT
DESIGNATION METRE ] B I W s..
kg/m cm* m dm® cm? cm*
356 x 406 634 13700 0.86 38.8 421 34400
551 9240 0.93 31.1 406 28700
467 5810 1.04 24.3 390 23300
393 3550 1.18 18.9 376 18800
340 2340 1.31 15.5 366 15800
287 1440 1.49 12.3 356 13000
235 812 1.75 9.54 346 10300
356 x 368 202 558 1.82 7.16 326 8240
177 381 2.03 6.08 321 7110
153 251 2.30 5.13 316 6060
129 153 2.66 417 312 5020
305 x 305 283 2030 0.899 6.34 259 9190
240 1271 1.01 5.03 251 7520
198 734 1.17 3.88 243 5990
158 378 1.40 2.87 235 4570
137 249 1.58 2.39 231 3870
118 161 1.79 1.98 227 3270
97 91 2.11 1.56 223 2620
254 x 254 167 626 0.823 1.63 171 3590
132 319 0.982 1.19 164 2710
107 172 1.16 0.899 159 2110
89 102 1.35 0.717 156 1730
73 58 1.59 0.563 153 1380
203 x 203 128 427 0.578 0.549 113 1820
114 305 0.628 0.464 110 1570
100 210 0.691 0.386 108 1340
86 137 0.777 0.318 105 1130
71 80.2 0.899 0.250 102 914
60 47.2 1.04 0.197 101 734
52 31.8 117 0.167 98.9 632
46 22.2 1.29 0.143 97.8 548
152 x 152 51 48.8 0.568 0.061 60.8 376
44 31.7 0.639 0.050 59.4 315
37 19.2 0.734 0.040 58.0 258
30 10.5 0.871 0.031 56.6 204
23 4.63 1.09 0.021 55.4 143

kg/m x10% m* m x10°mé X10* m? x10%m*
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Table A.5  Circular hollow sections - Torsional properties

SECTION MASS ST VENANT TORSIONAL SECTION MASS ST VENANT TORSIONAL
DESIGNATION PER TORSIONAL SECTION DESIGNATION PER TORSIONAL SECTION
METRE CONSTANT MODULUS METRE CONSTANT MODULUS
I W, I W,
kg/m cm* cm? kg/m cm* cm?
21.3x3.2 1.43 1.54 1.44 193.7 x5 23.3 2640 273
26.9x3.2 1.87 3.41 2.53 193.7 x 6.3 29.1 3260 337
33.7x3.2 2.41 7.21 4.28 193.7 x 8 36.6 4030 416
33.7x4 2.93 8.38 4.97 193.7 x 10 45.3 4880 504
42.4x3.2 3.09 15.2 7.19 193.7x12.5 55.9 5870 606
424 x4 3.79 18.0 8.48 219.1 x6.3 33.1 4770 436
48.3x3.2 3.56 23.2 9.59 219.1x8 41.6 5920 540
48.3x 4 4.37 27.5 11.4 219.1 x 10 51.6 7200 657
48.3 x5 5.34 32.3 13.4 219.1 x12.5 63.7 8690 793
48.3 x 6.3 6.53 37.5 155 219.1 x 16 80.1 10600 967
60.3x 3.2 4.51 46.9 15.6 2445x12.5 71.5 12300 1006
60.3 x 4 5.55 56.3 18.7 244.5x 16 90.2 15100 1200
60.3x5 6.82 67.0 22.2 273 x10 64.9 14300 1000
60.3 x 6.3 8.39 79.0 26.2 273x12.5 80.3 17400 1300
76.1x2.9 5.24 89.5 23.5 273 x 16 101 21400 1600
76.1x3.2 5.75 97.6 25.6 323.9x 10 77.4 24300 1500
76.1 x4 7.11 118 31.0 323.9x 125 96 29700 1800
76.1 x5 8.77 142 3123 323.9x 16 121 36800 2300
76.1 x6.3 10.8 170 44.6 355.6x 16 134 49300 2800
76.1x 8 13.4 201 52.9 406.4x 10 97.8 49000 2400
88.9x 4 8.38 193 43.3 406.4 x 16 154 74900 3700
88.9x5 10.3 233 52.4 457 x 10 110 70200 3100
88.9x6.3 12.8 280 63.1 457 x 16 174 108000 4700
88.9x8 16 336 75.6 508 x 12.5 153 120000 4700
114.3x 3.6 9.83 384 67.2 508 x 16 194 150000 5900
1143 x4 10.9 422 73.9 kg/m x108 m* x10° m?
114.3x5 13.5 514 89.9
114.3x6.3 16.8 625 109
114.3x8 21 759 133
139.7 x5 16.6 961 138
139.7x6.3 20.7 1180 169
139.7x 8 26 1440 206
139.7 x 10 32 1720 247
168.3 x5 20.1 1710 203
168.3 x 6.3 25.2 2110 250
168.3x 8 31.6 2590 308
168.3x 10 39 3130 372
168.3 x 12.5 48 3740 444

kg/m x108 m* x10¢ m?
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Table A.6  Elliptical hollow sections - Torsional properties

SECTION MASS ST VENANT TORSIONAL
DESIGNATION PER TORSIONAL SECTION
METRE CONSTANT MODULUS
I, W,

kg/m cm* cm?

300x150x 12.5  65.5 7050 686

400x200x 125 88.6 17600 1300

400 x 200 x 16.0 112 21600 1580
kg/m x10% m* x10° m?
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Table A.7  Square hollow sections - Torsional properties

SECTION MASS STVENANT TORSIONAL  SECTION MASS ST VENANT TORSIONAL
DESIGNATION PER TORSIONAL SECTION DESIGNATION PER TORSIONAL SECTION
METRE CONSTANT MODULUS METRE CONSTANT MODULUS
I, W, I W,
kg/m cm? cm? kg/m cm? cm?
40 x40 x 3.2 3.61 16.5 7.42 150 x 150 x 5 22.6 1550 197
40x40x 4 4.39 19.5 8.54 150 x 150 x 6.3 28.1 1910 240
40 x40 x5 5.28 22.5 9.60 150 x 150 x 8 35.1 2350 291
50x50x3.2 4.62 33.8 124 150 x 150 x 10 431 2830 344
S0 x50 x4 5.64 40.4 14.5 150x150x 125  52.7 3370 402
S0x50x 5 6.85 47.6 16.7 160x160x6.3  30.1 2330 275
50x50x6.3 8.31 55.2 188 160 x 160 x 8 37.6 2880 335
60x60x3.2 5.62 602 18.6 160x 16010 46.3 3480 398
ER R 6.9 2 220 160X 160x 125  56.6 4160 467
SOy ot e 20 180x180x6.3 34 3360 355
ST ES 10 o 2l 180 x 180 x 8 42.7 4160 434
B2 e U O 180x180x10 525 5050 518
70x70x3.2 6.63 98 261 180x180x 125  64.4 6070 613
70x70x4 8.15 118 812 180x180x16  80.2 7340 724
70X 70X 5 9.99 142 36.8
70x 70X 6.3 12.3 169 42.9 200x 200 x5 %04 3760 362
5 70xE - 200 192 200 x 200 X 6.3 38 4650 444
80 x80x3.2 7.63 148 34.9 200x200x 8 477 5780 245
050 4 541 5 15 200 x 200 x 10 58.8 7030 655
S0 X 05 e e 205 200x200x 125 723 8490 778
80 X80 x 6.3 e 262 587 200 x 200 X 16 90.3 10300 927
80 X 80 X8 75 312 83 250x250x6.3  47.9 9240 712
90 %90 x 4 107 260 4o 250 x 250 x 8 60.3 11500 880
90X 90 X5 31 316 648 250 x 250 x 10 745 14100 1060
90X 90X 6.3 62 380 0 250x250x 125  91.9 17200 1280
90 X 90 x B 201 259 905 250 x 250 x 16 115 21100 1550
100x100x3.6  10.8 328 62.3 300x300x8 728 20200 1290
100 x 100 x 4 119 361 68.2 300 x 300 x 10 90.2 24800 1580
100 x 100 x 5 14.7 439 81.8 300x300x12.5 112 30300 1900
100x100x6.3  18.2 534 97.8 300 x 300 x 16 141 37600 2330
100 x 100 x 8 226 646 116 350 x 350 x 8 85.4 32400 1790
100 x 100 x 10 27.4 761 133 350x350x 10 106 39900 2190
120 x 120 X 5 17.8 777 122 350x350x 125 131 48900 2650
120x120x6.3  22.2 950 147 350 x 350 X 16 166 61000 3260
120 x 120 x 8 27.6 1160 176 400 x 400 X 10 122 60100 2900
120x120x10  33.7 1380 206 400x400x 125 151 73900 3530
120x120x 125  40.9 1620 236 400 x 400 x 16 191 92400 4360
140 x 140 x 5 21 1250 170 400 x 400 x 20 235 112000 5240
140x140x6.3  26.1 1540 206 kg/m x10® m* x10% m?
140 x 140 x 8 326 1890 249
140 x 140 x 10 40 2270 294
140x 140x 125 487 2700 342

kg/m x10% m* x10¢ m?
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Table A.8 Rectangular hollow sections - Torsional properties

