							STAGE			
			PROJECT				DOC. NO.			_
			1054							_
			AREA				PAGE NO.	3	OF 8	
			DOCUMENT	DATA SHEET FOR 11kV V	FD			F	Rev. O	
1	MANU	FACTURER:			SERVICE				EQUIPMENT NO.:	OTY:
2									SIZE:	
3			DESCRIPTION				SPECIFICATI	ON REQUIREMENT		VENDOR'S
4	Δ		CIFICATION & ST		<u> </u>					CONFIRMATION/INFORMATION
5	1	SPECIFICATION				999-ELE	-SPC-0005			
6							Spec	ification for Variable Fi	equency Drive(VFD)	
7	2	MANUFACTURING	STANDARD			999-ELE	-SPC-0005 2.1			YES
8	3	QUANTITY				SEE NO	TE 15			SEE NOTE 15
9	4	TYPE OF DRIVEN E	EQUIPMENT			SEE NO	TE 15			SEE NOTE 15
10										
11	в	SERVICE / SITE CO	NDITION						20010	
12	1	DESIGN AMBIENT	TEMP. (MAXIMUI	M/ MINIMUM)		55°C/-5	°C(40°C FOR TE	IE AIRCONDITIONED	ROOM)	55°C / -5°C(40°C FOR THE AIRCONDITIONED ROOM)
13	2	MECHANICAL DES	IGN TEMPERATUR	RE		80°C				80°C
14	3	ALTITUDE ABOVE	M.S.L.			LESS TH	IAN 100M			LESS THAN 100M
15	4	MIN-MAX RELATIVE	E HUMIDITY			25% - 87	%			25% - 87%
16	5	SEISMIC ZONE				2A				2A
17	6	LOCATION (INDOO	R / OUTDOOR)			VFD IN A	AIRCONDITIONE	D ROOM		VFD IN AIRCONDITIONED ROOM
18	7	ZONE OF HAZARD	, GAS GROUP , TE	EMP CLASS		SAFE AF	REA			SAFE AREA
19										
20	C 1	INPUT SUPPLY				3				^
∠1 22	1 2	NOLTACE				3	09/			3
22	2	VOLTAGE				11KV ± 1	0%			$11kV \pm 10\%$
23	3	PREQUENCY	2			SURZ ±			•	50HZ ± 10%
24	4	SYSTEM EARTHING	6			NEUTRA	L EARTHING RE	-SISTOR 6.36KV / 100	9	NEUTRAL EARTHING RESISTOR 6.36kV / 100A
25	5	MINIMUM SHORT (CIRCUIT CURRENT	TAT 11kV		25 kA				25 kA
26	6	MAXIMUM SHORT	CIRCUIT CURREN	T AT 11kV		31.5 kA/3	Bs			31.5 kA/3s
27	7	HARMONICS AT TH	HE LINE SIDE			TO BE L	IMITED IN COM	PLIANCE WITH IEEE 5	519	TO BE LIMITED IN COMPLIANCE WITH
	-									IEEE 519
28	8	DESIGN SHORT CI	RCUIT FOR WITH	STAND		31.5 kA I	FOR 3 SEC			31.5 kA FOR 3 SEC
29	D		INTE							
31	1	RUNNING TEMP.	ENTS							
32	1.1	VFD PANEL ROOM				40°C				40°C
33		MAXIMUM AMBIE	NT TEMPERATUR	E		55°C, (C	APABLE of WOR	KING for 2 HOURS		55°C, (CAPABLE of WORKING for 2
										HOURSWITHOUT HVAC)
34										
35	1.2	VFD TRANSFORMER					ENTILATION REG	QUIRED		ONLY VENTILATION REQUIRED
37	2		ANSEER SWITC	Ч		YES				YES
38	4	NUMBER OF PULS	ES - SUPPLY SIDE	MOTOR SIDE		36 PULS	E / 36 PULSE			54 PUI SE / 54 PUI SE
	-	0010101000				VE0 ()		`		54106567 5410656
29	D	COMMUNICATION	WITH DCS (TES /	NO)		TES (II	ardwired contacts)		YES (hardwired contacts)
40	6	COMMUNICATION	WITH EICS (YES /	NO)		YES (SE	ERIAL LINK MOD	BUS RTU PROTOCO	_)	YES (SERIAL LINK MODBUS RTU
41	7	DRIVE TRANSCOR					0F			PROTOCOL)
42	8					0.85	-			DRI ITPE
72	5			TORQUE/POWER OR		0.00				68.0