SECTION MASS ST VENANT TORSIONAL SECTION MASS ST VENANT TORSIONAL
DESIGNATION PER TORSIONAL SECTION DESIGNATION PER TORSIONAL SECTION
METRE CONSTANT MODULUS METRE CONSTANT MODULUS
I, W, I, W,
kg/m cm? cm? kg/m cm? cm?
50 x 30 x 3.2 3.61 14.2 6.80 160x 80 x5 17.8 600 106
50 x 30 x 4 4.39 16.6 7.77 160 x 80 x 6.3 22.2 730 127
50x30x5 5.28 19.0 8.67 160 x 80 x 8 27.6 880 151
60 x40x3.2 4.62 30.8 11.7 160 x 80 x 10 33.7 1040 175
60x40x 4 5.64 36.7 13.7 160 x 80 x 12.5 40.9 1200 198
60x40x5 6.85 43.0 15.7 200x 100x 5 22.6 1200 172
60 x 40 x 6.3 8.31 49.5 17.6 200 x 100 x 6.3 28.1 1470 208
80x40x3.2 5.62 46.2 16.1 200x 100 x 8 35.1 1800 251
80x40x4 6.9 55.2 18.9 200 x 100 x 10 43.1 2160 295
80x40x5 8.42 65.1 21.9 200x 100x 12.5 52.7 2540 341
80 x40 x 6.3 10.3 75.6 24.8 200 x 120 x 6.3 30.1 2030 255
80x40x8 12.5 85.8 27.4 200x 120x 8 37.6 2490 310
90 x50 x 3.2 6.63 80.9 23.6 200x 120x 10 46.3 3000 367
90 x 50 x 4 8.15 97.5 28.0 200x 150 x 8 41.4 3640 398
90 x50 x5 9.99 116 32.9 200x 150 x 10 51 4410 475
90 x 50 x 6.3 12.3 138 38.1 250 x 150 x 6.3 38 4050 413
90 x50 x 8 15 160 43.2 250 x 150 x 8 47.7 5020 506
100 x 50 x 3.2 7.13 93 26.4 250 x 150 x 10 58.8 6090 605
100 x 50 x 4 8.78 113 31.4 250 x 150 x 12.5 72.3 7330 717
100 x 50 x 5 10.8 135 36.9 250 x 150 x 16 90.3 8870 849
100 x 50 x 6.3 13.3 160 42.9 300 x 100 x 8 47.7 3070 387
100 x50 x 8 16.3 186 48.9 300 x 100 x 10 58.8 3680 458
100 x 60 x 3.2 7.63 129 32.4 300 x 200 x 6.3 47.9 8480 681
100 x 60 x 4 9.41 156 38.7 300 x 200 x 8 60.3 10600 840
100 x60 x5 11.6 188 45.9 300 x 200 x 10 74.5 12900 1020
100 x 60 x 6.3 14.2 224 53.8 300 x 200 x 12.5 91.9 15700 1220
100 x 60 x 8 17.5 265 62.2 300 x 200 x 16 115 19300 1470
120 x 60 x 4 10.7 201 471 300 x 250 x 8 66.5 15200 1070
120 x 60 x 5 13.1 242 56.0 340 x 100 x 10 65.1 4300 523
120 x 60 x 6.3 16.2 290 65.9 400 x 150 x 16 128 16800 1430
120 x 60 x 8 20.1 344 76.6 400 x 200 x 8 72.8 15700 1130
120x 80 x 4 11.9 330 65.0 400 x 200 x 10 90.2 19300 1380
120x80x5 14.7 401 77.9 400 x 200 x 12.5 112 23400 1660
120 x 80 x 6.3 18.2 487 92.9 400 x 200 x 16 141 28900 2010
120 x 80 x 8 22.6 587 110 450 x 250 x 8 85.4 27100 1630
120x80x 10 27.4 688 126 450 x 250 x 10 106 33300 1990
150 x 100 x 5 18.6 807 127 450 x 250 x 12.5 131 40700 2410
150 x 100 x 6.3 23.1 986 153 450 x 250 x 16 166 50500 2950
150 x 100 x 8 28.9 1200 183 500 x 300 x 10 122 52400 2700
150 x 100 x 10 35.3 1430 214 500 x 300 x 16 191 80300 4040
150x 100x 12.5  42.8 1680 246 500 x 300 x 20 235 97400 4840
kg/m x10% m* x10¢ m? kg/m x10% m* x10% m?3
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This Appendix provides calculation methods for some torsional properties of commonly
used structural shapes. It records how the torsional properties given in the Tables in
Appendix A were derived, and may be useful for manual calculation of the properties of

other rolled or fabricated sections.

General expressions for section properties may be found in textbooks, for example
Theory of Elasticity (Engineering societies monographs)®. Software such as LTBeam is
also available to generate properties of a given section.

B.1 Shear centre location

To determine the location of the shear centre of a section composed of thin elements,
the elements may be represented by their centrelines. For simplicity, the root radii for

rolled sections may be neglected.

Where a shear force V acts on a section, and it is not to twist, the couple developed

by equal and opposite shear forces in the flanges, acting as a couple, must be
balanced by torque Ve in which e is the eccentricity from the line of shear force in the
(vertical) web. This principle can be applied both to channel sections and ASB sections.

For doubly symmetric and monosymmetric sections, e = 0.

B.1.1 Shear centre in parallel flange channels

For an equal flanged channel section, the element lengths are equal to (b — ¢, /2) for the
flanges and (4 — ¢) for the web. By symmetry, the shear centre is located on the major
axis, as shown in Figure 4.2.

To determine the horizontal position of the shear centre, consider the shear forces in
the flanges associated with bending about the major axis (these can be determined
using the familiar VAE/]y expressions for shear flow at a location).

The total shear force F, acting horizontally in each flange is given by:
F = {Vxt(b—t/2)x[(h- tf)/2]/]y} x(b—1t/2)

f

The couple due to these forces is then F, x (h — t,), which must be balanced by V' x e,
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Figure B.1
ASB dimensions
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Hence the eccentricity of the shear centre relative to the centreline of the web is given by:
e =t.(b—1t/2)* (h— tf)z/(41y)

Note: the use of the symbol e for this dimension is consistent with P363.

B.1.2 Shear centre in ASB sections

ASB sections are monosymmetric about their minor axis so the shear centre will be
located on the centreline of the web. The centroid is also located on the centreline,
above the shear centre. The principal dimensions of an ASB and the locations of the

shear centre and centroid are illustrated in Figure B.1.
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-?_ ﬁki©
|
® J“L _’_ € hr2
es,bf |
tf/2 T~ -‘-
e 00 — — — y y
/2 — |
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To determine the location of the shear centre, consider shear forces in the two flanges
that are proportional to each flange’s second moment of area about the z-z axis: the
location of the shear centre will be on the line of the resultant of the two forces. The
location can thus be determined by taking moments of the two forces (actually, the

I values) about any convenient location.

The shear centre location relative to the mid-thickness of the bottom flange is thus given by:

—(h-t)1

z,tf /(12 + Iz,bf)

s.bf if

where [ .and [  .are the second moments of area of the top and bottom flanges

respectively. The web and the fillets of the rolled section are assumed to have a

negligible effect on the location of the shear centre and are thus excluded from the



values of I .and [ . (The thick web would make a small contribution to the second
moment of area of the whole section about the z-z axis but its influence on the location

of the shear centre is much less.)

In contrast, the location of the centroid is influenced by the area of the web and, to a
lesser extent, by the fillets. To determine its position it is convenient to consider the
ASB section in two parts - a bisymmentric I section with both flanges of width 5 and the
two remaining portions of the bottom flange, each of width (b, — b)/2.

The combined area of the two flange tips is given by:

A = (b

1

b)t

b Y
The area of the bisymmetric portion is given by:

A =A-4

2 1

where 4 is the area of the whole ASB cross section.

The position of the centroid, relative to the mid-thickness of the bottom flange is thus
given by:

e = [(h - t)/2]4,/4

c,bf

B.2 StVenant torsional constant /

B.2.1 Solid rectangles

The St Venent torsional constant for a rectangular section of dimensions a x b (where
a > b) is given by:

3 4
I LR PRy YL P
3 a 12a

For a long rectangle this simplifies to:

ab’ 3
T =3 0.21»* or,fora >> b, I, =%b

The deduction 0.215* represents a reduction at the ends of a rectangle.

B.2.2 Open sections

For typical structural sections composed of three (or, in the case of angles, two)
rectangular elements whose thickness ¢ is small relative to length L, a reasonable
approximation may be obtained by summing L#/3 for the rectangular elements.

Thus, for a symmetric I section:
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Figure B.2

Junction corrections
based on the
inscribed circle
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I ~ [2bt} + (h—2t)t *1/3

T

and for an ASB:

I ~ (b, + bt} + (h—2t) )3

T

For rolled sections, especially those with relatively large root radii, the degree of
conservatism in the above expression can be significant. A more accurate assessment,
correcting for the deductions at the open ends and the enhancement at the junction,
is warranted. The methodology given below was developed by El Darwish & Johnston in
the 1960s, as described in El Darwish and Johnston™.

The deduction at each end is 0.105#, where ¢ is the thickness of the element. When
there are four flange tips, there are four deductions to be made; when there are only
two flange tips only two deductions are made (the above reference mistakenly shows
four deductions for channels).

The junction enhancement is aD*, where D is the diameter of the largest circle that
can be inscribed within the section and « is a dimensionless coefficient obtained from
a graph or an empirical formula. There are different graphs and formulae for different
junction geometries. The ones relevant to current (parallel flanged) sections are «, for
Tjunctions, as in I sections and «, for Ljunctions as in channel and angle sections.
For obsolete sections with tapering flanges, values may be found in El Darwish and
Johnston or in PO57.

7\
|
I =[2b8 + (h—2t)t2])/3 I =[2b8 + (h—2t)t’]/3
+ 20, D} -4 x 0.1057; +2a D} -2 x0.1054

The empirical formulae are:

a, =—0.042 +0.2204¢ /t_ + 0.1355¢/t,— 0.0865¢ r/t> — 0.0725¢ */t?
a, =—10.0908 + 0.2621¢ /t. + 0.1231r/t,— 0.0752¢ r/t? — 0.0945¢ */t?
* El Darwish, I.A. and Johnston, B.G., Torsion of structural shapes, ASCE Journal of the Structural

Division, Volume 91, ST1, February 1965



The diameters of the inscribed circles are given by:

For Tjunction D, = [(t,+ r)* + ¢t (r +t /4)]/(2r + 1)

For Ljunction D, = 2{(3r+1¢ +1. )~ \/[2(2r +1)Q2r + )]}

The junction corrections will be additive and if there are two junctions there are two
additions to be made.

B.2.3 Structural hollow sections

For any thin-walled hollow section of uniform thickness ¢, the value of I_is closely

approximated by:
I = 4tAp2/p
in which p is the mean perimeter length and Ap is the area enclosed by the mean

perimeter, which follows the centre of the tube wall.

A closer approximation, used in the Product Standard EN 10210-2:2006 (for hot
finished structural hollow sections), expressed using the symbols for area and

perimeter in this guide, is:
1 = 4tAp2/p + pti/3

The p#3/3 term allows for the variation of shear stress across the thickness of the
section. If the same section were to be converted into an open one by a longitudinal

cut, this would be the value of its torsional constant.

For circular hollow sections, uniquely, an exact formulation is available:

I =nld* — (d—20)")/32 (=1 =2I)

For elliptical hollow sections, the length of the perimeter of an ellipse (expressed here

as p) is given by EN 10210-2 (again using symbols in this guide) as:
P = (n/2)(h+ b —26){1 + 0.25[(h — b)/(h + b - 20)]*}

The area enclosed is given as Ap =n(h—t)(b-1)/4.

For rectangular hollow sections, the perimeter length is:
p =2[h-t)+(b-0)]-2r(4-n)

in which r is the ‘mean corner radius’. For hot finished sections, » = 1.25¢, according
to EN 10210-2; for cold formed sections the mean corner radius is between 1.5¢ and

65



APPENDIX B: FORMULAE

66

2.5t, according to values for calculation of section properties given in Annex B of

EN 10219-2:20086. (The properties for cold formed sections are therefore very slightly
smaller than those for hot rolled sections. Only the values for hot rolled sections are
given in Appendix A.)

For a rectangular hollow section, the area is given by:

A =(h— )b —t)— (4 - )

p

B.3 Warping constant /

B.3.1 Isections

Doubly symmetric (equal flanged) I sections

In a doubly symmetric section, the warping moment M_ is given by:

M = +ELJ"(h - 1)/2

w,Ed
and the warping torque is given by:

T = EL¢"'(h - 12

w,Ed
where I is the second moment of area of one flange

I is therefore equal to I (h — )*/2

For practical purposes /. may be taken as half of / for the section as a whole,
sol =1 (h—t)/4.

Monosymmetric (unequal flanged) I sections

Although the flanges are unequal, M_ will be numerically the same for both flanges
and the product of / and its distance from the shear centre will be the same for both

flanges. Therefore, based on the bottom flange:

Mw,Ed = E[bf¢”es,bf

where

e is the height of the shear centre above the centre of the bottom flange
I is the second moment of area of the bottom flange about the z axis.

bf

The warping torsional moment is:

T =El;¢"e (h—1)

w,Ed



[ is therefore equal to E1, e (h —1,).