43	9	COMBINATION) RE	QUIRED (YES/N	0)	1	YES				YES
44	10	SPEED RANGE				30%~10)%			1%~150%
45	11	LINE INPUT BREAK	(YES / NO)			NO (BY	SWITCHGEAR V	ENDOR)		NO (BY SWITCHGEAR VENDOR)
46	12	IP RATING				IP20 (DC	OR OPENED)			IP20 (DOOR OPENED)
47	13	NOISE LEVEL				<85 DB a	at 1m			<85 DB at 1m
48 49	14	"FLYING RESTART	POSSIBLE (YES	/ NU)		YES				Meet the Need
50	E	OTHER REQUIREM	IENTS		1					
51	1	ANTICONDENSATI	ON HEATERS (YES	S / NO)		YES				COMPLY
	2	PREFERRED COOL	ING SYSTEM FOR	R VFD (AIR / DM WATER CL	OSED	AIR				
52		LOOP)								COMPLY
53	3	CABLE ENTRIES (B	BELOW / ABOVE)			BELOW	(WITH GLAND P	LATE)		COMPLY
54	4	POWER CABLE LE	NGTH FROM VFD	PANEL TO MOTOR		(Note-18	5)			COMPLY
55	5	PAINTING TYPE AN	ND SHADE			RAL7032				COMPLY
57	7	OTHER STUDIES/A	NALYSIS	ED TO EAGH DRIVE)		RESON	NCE STUDY TO			
						CONSID	ERING LV PF IM	PROVEMENT	(BY VENDOR)	see attached
58			CAPAC	TANCE WITH SERIES IND	UCTANCE		OR)			Brovideo queidence of 2
			0/11 AC							Frovides avoidance of 3 resonance point frequencies
59	8	CONTROL SUPPLY	,			230V AC	(OR 110V DC)			230V AC
	9	AUX. AC POWER S	UPPLY			230V, 1F	PH, 50Hz ((FOR I	NTERNAL LIGHTING	& SPACE	COMPLY
						HEATER	2)			COMPLI

					STAGE		
		PROJECT			DOC NO		
					500. NO.		
		AREA			PAGE NO.	4 OF 8	
		DOCUMENT	DATA SHEET FOR 11kV V	FD		Bey 0	
1				SED//ICE:			OTV:
2	MANOTACTORER.			SERVICE.		SIZE:	Q11.
3		DESCRIPTION			SPECIFIC	ATION REQUIREMENT	VENDOR'S
5							CONFIRMATION/INFORMATION
4	F REMOTE INDICATIONS A	ND CONTROLS		(VOLTAGE FREE C	CONTACTS).	
5	1 MOTOR 'ON' SIGNAL TO	O UCP			YES	-	COMPLY
6	2 MOTOR 'OFF' SIGNAL T	TO UCP			YES		COMPLY
7	3 MOTOR 'AVAILABLE' SI	IGNAL TO UCP			YES		COMPLY
8	4 MOTOR 'FAULT' SIGNA	L TO UCP			YES		COMPLY
9	5 INPUT SIGNALS FROM	REMOTE TO VFD:			YES		COMPLY
10	6 LOCAL / REMOTE (POT	TENTIAL FREE CON	TACT) FROM UCP		YES		COMPLY
11	7 START SIGNAL (POTEN	NTIAL FREE CONTA	CT) FROM UCP		YES		COMPLY
12	8 STOP SIGNAL (POTEN	TIAL FREE CONTAC	T) FROM UCP		YES		COMPLY
13	9 EMERGENCY STOP(PC	DTENTIAL FREE CO	NTACT) FROM UCP		YES		COMPLY
14							
15	G TESTING						
16	1 ROUTINE TESTS						
17	INSULATION				YES		COMPLY
18	LIGHT LOAD AND OPERA	TION			YES		COMPLY
19	CHECKING OF AUXILIARY	DEVICES			YES		COMPLY
20	CHECKING THE PROPER	TIES OF THE CONT	ROL EQUIPMENT		YES		COMPLY
21	CHECKING THE PROTECT	TIVE DEVICES			YES		COMPLY
22	CONTINUITY TEST FOR W	VIRING			YES		COMPLY
23	OPERATION/FUNCTIONAL	L TESTS			YES		COMPLY
24	CHECKING OF INTERLOC	KS			YES		COMPLY
25	IR/HV TEST ON POWER/C	CONTROL CIRCUIT			YES		COMPLY
26							
27					VEC		