B.3.2 Parallel flange channels

For an equal-flanged channel section, L sections, each composed of a flange plus half

the web, can act to resist warping (see Figure 4.3).

The value of the warping torsional constant is given by consideration of bending of the

L sections about both z-z and y-y axes. From SCI publication P363, the value of / is
given as:

I, = @ [12 ~A(e,-1,/2) [M—lﬂ

41

y

where ¢, is the distance from the back of the web to the centroidal axis and 4 is the
area of the cross section.

B.4 Torsional section modulus 4

B.4.1 For an open section

For an open section, the torsional section modulus is given simply by:

w, =1/t

Where

I, is the St Venant torsional constant

t is the thickness at the point considered.

B.4.2 For a structural hollow section

For any thin-walled hollow section, W, is given approximately as:

/4 =2t4
p

t

where Ap is as defined in B.2.3 and ¢ is the thickness of the section.

A more exact formula given in EN 10210-2 for rectangular, square and elliptical

sections (using the symbols in this guide) is:
w, =1 /(t+ 2Ap/p) = (4Ap2t/p + pt3/3)/(t + 2Ap/p)

where I, t and r are as defined in B.2.3

For circular sections, the more exact formula is:
w, =41/d

in which 7=n[d* - (d - 1)]/64.
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The general equation for torsional moment is:
T/GI, =¢ —a¢"

where
a = JEl, /GI,

Solving this differential equation for the variation of ¢ with distance along the beam x,

gives solutions of the form:

) = Asinh(x/a) + Beosh(x/a) + Cx* + Dx* + Ex + F

where A4 to F are constants that depend on load distribution and end conditions.

The constants have been evaluated for ten cases. The expressions for ¢, ¢', ¢'" and ¢'"’
for these ten cases are given below. Each case is illustrated with a diagram that shows
the form of loading and the end conditions.

The fork device in the explanatory sketches is to indicate that the member is prevented
from twisting but not from warping at the point of restraint. Usually, but not invariably,
this is also a point of support in the conventional sense. The jaws device is to indicate
that the member is held in a vice-like grip that prevents contra-rotation of the flanges.
This is the assumption of warping restraint which, as discussed in Sections 2.6

and 7.6, is difficult to realize in practice. If it can be achieved, it is more than likely that
the member will find itself restrained against torsion and bending (both My and M) at

the same point - the vice is attached to a bench, so to speak.

Continuity does not provide warping restraint. Nevertheless a double-spanning beam
with identical spans and loads could, by virtue of symmetry, be treated as warping-fixed

at the central support. Cases 8 and 9 cater for this rare possibility.

Case 10 covers distributed torque varying linearly from zero at one end to 27/L at the
other. Results from this and Case 4 can be superimposed to cater for a Slimflor® panel

in which the beams are non-parallel.

In theory there are many more cases that could have been included. Also, warping
fixity is all or nothing; there is no provision for flexible restraint. However, experience

suggests that the cases included can answer most practical demands.
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Note that the end conditions for torsion are not the same as end conditions for vertical
or lateral restraint; it is possible to have one form of restraint without the other - for

example an unpropped cantilever can still be restrained against torsion at the free end.

Cautionary notes on use of the formulae

It should always be recognised that the value of T applicable to the graphs and
formulae is the total applied torque, not the greatest value of torsional moment in the
beam. In a simple beam with a central torque, for example, the maximum torsional

moment 7, is only half the applied torque.

In a typical Slimflor® construction stage calculation using Case 4, T is the slab reaction

per unit length x eccentricity x length of the beam, end-to-end.
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The following graphs are provided:

STRUCTURE LOADING GRAPH PARAMETER
Beam, no warping fixity ~ Single point torque (Case 3) A )
at ends
Single point torque (Case 3) B @'
Point torques at third and quarter C o
points (based on Case 3)
UD torque (Case 4)
Point torques at third and quarter D @'
points (based on Case 3)
UD torque (Case 4)
Cantilever with warping  Point torque at tip (Case 7) E ¢dand ¢’
fixity at support UD torque (Case 8)
Beam, no warping fixity ~ Uniformly increasing torque F ¢dand ¢’

at ends

(Case 10)

Cautionary notes on use of the graphs

It should always be recognised that the value of T applicable to the graphs and

formulae is the total applied torque, not the greatest value of torsional moment in the

beam. In a simple beam with a central torque, for example, the torsional moment in

each half of the beam is only half the applied torque.

In a typical Slimflor® construction stage calculation (using graphs C & D), T'is the slab

reaction per unit length X eccentricity X length of the beam, end-to-end.
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This Appendix presents six design examples, as follows:

11
1.2
1)
1.4

1.5
1.6
1.7
1.8

2.1
2.2
248

2.4

Sl
%2
818
3.4

385
3.6
¥
3.8

EXAMPLE 1 - UNRESTRAINED BEAM

WITH ECCENTRIC POINT LOAD
Configuration

Section properties

Actions

Design value of bending moment

and shear force

Design values of torsional effects at ULS
Cross sectional resistance

Buckling resistance

Serviceability limit state

EXAMPLE 2 - CRANE BEAM
SUBJECT TO TWO WHEEL LOADS
Configuration

Section Properties

Design values of vertical and horizontal
bending moments and shear

Design values of torsional effects at ULS

EXAMPLE 3 - ASB AT VARIOUS
STAGES OF SLIMFLOR®
CONSTRUCTION

Configuration

Section properties

Actions

Design values of vertical bending
moments and shear forces at ULS
Design values of torsional effects at ULS
Cross sectional resistance

Buckling resistance

Serviceability limit state

87
87
87
88

88
88
92
93
95

96
96
97

97
97

106
106
106
107

108
108
111
113
115

41
4.2
43
4.4
4.5

4.6
4.7
4.8
4.9
410

5.1
5.2
518
5.4
5.5
5.6
5.7
5.8
589
5.10

6.1
6.2
6.3
6.4

EXAMPLE 4 - LINTEL IN CAVITY
WALL USING A UKPFC
Configuration

Section properties

Actions

Combination of actions

Design value of vertical bending
moment and shear

Design value of torsional effects at ULS
Cross sectional resistance

Buckling resistance

Serviceability limit state

Commentary

EXAMPLE 5 - LINTEL IN CAVITY
WALL USING A HOLLOW SECTION
Configuration

Section properties

Actions

Combination of actions

Design value of vertical bending moment
Design values of torsional effects

Cross sectional resistance

Buckling resistance

Serviceability limit state

Commentary

EXAMPLE 6 - END PLATE
CONNECTION

Configuration

Design values of forces on connection
Approach one

Approach two

117
117
117
118
120

118
119
121
123
125
125

127
127
127
128
128
128
128
129
130
130
130

131
131
131
131
132
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Example 1 - Unrestrained beam with eccentric point load

1.1  Configuration

A simply supported beam spans 4 m without intermediate restraint. It is subject to a
permanent concentrated load of 74 kN at mid-span, which is attached to the bottom

flange at an eccentricity of 75 mm.

Verify the trial section 254UKC73 (S275).

9

A 254UKC73 4

74 kN

Any restraint provided by the end plate connections against warping is partial, unreliable
and unquantifiable. The ends of the member will therefore be assumed to be free to warp.

Note: This example is similar to Example 6 in SCI publication P364. That example only

uses a simplified assessment of torsional effects.

1.2  Section properties
For 254 UKC 73 in S275

SCIP363 b =254.6 mm
=254.1 mm
L, = 8.6 mm
t =14.2 mm
I, =0.562 dm°
I =57.6 cm*
r =12.7 mm
A =9310 mm?
/4 =992 cm?
pLy
WPLZ =465 cm?
1, =3910 cm*
Table A.2 a =1.59m
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For t <16 mm and S275

BS EN 10025-2, f, =R, =275 N/mm’
Table 7

1.3 Actions

1.3.1 Partial factor for actions

BS EN 1990 Permanent actions Vs =135
Table NA.A1.2(B)

1.3.2 Combination of actions at ULS

BS EN 1990 presents two options for determining the effect due to combination of
actions to be used for the ultimate limit state verification. Here the less favourable

combination from Expression (6.10a) and (6.10b) is determined.

Expression (6.10b) will usually be the governing case in the UK, except for cases where

the permanent actions are greater than 4.5 times the variable actions.

BS EN 1990 6.4.3.2, However, as there are only permanent actions present, 6.10a will be more onerous
NA.2.2.3.2" than 6.10b and so governs the design.

For the concentrated load acting at mid-span with an eccentricity of 75 mm.

F =7,G, =135 x 74 = 100 kN

d

T =0.075F;=0.075 x 100 = 7.5 kNm

d

For the beam self weight:

f, =7, = 1.35x0.716 = 0.97 kN/m

1.4 Design value of bending moment and shear force

At mid-span:

My’Ed =100 x 4/4 + 0.97 x 4*/8 = 102 kNm
At the support:

v =100/2 + 0.97 x 4/2 =52 kN

Ed

1.5 Design values of torsional effects at ULS

1.5.1 Simplified assessment of effects

3-1-1/86.2.7(7) As a simplification, for members with open cross sections, the effects of St Venant

torsion may be neglected.
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The torque should then be considered as a couple, applied to the flanges, where the
force is given by:

F = T,/(h — 1)=7.5/(0.254 — 0.014) = 31.3 kN

w,d
The bending moment in a flange at mid-span is thus:

M =(31.3 x4)/4 =31.3 kNm

w,Ed

1.5.2 Assessment of effects, allowing for elastic interaction between
St Venant torsion and warping torsion

The flanges are unrestrained against warping at their ends and the beam is subject
to a point torque; graphs A and B in Appendix D and the expressions in Case 3 in
Appendix C are thus applicable.

For this beam:

L 4 i
T 159 T

In this case, the torque acts at mid-span and thus o = 0.5
Rotation

From Graph A, for a = 0.5 and L/a = 2.52:

¢G[T =0.21
Ta
Therefore
0.21x7.5%x1.59 0.053 rad (3°
¢ = 8Ix10°%57.0x10° ~ 033 1ad 39

Minor axis moment induced by rotation:

M = M, =0.053 x 102 = 5.4 kNm

z,Ed
Warping moment
From Graph B, for ¢ = 0.5 and L/a = 2.52:

_$'Gl,a
T

=0.425

0.425%x7.5

-¢' = - — =0.043 rad/m?
81x10°x57.6x107° x1.59
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The warping moment at mid-span is thus:

h—t "
Mw,Ed :_Elf( 5 fj¢

where [ = [ /2
Therefore:

210%10°x19.55x107° x(0.254—0.014)x0.043
M, ., 3 2( ) =21.1 kNm

This moment occurs in each flange (in opposite directions).

Note: Only in the top flange does warping moment act in the same direction as the
minor axis moment induced by rotation.

Commentary: Evaluation of the expressions in Appendix C, Case 3, along the length of
the beam would give the following bending moment diagram:

250

20.0

15.0

10.0

50

Warping moment M, ¢, (kNm)

0.0

5.0

Warping moment due Distance along beam, x/L
to point torque

It may be noted that the interaction with St Venant torsion has reduced the peak

warping moment (relative to that in the simplified assessment, by approximately 33%
(21.1 kKNm compared to 31.3 kNm).

St Venant torsional moment
The St Venant torsional moment is given by 7'= ¢'GI. (see Section 2.3).

No graphs are provided in Appendix D for ¢, but its value may be obtained from
expressions in Appendix C.

For a = 0.5 the expression for a point torque simplifies to:

: i sinh(L/2a)_COS =
4 ] GIT{2J{tanh(L/a) h(L/za)} h(x/a)}
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Variation of torsional
moment along
the beam

3-1-1/§6.2.5(2)

At the member end, x =0 and

¢ - Ll smhj—coshl.% cosh0} = Ty x0.238
GI. |2 | tanh2.52 GI.
T.. — Gl = T,x 0238 = 0.238 x 7.50 = 1.78 kNm

Further evaluation of the expressions in Appendix C would reveal the sharing of
torsional moment between St Venant torsion and warping torsion along the length of

the beam. The following plot shows the variation.

5.00

400 —— Total torsional moment
—— St Venant torsional moment

3.00

—— Warping torsional moment

2.00

1.00

0.00

-1.00

Torsional moment (kNm)

-2.00

-3.00

-4.00

-5.00
Distance along the beam, x/L

1.6 Cross sectional resistance

1.6.1 Bending resistance

For this Class 1 section, the bending resistance about the major axis is:

M = VVPL)’ fy

y.Rd
V™Mo

7uo = 1.0, according to the UK NA

~992x107°%x275x10°

M, T =273 kNm
M, =102 kNm < M, =273 kNm

The bending resistance about the minor axis is:

Iy Il |- Warfy _ 465x107°x275x10’

z,Rd = pl,z,Rd = 1 0

VMo

=128 kNm
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BS EN 10025-2

M =54 kNm<Mde =128 kNm

z,Ed
The warping resistance of one flange is:

M =M

w,Rd pLERd —

M, /2 =64 kNm>M,_ =21.1 kNm

Consider the plastic interaction criterion, as given in Section 3.1.2:

r 2
My,Ed + Mw,Ed + M/_,Ed < 1
M M

L ply,Rd pLf,Rd Mpl,z,Rd

r 2
%} E+ﬁ=O.14+O.33+0.04:0.51£1 OK

+
64 128

In this example, the loading at mid-span is applied through a tension rod that passes
through a 27 mm diameter hole in the bottom flange. It is therefore necessary to find
out whether the bending resistances need to be reduced to take account of the hole.

According to 6.2.5 (4), fastener holes in a tension flange may be ignored provided that:
V2 VMo

For S275 steel, f, = 430 N/mm?

Yo =1.10, according to the UK NA

A =254 x 14.2 = 3610 mm?

f

=4,-27 x 14.2 = 3220 mm’

finet

3220%0.9x430
—1 0 x1

3610x275

07 =1130kN and x107 =993 kN

So, the hole may be ignored for bending about the major axis.

For lateral bending of the bottom flange, there is no simple criterion to permit
neglecting the hole. The value of the section modulus for transverse bending should
therefore be evaluated for the flange with the hole, although the calculation of an
appropriate plastic modulus for a flange with a hole on one side is not straightforward.
Considering here that the hole removes approximately 20% of the area of one flange
outstand, that the utilization of the top flange calculated above is only 51% and that
the warping moment and minor axis moment are in opposite directions in the bottom
flange, the adequacy of the bottom flange is judged satisfactory.



3-1-5/NA.2.4

3-1-1/6.2.7(9)

3-1-1/§6.3.2.1(1)

1.6.2 Shear resistance

Plastic shear resistance
Without torsion, the plastic shear resistance of the beam is given by:

AL B

pLRd
VMo

For an I section:

A, =A—-2bt +(t, +2r)t, but not less than nh ¢

=9310 -2 x (254 x 14.2) + (8.6 + 2 x 12.7) x 14.2 = 2560 mm?
h, =h—2t,=254 - (2 x 14.2) =226 mm
n = 1.0 (according to UK NA to BS EN 1993-1-5)

Thus nh z, = 1.0 x 226 x 8.6 = 1940 mm?
2560 > 1940

Therefore 4 = 2560 mm?

v _2560x275/\3 s 6w
pLRd 1.0
Reduced shear resistance in the presence of torsion
The shear resistance is reduced by the presence of St Venant torsional shear stress in the web.

In order to calculate the reduction in available resistance due to torsion, it is necessary

to evaluate the torsional shear stress in the web. This is given by:

| Tt,Ed x 1

t,Ed

=1.78 x 10° x 8.6/57.6 x 10* = 26.6 N/mm?

The reduction factor = |1— Tk =.1= 26'6\/5 =0.93
1251, /\3 V' 125%275

Vpl,T,Rd =0.93 x 406 = 378 kN
Via =52kN <V ., =378 kN OK

Note that, with this level of shear stress there would be no reduction in plastic bending
resistance, even if the two effects were coexistent. In this case, there is no St Venant

torsional moment at mid-span.

1.7 Buckling resistance

1.7.1 Lateral torsional buckling resistance

The buckling resistance moment is determined from:

M i %LTWyfy

b.Rd
Vi
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3-1-1/§6.3.2.1(1)

3-1-1/NA.2.17

Buckling curve b

3-1-1/§6.3.2.1(1)

3-1-1/Table B.3

Y = 1.0, according to the UK NA

For this Class 1 section, Wy =W

pLy
The value of the reduction factor y, .is determined from a buckling curve according to

the non dimensional slenderness 4, which is given by:

_ Wf
S T

For the configuration of this beam, the elastic critical moment M is given by LTBeam
as M_=1049 kNm

Therefore, 4 . = 4/% =0.51

For a doubly symmetric rolled section with i#/b < 2, the UK NA directs that buckling
curve b of 6.3.2.3 should be used.

LT’

For ZLT: 0.51, x.,.=095

W/ 0.95x992x10°x273x10°
4% 1.0

=259 kNm

M, bRd =Xur

1.7.2 Interaction of LTB with minor axis bending and torsion

As discussed in Section 3.2, use the formula in Annex A of BS EN 1993-6. For = %,
this may be re-expressed as:

M, g, n Co,M, 1y N k.k, kM

wzw o w,Ed Sl

Mb,Rd Mz,Rd Mw,Rd
Here:
C., = 0.9 (near-triangular bending moment diagram)
M
k| 20702 —07-02x 2L1 = 0.63
MW,Rd 64
M 5.4
k,, =1- —& == =0.96
: M,y 128
M 102
k e (1 - —— =111
@ ( M ) ( 1049)

cr

The criterion is evaluated as:

£+0.9x5.4+O.63><0.96><1.11><21.1
259 128 64

=0.39+0.04 + 0.23 = 0.66 OK

Therefore, the buckling resistance is satisfactory.



1.8 Serviceability limit state

The partial factor y,, at SLS is 1.0, compared with its value of 1.35 at ULS. Hence the
SLS action effects are as for ULS x 1/1.35

P, =0.053/1.35=0.039 rad (2.25")

There are no commonly agreed limits for permanent deflections at SLS and the matter

is for the designer’s judgement.

In this example, the designer might need to consider the effect of such a rotation on
the suspension rod, unless it is attached in a way which permits rotation. If, instead
of a suspension rod, the load were connected via a cable attached to an eye bolt, a
rotation in excess of two degrees might be judged less of a concern.
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Example 2 - Crane beam subject to two wheel loads

2.1 Configuration

A crane beam spans 7.5 m without intermediate restraint. Verify the chosen 533 x 210
UKB 101 section under the condition shown below, in which two wheel loads 3 m apart

act at rail level 65 mm above the beam.

The ULS design values of the loads from the wheels of the crane are 50 kN vertical
together with 3 kN horizontal.

Allow 2 kN/m for the design value of the self weight of the beam and crane rail.

Consider the design effects for the location shown below (which gives maximum

vertical bending moment).

3 | 3 |
. 0.065
Rail level £+2 £+2
T 533 x 210 UKB 101 S275
- -
7.5
3m (=04L) 50kN 50kN
6m(=0.8L)
2 kN/m
A A
- -
L=75m
(Elevations)
3kN 3kN
| \J \l =1
A A

(Plan view)

Assume that an elastomeric pad will be provided between the rail and the beam.
According to EN 1993-6, 6.3.2.2(2), the vertical wheel reaction should then be taken
as being effectively applied at the level of the top of the flange and the horizontal load

at the level of the rail.



2.2 Section properties

SCI P363 For 533 x 210 UKB101, section properties include:

h =536.7 mm
b =210 mm
t, =10.8 mm
I =17.4 mm
Wiy =2610 cm®
W, =399 cm’
r =12.7 mm
A = 12900 mm?
I, =26.8 cm* (=26.8 x 10* m*)
I =101 cm* (=101 x 10®* m*)
I, =1.8 dm° (= 1.81 x 10° m®)
Table A1 a =2.16m
1 =1/2=134cm* (13.4x10°m?)
BS EN 10025-2, Fort> 16 mm and S275
Table 7
7, =R, =265 N/mm’

2.3 Design values of vertical and horizontal bending
moments and shear

The bending moment due to the vertical point loads and the self weight UDL is:

M =(50x 0.6 +50x0.2) x3.0+7.5%x3.0-2x3.0/2=133.5 kNm

y.Ed
The bending moment due to the horizontal point loads is:

M =(3x0.6+3x0.2)x3.0=7.2kNm

z,Ed

Note: This is not the full M, ., since rotation will induce an additional ¢My.

At the left hand support:

V =50(0.6 + 0.2) =40 kN under the given loading

Ed

V =50(1 +0.6) = 80 kN with the left hand wheel adjacent to the support

Ed

2.4 Design values of torsional effects at ULS

The member is subject to horizontal forces at two points, applied at rail level.

Distance from centroid/shear centre of beam:

d =536.7/2 + 65 =333 mm
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3-1-1/§6.2.7(7)

Bending moment

diagram for warping

98

moment (simplified
assessment)

Torque applied at each position =333 x 3 x 107 = 1.0 kNm

2.4.1 Simplified assessment of effects

As a simplification, for members with open cross sections, the effects of St Venant

torsion may be neglected.

Each torque should then be considered as a couple, applied to the flanges, where the
force is given by:

F = T /(h — t)=1.00/(0.537 = 0.017) = 1.92 kN

w,d

The bending moments in a flange are thus:

- =(1.92%x0.6+1.92x0.2) x3.0=4.61 kNm at the left wheel
M, ., =(1.92 x 0.8+ 1.92 x0.4) x 1.5=2.88 kNm at the right wheel
2.88 kNm
4.61 kNm

2.4.2 Assessment of effects, allowing for elastic interaction between
St Venant torsion and warping torsion

The flanges are assumed to be unrestrained against warping at the member ends
and thus Graphs A and B in Appendix D and the expressions in Case 3 in Appendix C
are applicable. Since the graphs do not cater for @ > 0.5, the expressions in the

Appendix will be used directly.

For this beam:

L _ 12 34
a 2.16

Concentrated torques 7, = 1 kNm at & = 0.4 and 0.8 will be considered in turn. Since
the calculation is a linear elastic one, the principle of superposition applies.