28		TION			YES		COMPLY
29	LIGHT LOAD AND OPERA	TION			TES VES		COMPLY
21	CURRENT SHARING	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			VES		COMPLY
32					VES		COMPLY
33	POWER LOSS DETERMIN				VES		
34	TEMPERATURE RISE				VES		COMPLY
35	CHECKING OF AUXILIARY	DEVICES			VES		COMPLY
36	CHECKING THE PROPER	TIES OF THE CONT	ROL EQUIPMENT		VES		COMPLY
37	CHECKING THE PROTEC	TIVE DEVICES			YES		COMPLY
38	ON LOAD TEST				YES		COMPLY
39					.20		
40	H ADDITIONAL REQUIREME	ENTS					
					SEE MEC	CHANICAL EQUIPMENT VENDOR DATA	
41	1 LUAD STARTING TIME				(TBA)		COMPLY
					AS PER M	MECHANICAL	
42	2 GD ² VALUE (LOAD + MO	OTOR)			EQUIPME	ENT	COMPLY
					VENDOR	DATA (TBA)	
					AS PER M	MECHANICAL	
43	3 MOTOR AND LOAD TO	RQUE - SPEED CUR	IVES		EQUIPME		COMPLY
14					VENDOR	DATA (IDA)	
45							I
46							l
47							+
48							+
49							+
50							
51							
52							1
53							1
54							
55							

						STAGE	Detai	led Design		
			PROJECT			DOC. NO.				
			AREA			PAGE NO.	5	OF 8		
			DOCUMENT	DATA SHEET FOR 11kV VF	FD		F	Rev. 0		
1	MANUFACT	URER:			SERVICE:			EQUIPMENT NO.:		QTY:
2		-						SIZE:		
3					INFO	ORMATION BY V	ENDOR			
4	A G	GENERAL								
5	1 N	MAIN VFD SOFT S	STARTER SYSTEM	VENDOR			LS ELECTR	IC(DALIAN)CO.,LTD		
6	2 N	MODEL NO. FOR V	/FD SOFT STARTE	R			LSMV-M100	00Z 100F100-1600, LSM	MV-M1000Z 10	0F100-2800
7	3 A	APPLICABLE COD	E / STANDARDS				IEC61800			
8	4 11	NPUT POWER SU	IPPLY RATING:							
9	a) '	VOLTAGE					11KV	V	± 10	%
10	b)	FREQUENCY					50	Hz	± 10	%
11	5 C	COMPONENT MAK	E AND COUNTRY	OF ORIGIN:						
12	- C	ONVERTER					China			
13	- N	NOTOR					(*)	Note-14	NO I	VOTOR INFORMATION
14	- R	REACTOR / FILTER	RS				(*)		NO REACTO)R / FILTERS IN VFD
15	- D	KIVE I KANSFOR					(*)		NO DRIVE T	RANSFORMER IN VFD
16	о H	ILAT LUSS AT MA	AXIMUM LOAD FOR	HVAC DESIGN				50 KW(1250kW)	90 KW(2200	kW)
1/	7 N	NEAREST SERVIC	E LUCATION							
18	D 7									
20							0.40/ 4500/		1	
20		DPERATIONAL SP					0.1%~150%			
21	2 1						04A	140.9AA		
23	3 D 4 H						NO			
24	5 5	SEPARATELY MOL	INTED REACTOR F	REQUIRED (YES / NO)			NO			
25	6 C	COOLING SYSTEM					Air Cooling			
26	7 P	POWER FOR ACC	ELERATION OF LO	AD TO RATED SPEED			related to load	kW		
27	 8 V	SDS CONTROL P	ARAMETER (SPEE	D / TORQUE / POWER)			Speed			
28	9 C	CRITICAL SPEED:		-,,						
29	- F	IRST CRITICAL S	PEED				Can be set	RPM	Skip free	uency band set in parameter
30	- S	ECOND CRITICAL	L SPEED				Can be set	RPM	Skip freq	uency band set in parameter
31	10 R	RUNNING UP TIME	E MOTOR				0-3200S (adjustable)	sec (Note-14)		