Rotations

Appendix C, Case 3 The rotations in the beam ¢ are given by:

.ol
T sirfr== al X
¢ =—4J(1-a)=+ 4__cosh = [sinh=} forx< alL
GI, a | ann a a
a



Rotation of crane
beam due to two
pointloads at 0.4L
and 0.8L

sinha—L
(L—x)—+ &

tanh —
a

..ox ..ol X
sinh — —sinh —cosh —
a a a

forx > al

At the left-hand wheel, due to its torque (@ = 0.4 and x = «l):

¢ _ T, ]06x30  sinh(3.0/2.16) sinh (3.0/2.16) - sinh (3.0/2.16) cosh (3.0/2.16)
GI.| 2.16  tanh(7.5/2.16)
AR

T

At the left-hand wheel due to the right-hand wheel torque (= 0.8 and x < &L)

y _ L] 02>30 | sinh(6.02.16) _ o 6.0/2.16) [sinh (3.0/2.16)
GI.| 2.6 |tanh(7.5/2.16)
—La70 190]

T

The torque at each location is 1.00 kNm, hence superposition gives:

1.00x2.16
81x10°x101x107°

p 1 g_la[o_371+o,190] L x0.561=0.0146 rad (0.84°)
T

Commentary: Evaluating the rotation along the beam would give the following
deflection diagram:

0.70

0.60

——LH wheel
——RH wheel

050 ——Combined wheels

0.40

0.30

Rotation @Gl /Ta

0.20

0.10 \
0.00 W T T T T T T T T

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Distance along beam (x/L)

The maximum rotation occurs between the two wheels and is slightly greater than that
at the left-hand wheel.

Minor axis bending

The additional minor axis bending moment due to the rotation is:

M

z,Ed

=0.0146 M  =0.0146 x 133.5 = 1.95 kNm
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The total minor axis moment is thus:

M =195+72=9.2kNm

z,Ed

Warping moment

The warping moment in the flange depends on ¢'’, which is given by:

sinh R
T 1. .
0" =_d —a—cosh% sinh X forx < al
Glya tanh — a a
a
o«
sinh
T ] . L
¢ ) Gl_d z sinh X —sinh Z=cosh = for x > ol
| tanh = 1 a 9
a

At the left-hand wheel, due to its torque (@ = 0.4 and x = «l):

1, | sinh(3.0/2.16)
~ Gl,a| tanh(7.5/2.16)

L 10.462]
Gl,a

sinh(3.0 / 2.16)—sinh(3.0/2.16)cosh(3.0/2.16)

At the left-hand wheel due to the right-hand wheel torque (= 0.8 and x < aL):

7, [ sinh(6.0/2.16)
~ Gl,a| tanh(7.5/2.16)
__ L

I.a

—cosh(6.0/2.16) |sinh(3.0/2.16)

[0.088]

Superposition gives:

9" :L[—0.46z—0.088]= - -9 —~ x[-0.550]=-3.11x10"
Gla 81x10°x101x107°x2.16

The warping moment in each flange is given by:

EI 210x10°x1.81x10°°

M, =g
7= - (h—zf)d’ (0.537-0.017)

x3.11x107° = +2.28 kNm

Alternatively, M., could be derived directly from the value [-0.550] above using

W,

M, =+Tal(h-t)x [0.550]

W,



Commentary: Evaluating the warping moment along the beam would give the following
bending moment diagram:

250

— LH wheel
—— RH wheel
200 — Total, two wheels

/AM\
Lfﬁ \

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Warping moment M, (kNm)

Warping moment due
to two point loads

Distance along beam, x/L

It may be noted that the interaction with St Venant torsion has reduced the peak
warping torsional moment, relative to that determined by the simplified assessment in
2.4.1, by approximately 50% (2.29 kNm compared to 4.61 kNm).

There is an equal and opposite warping moment in the bottom flange but only in the
top flange does warping moment act in the same direction as M,.

Further calculations would reveal the sharing of torsional moment between St Venant
torsion and warping torsion, along the beam. The following plot shows the variation.

1.00

—Total torsional
moment
= 050
= —StVenant
= )
= torsional moment
=
S o . . . . - . .
£ 0 01 02 03 4 o‘s\a{ 07 08 09 1
9]
g
S 050
02
4
2
-1.00
Variation of torsional 25
moment along Distance along the beam, x/L

the beam
2.5 Cross sectional resistance
2.5.1 Bending resistance
For this Class 1 section, the bending resistance about the major axis is:

W
3-1-1/§6.2.5(2) M, W fy

VMo
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Yo = 1.0, according to the UK NA

2610 x10° x265x10°

M, = =3 = 692 kNm
My, ~ =133.5KkNm<M,_, =692 kNm

The bending resistance about the minor axis is:

W
M = Do fy _ 399 4 10 x 265 x 10 = 106 KNm > M, = 9.2 kNm

z,Rd
V™Mo

The bending resistance of one flange is:

M, =M, /2=53kNm>M, =228kNm

f,Rd
By inspection, the plastic interaction criterion in Section 3.1.2 is satisfied.

2.5.2 Shear resistance

The plastic shear resistance in the absence of torsion is:

31-1/§6.2.6(2) V,,, _ AV N3
VMo
where:
6.2.6(3) A, =A—-2b,+ (¢, +2r)t. but not less than nh ¢
12900 — (2 x 210 x 17.4) + (10.8 + 2 x 12.7) x 17.4 = 6220 mm?
h, =h—-2t,=536.7-17.4 =501.9 mm
NA.2.4 71 = 1.0 according to the UK NA to BS EN 1993-1-5
nh,t, =1x501.9 x10.8 =5420 mm?
6220 mm? > 5420 mm?
Therefore:
A, = 6220 mm?
Therefore:
6220x(265//3)
V. = *x10° =952 kN
PLRe 1.0

The maximum St Venant torsional moment, at the right hand support, is 7, ;, = 0.6 kNm
(calculation not given here but may be seen on plot above) hence the St Venant shear

stress in the web is:
T =T <t/

tEd tEd

=0.60 x 10° x 10.8 /(101 x 10*) = 6 N/mm?
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3-1-1/§6.3.2.1(1)

3-1-1/§6.3.2.1(1)

3-6/8§6.3.2.2

3-1-1/§6.3.2.1(1)

3-1-1/NA.2.17

3-1-1/§6.3.2.3(1)

The reduction of shear resistance due to St Venant torsion is thus small and by

inspection of the values of V_, the shear resistance of the beam is adequate.

Ed’
2.6 Buckling resistance

2.6.1 Lateral torsional buckling resistance

: ZLTVVyfy
1AV

M

b.Rd

For class 1 and class 2 sections Wy = Wply

The reduction factor for lateral torsional buckling y, . is determined directly from a
buckling curve using 7,

- Wty
2 LT i M

cr

For a class 1 section

/4 =W

y pLy

Under the given pattern of loading, LTBeam gives M_ = 320 kNm

Had there been no elastomeric pad between the rail and the beam, the vertical
load could have been assumed to act at the level of the shear centre and M would
be 455 KNm.

_ 6 3
7 :\/2610x10 x265x10° _ 692 .
320 320

h
For a UKB with b > 2 use buckling curve ¢

Buckling curve c for ZLT =1.47 gives:

P =0.401

The UK National Annex to BS EN 1993-6 refers to the NA to BS EN 1993-1-1 for partial

factors y,,, and y,,, and this gives values of both equal to 1.0.

Mb,Rd =Xur My‘Rd

M =0.401 x 692 =277 kNm

b.Rd
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2.6.2 Combined bending and torsion resistance

Interaction between LTB, minor axis bending and torsion effects will be verified using
BS EN 1993-6 (A.1), re-expressed as:

Section 3.2 My.Ed s, Mz,Ed Tk k k Mw,Ed <1

Mb,Rd B Mz,Rd T Mw,Rd
where:
C is the equivalent uniform moment factor for bending about the z-axis,

mz

from EN 1993-1-1 Table B.3.

In this example, since two-point loading is not considered in Table B.3, it seems
reasonable to take C = 0.95 as for a parabolic bending moment diagram under

uniformly distributed load.

Mg, _ 1335 “haiz
M zq 2717 ’
Mz,Rd 3 W;/I’ny
MO
—6 3
_ 399x10 1><265><1o ok eke
Mawa 222 09
M, 4 106
W 0.0174x0.21* / 4)x265%10°
M Rd = pl,ff;/ — ( ) :50.8 kNm
T VMo 1
M, 4 _ 233 _ olos
M 50.8
M
k, =0.7 - —=%
Mw,Rd
=0.7-0.05 =0.65
M
k =1-—=2K
ZW MZ’Rd
=1-0.09 =091
1 1
ks = (M) T (,_1335) =172
M, 320
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3-6/87.3
3-6/Table 7.1

1-3/Table A.1, NA.2.6

The interaction expression is evaluated as:

0.48 + 0.95 % 0.09 + 0.65 x 0.91 x 1.72 x 0.05 = 0.48 + 0.09 + 0.05 =0.62 < 1

2.7 Serviceability limit state

2.7.1 Displacements

Maximum rotation in service will be between the wheels, not under them. Also, it
may well be experienced when the crane is in a different position from the one which
generates maximum moment. The same is true of the rotation under a wheel, if that is

taken as the design criterion.

According to BS EN 1993-6, limits for deformations and displacements should be
agreed for each project. The limiting value of horizontal deformation of /600 given in

BS EN 1993-6 for the SLS characteristic combination of actions is considered here.
For the ULS combination of actions, ¢ = 0.0146 rad, under the left-hand wheel.

The partial factors on permanent actions and crane actions at ULS are both equal to
1.35 according to BS EN 1991-3 and the UK NA. Hence the SLS deflection is 1/1.35
times the ULS deflection.

Assuming that the central deflection is 5% greater than at the left-hand wheel, the SLS

rotation at mid-span is:

0.0146 x 1.05/1.35 =0.0114 rad (0.65°)

At top of rail level, the displacement due to twist is 0.0114 x 0.333 = 0.0038 m (3.8 mm).

To determine the horizontal displacement of the beam under the influence of the two
horizontal forces, for simplicity consider the central deflection due to two symmetrically

placed loads at a distance d from the ends:

w = FL? [3d/AL — (d/LY*)/6EI

Hered=(7.5-3)2=225m

The force should be taken as that from the crane plus a component of the vertical load
due to the rotation:

F =3/1.35+50/1.35 x 0.0114 = 2.64 kN

2640%7500° 3x2250 (2250Y’
= : — = 6.5 mm
6x210000x2690x10*| 7500 | 7500

Total lateral displacement at rail level at mid-span:

w =38+6.5=10.3 mm

Limit =L/600 = 7500/600 = 12.5 mm OK
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P363

Appendix A

Example 3 - ASB at various stages of construction

3.1 Configuration

A floor is constructed using 300 ASB153 beams spanning 7.5 m and spaced at 7.5 m
centres. The ASBs support 250 mm thick hollowcore units with in-situ lightweight

concrete topping to a total concrete thickness of 316 mm.

Verify the beam at various stages of execution, with precast units on one and both
sides and with construction loads on one and both sides.

The weight of the hollowcore units is 3.4 kN/m? (taken from manufacturer’s literature)
and the density of the wet lightweight concrete topping is taken as 19 kN/m?3
(corresponding to a dry density of 1750 kg/m3).

30 min Top of in-situ concrete

316

Hollowcore unit

80 nominal —
bearing

40 minimum
bearing

3.2 Section properties
For 300 ASB 153 in S355:

ASB is a Class 1 section

h =310 mm

b, =190 mm

b, =300 mm

t =24 mm

t, =27 mm

A =196 cm?

Wy =2160 cm®

I =6840 x 10* m*
I, =513%x 10®*m*
I, =0.895x 10°m*®

= 58 mm (shear centre to mid bottom flange)



BS EN 10025-2

1-1-6/NA.2.13

Advisory Note
AD 346

BS EN 1990

Table NA.A1.2(B)

BS EN 1990

Table NA.A1.2(B)

e = 66 mm (shear centre to centroid)

s,C

a =0.672m

For t> 16 mm and S355

fy =R, =345 N/mm’

3.3 Actions

3.3.1 Permanent actions

Self weight of precast units g.,=34 kN/m?

Self weight of beam g, = 1.5 kN/m

3.3.2 Variable actions

The weight of wet concrete g, is treated as a variable action:
q. =0.066 x 19 = 1.25 kN/m?

BS EN 1991-1-6 NA.2.13 provides recommended values for g _and g but allows

alternative values to be determined.

q. is the construction load due to non-permanent equipment in position for
use during execution
q., is the construction load due to working personnel, staff and visitors,

possibly with hand tools or other small site equipment

For composite beam design, AD 346 recommends the use of:

q, =0 (O, ,, in the AD)

q, = 0.75 kN/m? (0, ,, in the AD)

Total variable action ¢, = 2 kN/m?

3.3.3 Partial factors for actions

Permanent actions Ys=135

Variable actions Yo=15

3.3.4 Combinations of actions for ULS

Annex A.1 of BS EN 1993-1-6 recommends the use of y = 1.0 which results in
expression 6.10a governing. Using the UK National Annex to BS EN 1990 results
in expression 6.10a giving the same design values as expression 6.10 for the
construction stages.

Here:

fd =768k % b+ Vo8 T Vo4 % b
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where b is the spacing of the beams
Consider three design situations:

1. One side of beam loaded (precast units and construction loads)

/i =135x34x375+135x15+15x%x2.0x3.75=30.5kN/m

Note: this situation, where the concrete is placed on one side before the units
are in place on the other, would normally be excluded by the method statement.
However, it could arise if there were a construction opening on one side and since

it demonstrates the worst torsional loading, is considered here.

2. One side of beam loaded with precast units and construction loads, the other with
precast units only

/i =135%x34x754+135x1.5+1.5%x2.0x3.75=47.7kN/m

3. Both sides of beam loaded with precast units and construction loads

/i =135x34x75+135x1.5+1.5x2.0x7.5=59.0kN/m

3.4 Design values of vertical bending moments & shear forces at ULS

The major axis bending moment at mid-span and the shear force at the ends are given by:

2
M = —deL and V= —fdzL

y.Ed

The values for the three situations are thus:

1. M, =214kNmandV,=114kN

2. M, =335kNmand ¥V, =179kN

3. M, =415kNmand ¥V,  =221kN
y.Ed Ed

3.5 Design values of torsional effects at ULS

3.5.1 Total torque

Conservatively, assume that the bearing zone is reduced to 40 mm (to allow for
tolerance in unit length and placement) on ‘Side 1’ and is the nominal 80 mm on

‘Side 2'. Also, assume that all the wet concrete and construction load is transferred
through the bearing of the precast unit. The eccentricity of the reaction is thus 130 mm
and 110 mm on the two sides, respectively. (This is a very conservative assumption,
for illustrative purposes in this guide; with good site control the eccentricities would

usually be assumed to be equal on both sides.)

The torque due to the precast units is:

T =1.35%x3.4x3.75%x0.130=16.8 kNm

pl



T =—-1.35%x3.4x3.75%0.110=-14.2 kNm

p2
The torque due to the construction loads is:

T =1.5%x2.0%3.75x0.130 =11.0 kNm

cl

T =—-1.5%x2.0x3.75x%x0.110 =-9.3 kNm

c2

The net torque for each design situation is thus:

T, =16.8+11.0=27.8 kNm
T, =16.8+11.0-14.2=13.6 kNm
T, =16.8+11.0-14.2-93 =43 kNm

w e

3.5.2 Simplified assessment of torsional effects

Since the ASB is relatively stiff in St Venant torsion, the simplification of ignoring it and

determining warping moments directly is not pursued in this example.

3.5.3 Assessment of effects, allowing for interaction between St Venant
torsion and warping torsion

The flanges are unrestrained against warping at their ends and the beam is subject to
a uniformly distributed torque; graphs C and D in Appendix D and the expressions in

Case 4 in Appendix C are thus applicable.

=—— =11.1

L 7.5
a 0.672

This is beyond the range of the graphs, so use the expressions.

For Case 4, with x = L/2 (i.e. mid-span):

xL —x*
4 . Tya . (—z)+c05h£—tanh£sinh£—1
GI, L| 2a a 2a__ a

For design situation (1) - maximum torque:

2
y AL B DL B GNPS U5 SN DR G D B
GI, 111 8 2
T 8x0.674x1.
Ly 502 2T8X06TX3 059 rad (3.4%)
G 81x10°x513x10

t

A strong case can be made for discounting rotation induced weak direction bending in
this example, since the load is not freely suspended. The precast unit can provide the

small horizontal force necessary to keep its reaction parallel to the rotated beam axis.
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Warping moment
in flanges

110

For Case 4, with x = L/2 (i.e. mid-span):

9" = T xﬁ[—l-l-coshf—tanhisinhf}
Gl.a a 2a a
o = Ty x11.1 —1+coshw—tanhgsinhE
Gl.a 2 2 2
= = Td X0089
Gl.a

The warping moment in the top flange is given by:

ELT, Ta
CEL ' —1) = — 50,089 = —9L 0,089
Mo =B =00 =G a1 (1)
27.8x0.674x0.089
M, i £ =5.89 kNm (for design situation (1))

(0.310-0.024)

Note: the warping moment in the bottom flange will be equal and opposite, but
obviously the top flange will govern.

Commentary: Evaluating the warping moment (for design situation (1)) along the beam
would give the following bending moment diagram:

7.00

6.00

5.00

4.00

3.00

2.00

Warping moment M, ¢, (kNm)

1.00

0.00 T T T T T T \l

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Distance along beam, x/L

It is not normally considered necessary to evaluate ¢ and the St Venant torsional
moment. However, for illustrative purposes, the variation of torsional moment along the
beam is shown below.

The diagram shows that, as anticipated in neglecting the simplified assessment by

warping alone, the majority of the torsion is resisted as St Venant torsional moments.



Variation of torsional
moment along
the beam

3-1-1/§6.2.5(2)

200

—Total torsional
moment

—St Venant
torsional moment

——Warping torsional
moment

15.0

10.0

Torsional moment (kNm)

-10.0

-15.0

-20.0

Distance along the beam, x/L

The effects for the three design situations are summarized below:

y,Ed Td Mw,Ed Tt,Ed
SITUATION (kNm) (kNm) (kNm) (kNm)
(mid-span) (at support)
1. Precast units and
construction loads on one 214 27.8 5.89 11.4
side of beam
2. Precast units both sides,
construction loads on one 335 13.6 2.88 5.58
side of beam
3. Precast units and
construction loads on 415 4.3 0.91 1.76

both sides of beam

3.6 Cross sectional resistance

3.6.1 Bending resistance

For this Class 1 section, the bending resistance about the major axis is:

= Wpl,y fy

VMo

M

y.Rd

Yo = 1.0, according to the UK NA

2160 x10° x345x10°
1.0

M

y.Rd

=745kNm
The maximum vertical bending moment on the steel section occurs in situation (3):

M.

v.Ed

=415 kNm < M, =745 kNm

The warping resistance of the top flange is its plastic bending resistance:
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Wy,aly  217x345x10°
yMO 1.0

=74.8 kNm

Mw,Rd 3
The maximum warping moment on the steel section occurs in design situation (1):

M =5.89 kNm < M, ,, =74.8 kNm

w,Ed

Consider the plastic interaction criterion, as given in Section 3.1.2:

2
Mqud T Mw,Ed T Mz,l—:d
M M

pLy.Rd pLf.Rd

(This applies to the top flange)

Bending about the minor axis is not considered (as discussed above) hence the

evaluation of this criterion is:

2
{ﬁ} +&+O:0.31+0.08+0:0.39£1 OK
745 74

3.6.2 Shearresistance

Plastic shear resistance
Without torsion, the plastic shear resistance of the beam is given by:

] Af, N3

Vmo

v

pLLRd
For an ASB section:

4 = A bt~ b+ (t,+2),

v

19500 — 190 x 24 — 300 x 24 + (24 + 2 x 27) x 24 = 9610 mm?

| 9610x345/\/§xlo,3 Lashorhe

Vpl’R" 1.0

This resistance is significantly greater than ¥V, for all three design situations.
Reduced shear resistance in the presence of torsion

The shear resistance is reduced by the presence of St Venant torsional shear stress
in the web.

In this case, the reductions due to the St Venant stresses will not be critical but the

maximum value will be calculated, for illustrative purposes.

3 Tt,Ed x 11



=11.4 x 106 x 24/513 x 10* = 53 N/mm? (for Case 1)

T
The reduction factor= [1— - 533 =0.89
1.25f, /3 1.25%345

vV =0.89 x 3320 = 2940 kN

pl.T.Rd

Note that St Venant shear stress does not, according to BS EN 1993-1-1, reduce the
plastic bending resistance of an I section.

3.7 Buckling resistance

3.7.1 Lateral torsional buckling

It is assumed that, during construction, the wet concrete provides no restraint to the
ASB and thus it can buckle in a LTB mode, in which the top flange displaces laterally.
It is also assumed that friction at the underside of the precast units provides sufficient
lateral restraint to prevent bending about the minor axis but does not influence the

buckling resistance.

The buckling resistance is given by:

/4
3-1-1/§6.3.2.1(1) M, =Xir s

Vi

where:
- but <1.0
= u <1.

Xir @LT +\/(DLT2 _iLTZ Xir
D = 0.5 1+, (£, -02)+2 |
_ W.f.
Air 5 A}y

cr

To calculate M_, the elastic critical moment for lateral torsional buckling, LTBeam
software can be used. At the time of writing, ASB sections have yet to be added to its

catalogue but dimensions of the ASB sections may be directly entered.

In LTBeam, the loads can be applied at different levels. In this case, the reactions at
the ends of the precast units (which include the reactions due to construction loads)
are applied at the top of the bottom flange (which is 58 — 24/2 = 46 mm below the
shear centre) and the self weight of the beam is applied at the beam centroid (which is

66 mm above the shear centre).