32	11	OTAL RUNNING-U	UP TIME FOR VED				Can be set	SEC	(continuous operation
34	12 IV	AX SOUND PRES					800B	UBA		
35	13 I		POSSIBLE (TES /	110)			100000			
36	15 N						60 minutes			
37	16 A		THE VED SYSTEM				98%			
38	17 E		ME OF ELECTRON	IC COMPONENTS			15	YEARS		
39	18 E	EXPECTED LIFETI	ME OF COOLING S	YSTEM			10	YEARS		
40	19 C	OVERALL DIMENS	ION OF DRIVE PAN	IELS (L X D X H) IN MM			11334*1700	*2895(mm)		
41	20 V	VEIGHT OF EACH	VERTICAL PANEL				21000	kg		
42	21 A	UXILIARY SUPPL	IES REQUIRED WI	TH POWER CONSUMPTION						
43	(VI	ENDOR TO SPEC	IFY):				(*)	W	100K	VA/set
44	- N	ORMAL 230V AC	1-Ph 50Hz				(*)	W	50K\	/A/set
45	- N	ORMAL 400V AC	3-Ph 50Hz (FOR AU	IXILIARIES)			50kva	V	50K\	/A/set
46	- A	NY UPS SUPPLY	(110V DC)				(*)	kW/ SECS.		
47	22 C	COOLING PERIOD	FOR DRIVE BEFO	RE NEXT START			1min			
48	23 D	DEGREE OF PROT	FECTION				IP42			
49	24 C	OVERLOAD CAPA	BILITY/ NO. OF STA	RTS PER HOUR			120% 1min			
50										
51	C II	NPUT DRIVE TRA	NSFORMER							
52	1 N	MAKE/ TYPE					Dry Type			
53	2 k	VA RATING					1600kVA	2800kVA		
54	3 V	OLTAGE RATIO					15.9			
55	4 N	NOS. OF WINDING					27			
56	5 V	ECTOR GROUP					9			
57	6 II	MPEDANCE	N .0				8%			
58	7 Т	AP RANGE (IF AN	NY)				5%, 0, -5%	6		
59	8 11	MPULSE WITHST	AND LEVEL				75kV(full wa	ave peak)		
60										

PROJECT DOC. NO. C. O. C. O													STAGE				
AREA PAGE NO. 6 OF 5 DOCUMENT DATA SHEET FOR THAVE Nov. 0 Image: Antipage of the second sec	AREA DATA SHEET ON THIV UP Rev IMMULEACTURE ISPUEC				Р	ROJECT							DOC. NO.			4	
NUMBACURE OUTONING Description Description Description 0 INVECTION INTERNATION	AREA OPAL NUM OPAL NUM Re. 9 000000000 00075 0007000000 0007000000 1 0007000000 0007000000 0007000000 0007000000 1 0007000000000000000000000000 0007000000000000000000000000000000000															-	
JOCUMENT DATA BLEET FOR 111 VP BLA. 0 IMMUNACUERS SERVE BUDINENT NO: DUPENT TANKE TABLE VELOCIMANT SALE VELOCIM	BOOMBAT BATA SHEFT OR 11W VP Rev IMMUFATURE: DEVENUE					AREA							PAGE NO.	6	OF 8		
INNUMPORTURE EXPORE EQUIPATION OTY a INPUT BINUT BINUT TRANSFORMER INPUT BINUT BINUT TRANSFORMER 2001 6 P ROVER FREQUENCY WITHSTAD LUEL 2001 10 WORD REVERT TRANSFORMER 2001 11 TRANSFORMER ACCESSORES NO 12 JANSFORMER ACCESSORES NO 13 JANSFORMER ACCESSORES NO 14 TOTAL DECORT TRANSFORMER CALVERAL 13 JANSFORMER ACCESSORES NO 14 TOTAL DECORT TRANSFORMER CALVERAL 14 TOTAL DECORT TRANSFORMER CALVERAL 14 TOTAL DECORT TRANSFORMER CALVERAL 15 CALVERAL DECORT TRANSFORMER CALVERAL 16 SALVERAL SALVERAL 16 CALVERAL DECORT TRANSFORMER SALVERAL 17 SALVERAL SALVERAL 16 SALVERAL SALVERAL 17 SALVERAL SALVERAL 18 CALVERAL DECORT TRANSFORMER SALVERAL 10 </td <td>IMMOUNT/PLRER EDWORE EQUIPATION OT/C 2 IMPORTATION ** VERDOR INFORMATION ** VERDOR INFO 3 ROVER FRIENDARY: VITATIAN LIVIL Zax* INFO 13 VITATIAN LIVIL Zax* INFO 14 TATATIANCIAN ACCESSIONE 3: NO INFO 15 CELEMARCE FROM LI SOBER MM L20mm INFO 14 SEMICONDUCTOR EXCRAGE (DODE /: INFRETOR // INFO INFO INFO 15 CELEMARCE FROM LI SOBER MACH SPH LINDOTTHOLED INFO 16 TOTAL VERDIF INFO SPH LINDOTTHOLED SPH LINDOTTHOLED 16 TOTAL VERDIF INFO SPH LINDOTTHOLED SPH LINDOTTHOLED SPH LINDOTTHOLED 17 INFO SPH LINDOTTHOLED SPH LINDOTTHOLED</td> <td></td> <td></td> <td></td> <td>DOC</td> <td>UMENT</td> <td>DA</td> <td>TA SHE</td> <td>ET FOF</td> <td>2 11kV</td> <td>VFD</td> <td></td> <td></td> <td>R</td> <td>ev. 0</td> <td>1</td> <td></td>	IMMOUNT/PLRER EDWORE EQUIPATION OT/C 2 IMPORTATION ** VERDOR INFORMATION ** VERDOR INFO 3 ROVER FRIENDARY: VITATIAN LIVIL Zax* INFO 13 VITATIAN LIVIL Zax* INFO 14 TATATIANCIAN ACCESSIONE 3: NO INFO 15 CELEMARCE FROM LI SOBER MM L20mm INFO 14 SEMICONDUCTOR EXCRAGE (DODE /: INFRETOR // INFO INFO INFO 15 CELEMARCE FROM LI SOBER MACH SPH LINDOTTHOLED INFO 16 TOTAL VERDIF INFO SPH LINDOTTHOLED SPH LINDOTTHOLED 16 TOTAL VERDIF INFO SPH LINDOTTHOLED SPH LINDOTTHOLED SPH LINDOTTHOLED 17 INFO SPH LINDOTTHOLED SPH LINDOTTHOLED				DOC	UMENT	DA	TA SHE	ET FOF	2 11kV	VFD			R	ev. 0	1	
INFORMATION BY VENSOR INFORMATION BY VENSOR 0 INVECTORING TRANSFORMER BASE 1 TRANSFORMER BASE 2 CONVERTER DETALS DASE 3 TRANSFORMER BASE 4 SANT THER DETALS BASE 4 SANT THER DETALS SANT THER DETALS 5 SANT THER DETALS SANT THER DETALS 5	International Value International Value International Value International Value 0 NOTE LARGE CONCERNATION OF VALUE International Value Internation	1	MANU	JFACTURER:	-						SEI	RVICE:			EQUIPMENT NO .:		QTY:
C INFORMATION PERFERSION 0 POWER PROJECT/UNITSTAND LEVEL 28/V 10 NOSE LEVEL 30.8 11 TRADEFORMER ACCESSORIES 80.9 12 APPLICABLIC CODES TRADERCES 80.9 13 OVERALL DURISON ALX IN XH ECC1729.1 14 TRADEFORMER ACCESSORIES 100.0000000000000000000000000000000000	INFORMATION PROJ CONSTRUCTION DEVENTION OF AND LAY AND	2													SIZE:		
c 0 New Transformer New Enclement with a web set of the set of t	C O NUME SMA 9 ROVER REGUREY WITHOUT SALE TABLE SMA 10 NOBELLAVE SMA 11 TARACONSTRUCTOR SALE SALE SMA 13 OVERLATIONESSONES SMA 14 TOTAL VIEWS SMA 15 CLEARS FIRMANCE SECURING 16 CLEARS FIRMANCE SECURING 17 TARACONSTRUCTOR SECURE SECURIC MINISTOR / IGET / IGET SECURING 16 CLEARS FIRMANCE SECURING 17 TARACONSTRUCTOR SECURING SECURIC MINISTOR / IGET / IGET SECURING 18 SECURING SECURING SECURING 19 CONTROLET / SALE SECURING SECURING SECURING 19 ACCONSTRUCTOR SECURING SECURING SECURING SECURING 10 CONTROLET / SALE SECURING SECURING SECURING 10 CONTROLET / SALE SECURING SECURING SECURING 14 SECURING SECURING SECURING SECURING 10 CONTROLET / SALE SECURING SECURIN	3	INFORMATION BY V									/ENDOR					