The lowest value of M_ is for situation (1) (slightly higher values would be given
for situations (2) and (3) but for convenience, the lowest value will be used in all

situations). From LTBeam:
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3-1-1/Table 6.3

3-1-1/§6.3.2.2(1)

M = 1135 kNm

cr

From this, the non dimensional slenderness is calculated as:

_ W, f,
A T,

For this Class 1 section Wy =W

pLy

-6 3
i :\/2160x10 x345x10° _ [745 _ oo
1135 V1135

For ASB sections, use buckling curve a (see Section 5.5)

For buckling curve a, o, = 0.21

@ =0.5[1+0.21(0.810 — 0.2) + 0.810°] = 0.892

LT

1
Xir 3 =0.79

[0.892+\/0.8922 Z0.810° }

_ ZLTVVyf;, _ 079)(744
R Yt 1.0

=587 kNm

The maximum design bending moment is My,Ed = 415kNm (situation 3), so the buckling

resistance is satisfactory.

3.7.2 Interaction of LTB with minor axis bending and torsion

As discussed in Section 3.2, use the formula in Annex A of BS EN 1993-6. For p, = 1,
this may be re-expressed as:

My,Ed + szMz,Ed + kwkzwkaMw,Ed
M M M

b,Rd z,Rd w,Rd

Here MZqu =0, as discussed above, and thus kZW =1

M
k =0.7-02 —xH
M

w.,Rd

For situation (1), M ;=214 kNm, M, = 5.89 kNm

M
A = 214 =036
M, 587



Mg 589 0o

Mw,Rd 74 .
k, =0.7-0.2x0.08=0.68
k sl

@ 1-(214/1128)

The criterion is evaluated as:
0.36+0.68 x1.23 x0.08=0.36+0.07=043<1 OK

For situation (3), M ., =415 kNm, M, .,=091 kNm

Y

Mywa 415 _4 5

M e 587

Mg _091_ 000

MW,Rd 4

k, =0.7-0.2x 0.01 = 0.70
k. - ! I

1-(415/1128)

The criterion is evaluated as:

0.71 +0.70 x 1.58 x 0.01 =0.71 + 0.01 =0.72 < 1 OK

Situation (2) has intermediate values of MyEd and M__, and is also satisfactory,
by inspection.

3.8 Serviceability limit state

At SLS the partial factors on actions are both unity and thus the total torques are:

1. 16.8/1.35+11/1.5=12.4+ 7.3 =19.7 kNm
2. 19.7-14.2/1.35=9.2 kNm
3. 92-9.3/1.5=2.9 kNm

The rotations are thus:

1. 19.7/27.8 x 0.059 = 0.042 rad (2.4°)
2. 9.2/27.8 x 0.059 = 0.020 rad (1.1°)
3. 2.9/27.8 x 0.059 = 0.006 rad (0.4°)

If no slab were to be placed on the second side (i.e. the ASB were an edge beam or

adjacent to an opening) most of the situation (1) rotation would be locked in when the

concrete hardened.
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In most situations, the precast units would be placed on the second side before any
concrete is cast and thus only the situation (2) rotation would be locked in, should one
side be cast before the other, or only the situation 3 rotation (if both were cast at the

same time).

At the maximum rotation, in situation (1), the mid-span deflection of the top flange,

assuming that bottom flange is restrained by the precast units, would be:

0.042 x (310 — 24) = 12 mm

The recommended limit to lateral deflection (see Section 5.6) is:

L/500 =7500/500 = 15 mm

The maximum deflection is within that limit.



SCI P363

Example 4 - Lintel in Cavity Wall using a UKPFC

4.1 Configuration

A 300 x 100 UKPFC acts as a lintel to support a 2 m high cavity wall. A 240 x 10

plate welded to the underside of the channel supports the outer leaf, but will not be

considered to act compositely.

The beam is laterally unrestrained over its effective span of 5 m. Assume that each end

is restrained against torsion but not against warping.

102 80

Outer
leaf
5.18 kN/m

4.2
For a 300 x 100 x 46 UK PFC

Section properties

=16.5 mm

~

=9 mm
=300 mm

=100 mm

~

=

> =

=15 mm
=36.8 x 10* mm*
i =31.3 mm
=641 cm’
pLy
A =58.0 x 10> mm?

o~

20 90

Inner
leaf 3

Beam
0.45 kN/m

Key:
S = Shear centre
C = Centroid

kN/m

300 x 100 UKPFC
S275

240 x 10 plate
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Appendix A

BS EN 10025-2

BS EN 1990 Table
NA.A1.2

BS EN 1990

e, = 36.8 mm (from centreline of web)
d = 62.7 mm (shear centre to centroid)

I, =81.3 x 10° mm®

a =765 mm

For ¢.> 16 mm and S275

fy =R, =265 N/mm’

4,3 Actions

The permanent loads on the beam are:

Outer leaf: 2.3 m height of brickwork at 2.25 kN/m? g, = S5.18kN/m
Inner leaf: 2.0 m height of blockwork at 1.5 kN/m? g, = 3kN/m
Beam: 46 kg/m g, = 0.45kN/m
Plate: 0.24 x 0.01 x 7850 = 18.8 kg/m g, = 0.18kN/m
Total: &or = 8.81 kN/m

Taking moments about the shear centre (clockwise positive), the torques are:

Outer leaf: 5.18 x (=0.131 — 0.0045 + 0.0367) =-0.512 kNm/m
Inner leaf: 3 x (0.065 — 0.0045 + 0.0367) = 0.292 kNm/m
Beam: 0.45 x 0.0627 = 0.028 kNm/m
Plate: 0.18 x (—0.040 — 0.0045 + 0.0367) =—0.001 kNm/m

Total torque: =—0.193 kNm/m

Partial factor for permanent actions
s =1.35
4.4 Combination of actions

As there are only permanent actions present, equation 6.10(a) will be more onerous
than 6.10(b) and will therefore govern. The design value for the combination of actions
at ULS is:

J =Yy e l= 1.35gk’m( =135%x881 =11.9kN/m
The design value of the total applied torque on the 5 m long beam is:

T =1.35%x0.193 x 5=1.30 kNm (acting anticlockwise)

d

4,5 Design value of vertical bending moment and shear

Bending moment at mid-span (ULS):

11.9x5?
M = =37.2 kNm

y.Ed 8




The design shear force at each support is:

11.9%5
V., = —5— =30kN

4.6 Design value of torsional effects at ULS

4.6.1 Simplified assessment of effects

Consider the torsion resisted only by warping. The total torque is equivalent to a couple
F=1.30/(h—t)=1.30/0.2835=4.59 kN.

This force acts as a UDL along each flange and thus the bending moment in each
flange is given by:

 4.59%5

M

w,Ed

=2.87kNm

4.6.2 Assessment of effects, allowing for elastic interaction between
St Venant torsion and warping torsion

The flanges are assumed to be unrestrained against warping at the member ends
and thus Graphs C and D in Appendix D and the expressions in Case 4 in Appendix C
are applicable.

For this beam:

L _ 30 654
a 0.765

From Graph C, curve A, with L/a = 6.54:

GI
¢ Gly =0.675

T, a

From Graph D, curve A, with L/a = 6.54:

"aGlI
_M—T =0.14

Ed
whence:

_0.675x1.30x0.765
(81x10°x36.8x10°%)

=0.0225 rad (1.29°)
Minor axis moment due to rotation:

M =¢M . =0.0225 x 37.2 =0.837 kNm
y.Ed

p 1 0.140x1.30  646x10°
(Gx36.8x10°x0.765) G
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Warping moment in
flanges of lintel

Variation of torsional
moment along
the beam

120

TEI ¢"
Warping moment MW,Ed = (h—wi
i

Taking E/G = 2.6, this gives:

8.13x10°* x646x10°
(0.3-0.0165)

M = £2.6x =0.48 kNm

The moment in the top flange (= 0.48 + 0.84/2 = 0.90 kNm) is significantly less than
calculated by the simplified assessment (2.87 kNm).

Commentary: Evaluation of the expressions in Appendix D would give the variation of warping

moment and torsional moments along the beam. They are shown below for information.

0.60

0.50

0.40

0.30

0.10 /
0.00 \

-0.10

Warping moment M, ., (kNm)

Distance along beam, x/L

0.80

—— Total torsional
0.60 moment

—— StVenant torsional

moment
0.40 —

—— Warping torsional
. \
000

moment
-0.20

Torsional moment

-0.40

-0.60

-0.80

Distance along the beam, x/L



3-1-1/NA.2.15

BS EN 1993-1-1
6.2.5(2)

4.7 Cross sectional resistance

Partial factor for resistance
Yo =1.0
4.7.1 Bending resistance

The channel is a Class 1 section.
For a Class 1 section, the bending resistance about the major axis is given by:

; _ Wk 641x10° x265x10°°

. =170 kNm
Rd Yuo 1.0

M . >M =37.2kNm
y.Ed

cy,Rd

The bending resistance about the minor axis is:

Y, W 148 x 10° x265x10’

=39 kNm
c,z,Rd }/MO 10

The warping resistance of one flange (on its own, without part of the web) is:

y PR A (1007 x16.5/4) x265

wRd i B P 1.0

x107° =10.9 kNm

M, >M, = 0.90 kNm

4.7.2 Shearresistance

Shear would not be expected to be significant. However, with a channel section the
need arises to consider web shear arising from warping as well as St Venant, so the
opportunity is taken to demonstrate the procedure.

ESW2¢ "
t

w

The elastic shear stress in the web due to warping is given by 7 = —
The shear stress in the web due to St Venant is given by 7 = Gt ¢.

For this simply supported beam, both effects are greatest at the supports

(where x = 0). The expressions from Appendix C, when x = 0 are:

¢ el
v el
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Hence:

1.30 0.765 5.0 5.0
¢ 5 - — |X x —tanh
81x10°%x36.8x10 5 2x0.765 2x0.765

=0.015 rad/m

Therefore, the shear stress due to St Venant torsion is:

T s =Gt ¢ =81 x 10°x 9 x 0.015 x 10° = 10.9 N/mm’

And

e | ( : 1.30 | jx(o.%ij _tanh( 5.0 )
81x10°x36.8x107°x0.765 5.0 2x0.765

=-0.011 rad/m?

The shear stress due to warping torsion is:

E ESW2¢ "

t,Ed
tw

Appendix A where S, =260 cm* (S ,>S )

_ —210x10" x260x10* x (-0.011x10°°)

w,Ed 9

=0.67 N/mm?

The shear stresses will reduce the vertical shear resistance of the web.

(6.27) The reduction factor applied to VPLRd is:

1— Tika  Twrd
1.25£,1\3  f,/\3

_ | 1093 1
1.25%265 265

=0.97-0.01 =0.96
The shear resistance in the absence of torsion is:

AR

pLLRd
yMO
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Where, for a channel section:

A =A-2bt +b(t, +7)

v

58 x 102 — (2 x 100 x 16.5) + 16.5 x (9 + 15) =2896 mm?

Therefore:
, _ 2896x265/N3 o 4usin
pLRd 1.0

Thus, the shear resistance in the presence of torsion is:

V =0.96 x 443 =425 kN > V_ = 30 kN Satisfactory

pL.T.Rd

4.8 Buckling resistance

4.8.1 Lateral torsional buckling

Bending resistance of this unrestrained beam will be limited by lateral torsional

buckling. The non-dimensional slenderness needs to be evaluated. For this example
the load is not destabilizing and the conservative approximation in publication P362
will be used. (The LTBeam software used for the other examples in this publication is

restricted to sections symmetrical about their z-axis.)