B POWER PREJUNCY (INTERNAL LONG. Take Take Take 10 NOSE NOS NOS 11 TRANSFORMER ACCESSORIES NO Inclain the inverter Fanal 13 OVERALL DURING NO X W X N Inclain the inverter Fanal 14 TOTAL WIGHT Inclain the inverter Fanal 15 CLARANCE FROM XIL SOES NUM Inclain the inverter Fanal 16 TOTAL WIGHT Inclain the inverter Fanal 17 Total Converter Componential (SPH UNCONTROLLED / SPH SEM SPH UNCONTROLLED 17 Total Converter Componential (SPH UNCONTROLLED / SPH SEM SPH UNCONTROLLED 18 Total SPH SEM	B POVER HRADING Take Zako' 1 THASPORAL ACCISSIONES NO NO NO 1 THASPORAL THASPORAL SPI UNCONTROLED 1 THASPORAL THASPORAL SP	4															
NORE 008 11 TARFLOALE CODEST STANDARS NO 12 APPLICALE CODEST STANDARS NO 13 OVERALL DIMENSIONER X W X 10 Install in the inverter Panel 14 TOTAL, WEIGHT 4.1005.2001 15 CLEARAGE FROM ALL SIDES IN MA 4.1005.200 16 CLEARAGE FROM ALL SIDES IN MA 1000 17 TATE ALL SIDESTING CONTRUMENT IN STORY (ABT / INVESTORY / ABT / INVESTORY / AB	10 NOSE LEVES 608 11 TRANSPORTER ACCESSIONES NO 13 OVERALDGANSION ACCESSIONES NO 14 TRANSPORTER ACCESSIONES NO 15 OVERALDGANSION AN ALL SIDNES IN MAR 440605200 16 CLARANGER FROM ALL SIDNES IN MAR 440605200 16 CLARANGER FROM ALL SIDNES IN MAR 100em 17 REMOCRAUCTOR DEVICES DIOC/L THYRETOR / 1067 / 10CT 101 17 AREMOCRAUCTOR DEVICES DIOC/L THYRETOR / 1067 / 10CT 101 7 AREMOCRAUCTOR DEVICES DIOC/L THYRETOR / 1067 / 10CT 101 7 AREMOCRAUCTOR DEVICES DIOC/L THYRETOR / 1067 / 10CT 101 7 AREMOCRAUCTOR DEVICES DIOC/L THYRETOR / 1067 / 10CT 101 7 OVERDICA DEVICES DIOC/L THYRETOR / 1067 / 10CT 101 7 COMMETTER DETAILS 341 8 CARANGE THYRETOR / 1000 / 100	5	9	POWER FREQU	JENCY	WITHSTA	ND LEVE	EL						28kV			
1 IPANGOV/MICR AUCLESSONAES INCO 1 TEXAPPLICABLE CODES 71 MARKAGE IECC179-1 1 IECC179-1 IECC179-1 1 TEXAPPLICABLE CODES 71 MARKAGE IECC179-1 1 IECC179-1 IECC179-1 2 CONTROLED 7-3PH FULLY CONTROLED / 3PH SEM	1 1 <td>7</td> <td>10</td> <td>NOISE LEVEL</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>80dB</td> <td></td> <td></td> <td></td>	7	10	NOISE LEVEL										80dB			
1 OPERATOR Inclusion 1 OPERATOR Inclusion 1 TOTAL WRIGING X X X X / X 1 TOTAL WRIGING X X X X / X 1 T	Image: model and model and model and an analysis of the second	8	11			SSORIES	00							NO			
1 TOTAL WEGHT 10000 (0.0000) 1 TOTAL WEGHT 4.0000 (0.0000) 1 TOTAL WEGHT 120000 1 TOTAL WEGHT 120000 1 SEMICOLOUCTOR EVENDES (DOCE / HYNRISTOR / ADE	International Annaly Instant in any endowner and the any endowner any endowner any endowner any endowner any endowner any endowner and the any endowner and the any endowner any endownerany endowner any endowner any endownerany endowner an	9	12				-03							IEC61378-1	inverter Denel		
15 CLEARANCE FROM ALL SIDES IN MM 120mm 16 AC-0C CONVERTER DETAILS 120mm 17 SEMICONDUCTOR DEVICES INFORMED THYRISTOR / IGET 1007 18 CONVERTER CONFIGURATION (3PH LINEON TROLLED ' 3PH SEMI 3 PH LINCONTROLLED 18 CONVERTER CONFIGURATION (3PH LINEON TROLLED ' 3PH SEMI 3 PH LINCONTROLLED 19 CONVERTER CONFIGURATION (3PH LINEON TROLLED ' 3PH SEMI 3 PH LINCONTROLLED 10 CONVERTER CONFIGURATION (3PH LINEON TROLLED ' 3PH SEMI 3 PH LINCONTROLLED 10 CONTORS FRE BRANCH 30. 10 CONTORS FRE BRANCH 30. 11 INTUT PREFORMANCE 95% LOAD 2% LOAD 11 INTUT PREFORMANCE 1007 7% LOAD 2% LOAD 11 INTUT PREFORMANCE 1007 7% LOAD 2% LOAD 11 INTUT PREFORMANCE 1007 7% LOAD 2% LOAD 12 INTUT PREFORMANCE 1003 0.03 0.07 1007 10 INTUT PREFORMANCE 1003 0.03 0.07 1007 10 INTUT PREFORMANCE 1007 1007 1007	10 CLEARANCE PROM ALL SIDES IN MM 1000000000000000000000000000000000000	10	14		-		"							4 1KG/5 2KG			
D Action Converter Detail.5 Intermediate 1 SEMICONDUCTOR SPECIES ROODE / THYRISTOR / IGET / IGET ILEE 2 CONVERTER CONSULTOR SPECIES ROODE / THYRISTOR / IGET / IGET ILEE 3 NO. OF FULSE SEMICONDUCTOR SPECTR BRANCH 36 4 INCUT PERFORMANCE PROVINCE 94 94 4 SEMICONDUCTOR SPECTR BRANCH 36 36 5 SEMICONDUCTOR SPECTR BRANCH 94 94 4 INCUT PERFORMANCE PROVINCE	D AL-DO CONVERTER OWNERS (DIODE / THYNSTOM / IGBT / IGCT Identify 1 SEMACONDUCTOR DEVICES (DIODE / THYNSTOM / IGBT / IGCT Identify 2 CONVERTER OWNERS (DIODE / THYNSTOM / IGBT / IGCT Identify 3 NO. OF PLASE SPH LAUCONTROLLED 4 INET/TERE/OWNER SPH LAUCONTROLLED 9 NO. OF PLASE SPH LAUCONTROLLED 9 VENOCS SHALL FUNNASE THE PERFORMANCE FOR INFORMACE PLANET SPH LANCONTROLLED 9 VENOCS SHALL FUNNASE THE PERFORMANCE PLANET SPH LANCONTROLLED 9 VENOCS SHALL FUNNASE THE PERFORMANCE PLANET SPH LANCONTROLLED 9 VENOCS SHALL FUNNASE THE PERFORMANCE PLANET SPH LANCONTROLLED 9 CONVERTER CONTROLLED /SPH LAUCONTROLLED SPH LANCONTROLLED 9 CONVERTER CONTROLLED /SPH LAUCONTROLLED SPH LANCONTROLLED 9 CONVERTER CONTROLLED /SPH LAUCONTROLLED SPH LANCONTR	11	15	CLEARANCE FF	ROM AL	L SIDES I	N MM							4. 110/5.210			