P362, A ~ 1 _ L, torso78
Section 6.3.2.3 96
where:
L is the effective span of the beam =5m
7 I I A 1.664
0.0313x96

3-1-1/NA.2.17 According to the NA to BS EN 1993-1-1, for hot rolled sections that are not doubly
symmetric, buckling curve d should be used.

For 4 . =1.66, x,,=0.29

3-1-1/6.3.2.3 In this case, with a large slenderness value, the modification factor in 3-1-1/8§6.3.2.3(2)
does not offer any enhancement.

Therefore,

- Xir Wy ];
Vi

M

b,Rd
Since ¥,,, = %, this can be expressed as M, .. = ¥,:M. .,

Appendix E, 4.7.1 Mb’Rd =0.29 x 170 =49 kNm
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4.8.2 Interaction of LTB with minor axis bending and torsion

As discussed in Section 3.2, use the formula in Annex A of BS EN 1993 6. For . = %,,
this may be re-expressed as:

M M M
Yy C Lk k2R
Mb,Rd Mz,Rd w,Rd
where:
BSEN 1993-1-1 C_ = 0.95 (for a simply supported beam with a uniform load)
Table B.3 M
Section 3.2k, =0.7-02 —x&
Mw,Rd
k - 1 | Mz,Ed
T z,Rd
k, J !
1- (My,Ed / MC,)
In this case:
M
w048 04
M, vq 10.9
M
& - 08 02
Mz,Rd 39
M g, _ 3712
MCI’ Mcr
M
w2372 g6
M, 4 49

— M
BS EN 1993-1-1 7. _ My
6.3.2.2(1) M,
v o
cr 2

For a Class 1 section, according to the UK NA to BS EN 1993-1-1:

Wyfy 5 pLy/y = Mqud
M = 1702 =61.4 kNm
i 1.664
Therefore:
k =0.7-(0.2x0.03) =0.69
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k =1-0.03 =0.97

W

k 254
“ 1-(37.2/61.4)

Therefore the criterion is evaluated as:

% +0.95%x0.02+0.69x0.97x2.54x0.04

=0.76 + 0.02 + 0.07 =0.85
0.85<1.0
Therefore, the resistance of the member to combined bending and torsion is satisfactory.

4,9 Serviceability limit state
0.0225

The rotation at SLS will be ¢ = =0.019 rad, 1.06°.

If a complete prefabricated wall were placed on the beam, the top of the 2 m high wall

would, at mid-span, lean 40 mm out from its intended position.

In reality, since the wall will be laid in courses, a considerable degree of compensation
may be expected, especially if the bricklayer is aware of the potential problem. Also, if
the two leaves are not brought up in parallel, a greater twist will occur when the outer
leaf is constructed. The designer should consider whether any special requirements for
verticality need to be specified.

The vertical deflection is:

S5fiwl' 5x8.81x5000"
384E1,  384x210000x8230x10°

=4.1 mm

There is no commonly accepted limit for deflection due to permanent actions but this

modest deflection would normally be satisfactory.

4.10 Commentary

This traditional detail is probably better suited to shorter spans, because of the twist.
Substitution of a RHS, or a proprietary closed section lintel would significantly reduce
twist - see Example 5.

The simplified method of assessment, ignoring St Venant torsion, gives much greater
warping moment than that determined by evaluating interaction (it is approximately six
times greater) and the interaction would fail the limiting criterion. The rotation using

that simplification has not been evaluated but would certainly be greater.

The stresses associated with the interacting effects are generally modest.
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The plate welded to the bottom flange of the channel has been ignored in this
assessment. If the ‘composite’ welded section were to be assessed, the calculation of
torsional properties and effects would be quite complex; the position of the shear centre
would move horizontally slightly (toward the channel) and downwards; since the warping

resistance is controlled by the top flange, there would be very little effect on its value.



Example 5 - Lintel in Cavity Wall using a Hollow Section
5.1 Configuration

A 300 x 100 x 8 rectangular hollow section is used in place of the channel section in
Example 4. The overall dimensions and self weight are very similar to those in Example 4.

102 80 20 90

Inner leaf
3 kN/m

300 x 100 RHS

i / $355

Outer
leaf
5.18 kN/m
Beam
0.47 kN/m

~—

240 x 10 plate

Plate

5.2 Section properties
Fora 300 x 100 x 8 RHS

h =300 mm

b =100 mm

t =8 mm

I =3070 cm*

w, =546 cm?®
pLYy

W =387 cm?

1’

The shear centre and the centroid are both located at the middle of the RHS.

BS EN 10025-2 For ¢, < 16 mm and S355

fy =R, =355 N/mm’
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5.3 Actions

The permanent loads on the beam, are:

Outer leaf: 2.3 m height of brickwork at 2.25 kN/m? g, = 5.18kN/m
Inner leaf: 2.0 m height of blockwork at 1.5 kN/m? g, = 3kN/m
Beam: 47.7 kg/m g, = 047kN/m
Plate: 0.24 x 0.01 x 7850 = 18.8 kg/m 8. = 0.18KkN/m
Total: 8 = 8.83kN/m

Taking moments about the shear centre (clockwise positive), the torques are:

Outer leaf: 5.18 x (-0.181) =—-0.938 kNm/m

Inner leaf: 3 x 0.015 = 0.045 kNm/m

Beam: 0.45x0 =0

Plate: 0.18 x (=0.090) =-0.016 kNm/m
Total torque: =-0.909 kNm/m

Partial factor for permanent actions

BS EN 1990 Table =135
NA.AL.2

5.4 Combination of actions

BS EN 1990 As there are only permanent actions present, equation 6.10(a) will be more onerous
than 6.10(b) and will therefore govern. The design value for the combination of actions
at ULS is:

/i =Xy,8,=135¢g,,,=135x883 =11.9kN/m
The design value of the total applied torque on the 5 m long beam is:

T =1.35%0.909 x 5 =6.14 kNm (acting anticlockwise)

d

5.5 Design value of vertical bending moment

Bending moment at mid-span (ULS):

A | 11.9%x5?

y.Ed

=37.2 kNm

5.6 Design values of torsional effects

5.6.1 Torsionalmoments

Consider the torsion resisted only by St Venant torsion (as allowed by
BS EN 1993-1-1, 6.2.7(7)).

The design value of torsional moment is zero at mid-span, increasing linearly (but in

opposite senses) to T, = T, = 6.14/2 = 3.07 kNm at each support.

t,Ed E:
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3-1-1/86.2.5(2)

3-1-1/8§6.2.6(2)

3-1-1/§6.2.6(3)

5.6.2 Rotation

The average torque over each half of the beam is 3.07/2 = 1.54 kNm so rotation at mid-

span is given by:

T.eal/2 1.54%2.5

= 5 —=0.00156 rad (0.09°)
Gl; 81x10°x3070x10

o =

The minor axis moment due to this very small rotation is negligible.

5.7 Cross sectional resistance

Partial factor for resistance:
Yo =1.0

5.7.1 Bending resistance

The RHS is a Class 2 section in bending. For a Class 2 section:

W f,  546x10°x355%10°

Mcde =194 kNm
L Yo 1.0
M, =194 kN > M., = 37.2 kN OK

5.7.2 Torsion resistance

The design resistance to St Venant torsion is given by:

r W3 387x10°x355x10° /43

=79 kNm
T 140 1.0

The shear stress due to the St Venant torsional moment is:

T =T,/ W =3.07x10°/387 x 10° = 7.9 N/mm’

tEd

5.7.3 Shearresistance
Shear resistance in the absence of torsion is:

. AL

pl.Rd
7/MO

For a RHS with the load applied parallel to the height,

4
4 _ Ah — 60.8x107*x0.3 456 % 10° m?
v b+h 0.1+0.3

-3 3
v _ 4.56x107x355x10° /N3 _ o0\
* 1.0

129



APPENDIX E: EXAMPLES

130

3-1-1/§6.2.7(9)

The reduced shear resistance accounting for torsion is:

v Y T N —{I—L}934—898kN
pLT.Rd . fy / \/5 pLRd 355/ \/5
Via  =898> 7, =30kN OK

5.7.4 Combined bending and torsion

The maximum values of design bending moment (M) and design torque (7,) occur in
different locations and thus no interaction between these values need be considered.
At intermediate locations, there are combined effects of lesser design values; to verify
the combination at all locations, one could conservatively consider the maximum
values to be coexistent. However, the very low St Venant shear stress (7.9 N/mm? at
maximum) would give rise to very little reduction in bending resistance (see Section 6.2)

and the interaction at all locations is satisfactory by inspection.

5.8 Buckling resistance

The RHS section is not susceptible to lateral torsional buckling (see Section 6.2) and
thus the buckling resistance (and interaction with torsion) does not need to be verified.

5.9 Serviceability limit state

The rotation at SLS will be ¢ = % =0.00116 rad (0.066°), which is satisfactory.

/i =8 o = 3.83kN/m
The vertical deflection is:

_5fLY 5x8.83x5000°
384El, 384x210000x6310x10*

=5.4mm

There is no common limit for deflection due to permanent actions but this modest
deflection would normally be satisfactory.

5.10 Commentary

The trial section is more than adequate; the rotation is very much less than that of
the channel section in Example 4. A smaller, lighter RHS would suffice, although the

vertical deflection would be greater and is likely to become the limiting criterion.



Example 6 - End Plate Connection

6.1 Configuration

Consider the simply supported beam of Example 1 with full depth end plate
connections, as shown below:

75

The beam is a 254 UKC 73 with 10 mm end plate, grade S275.
Bolts are M20, class 8.8.

Two approaches are examined to verify the resistance of the end plate connection.

6.2 Design values of forces on connection

Vertical force Via=52kN

Torque T.,=3.75 kNm

6.3 Approach one

In this approach, the vertical force and torque are shared equally between the four bolts.

Each bolt is subject to:

Vertical force ', .. = Ve = 2 =13 kN
™ 4 4
. 3.75 5
Inclined force due to torque F, . = x10° =15 kN
e 4%x62.5

The angle of inclination of the force will vary, as shown below.
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The forces shown are in kN.

The largest resultant force is on the lower bolt on the LH side, which may be calculated as:

Vertical component of resultant = 13 + % x 15 =25 kN

3
Horizontal component of resultant = 3 x 15 =9 kN

Hence, the resultant shear force on the bolt = \257 497 =26.6 kN

It can be demonstrated in the normal way that this is less than the design resistance of
a M20 class 8.8 bolt in a 10 mm endplate.

6.4 Approachtwo

In this approach the combination of vertical force (52 kN) and torque (3.75 kNm) is
replaced by an equivalent vertical force of 52 kN acting at an eccentricity of 0.0721 m
(3.75 kNm / 52 kN) from the centre of the bolt group.

The resistance of the connection to this eccentric force can be calculated as outlined

in SCI publication P358 for fin plate connections with two vertical lines of bolts.

For M20 class 8.8 bolts in a 10 mm endplate, the lowest resistance given by the
relevant design checks given in P358 is 184 kN and thus the connection is adequate
for the 52 kN force at this eccentricity.
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