1 0 AC DC COMPETER BETAILS 1 SENCONDUCTOR DEVICES (DIODE FUNCTOR LED / IGET / IGE	10 0 Accol CONVERTER DETAILS 1 SEMACODALICTOR DEVICES (DIODE / HUMBSTOR / HOBT / ACC) 1081 1 SEMACODALICTOR DEVICES (DIODE / HUMBSTOR / HOBT / ACC) 1081 2 CONVERTER CONFIGURATION (S-M LACONTROLLED / S-M SEM 3-M UNCONTROLLED 3 NO. OF FULSE 34 4 INPUT PERFORMANCE 34 7 NEWT PERFORMANCE FIGURE FOR FIGURE FOR 54 8	12												1201111			
1 SEMICONDUCTOR DEVICES (DIODE / THYRISTOR / IGBT / IGCT 1081 2 CONVENTER CONFIGURATION (S-PH UNCONTROLLED / S-PH BEMI 3-PH UNCONTROLLED 3 NO, OF PLUSE 36 4 INOVIT PERFORMANCE 54 5 YEADOR SMALL FURNER THE PERFORMANCE FOLLED FOR 54 7 YEADOR SMALL FURNER THE PERFORMANCE FOLLER FOR 54 7 YEADOR SMALL FURNER THE IDAR 75% LOAD 59% LOAD 29% LOAD 7 YEADOR SMALL FURNER THE IDAR 75% LOAD 29% LOAD 29% LOAD 7 YEADOR SMALL FURNER THE IDAR 75% LOAD 29% LOAD 29% LOAD 7 YEADOR SMALL FURNER THE IDAR 75% LOAD 29% LOAD 29% LOAD 7 YEADOR SMALL FURNER THE IDAR 75% LOAD 29% LOAD 29% LOAD 8 TOTAL INFUT RMS CURRENT THE IDAR 75% LOAD 29% LOAD 29% LOAD 9 YEADOR SMALL FURNER THE IDAR 75% LOAD 29% LOAD 29% LOAD 9 YEADOR SMALL FURNER THE IDAR 75% LOAD 29% LOAD 29% LOAD 9 YEADOR SMALL FURNER THE IDAR 75% LOAD 29% LOAD 29% LOAD 9	1 SEMICONJOICR EPURES DIDE I THYRITOR / GeT / IGCT 1/411 7 AVENUES 3-PH LACONTROLLED 2 CONVETTER CONTROLLED / 3-PH SEMI 3-PH LACONTROLLED 3 NO. OF FULSE Second 4 INUT FERFORMANCE 36 3 NO. OF FULSE 34 4 INUT FERFORMANCE 34 7 VENDOR SML JURISH THE ENFORMANCE FIGURE FOR 34 7 VENDOR SML JURISH THE ENFORMANCE FIGURE FOR 34 7 VENDOR SML JURISH THE ENFORMANCE FIGURE FOR 34 8 1074L INPT FERFORMANCE PROMINE FIGURE FOR 34 9 SCURENT THO 0.03 0.035 0.07 9 FUNDAMENTA POWER 0.92 0.92 0.92 0.92 9 FACTOR (OPF) 0.92 0.92 0.95 0.95 9 FACTOR (OPF) 0.92 0.92 0.92 0.92 9 CONVERTER EPTONENCE MERCE MARCE MARCE 1005 0.95 0.95 0.95 <td< td=""><td>13</td><td>D</td><td>AC-DC CONVER</td><td>RTER D</td><td>ETAILS</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	13	D	AC-DC CONVER	RTER D	ETAILS											
1 ANY OTHER) 3 2 CONVERTER CONFIGURATION G. PH UNCONTROLLED / 3-PH SEM 3-PH UNCONTROLLED 3 NO OF PULSE 36 3 NO OF PULSE 54 4 NRVT PERFORMANCE 54 4 NRVT PERFORMANCE 54 4 NRVT PERFORMANCE 54 5 Status 54 4 NRVT PERFORMANCE 57 4 NRVT PERFORMANCE 100% 5 FERFORMANCE RAAMETER 100% 6 0,0 57% LOAD 57% LOAD 7 6 0,0 57% LOAD 6 0,0 57% LOAD 57% LOAD 7 6 0,0 0.035 0.07 7 5.0 CURRENT THO 0.03 0.035 0.07 7 5.0 CURRENT THO 0.92 0.92 0.92 7 FUDOMETRIC CONCE 0.96 0.95 0.95 8 CONVERTER EFFICIENCY 0.96 0.96 0.95 9 100% Load 75% Load 5% load 3% load 4004 4004 1 100% Load 5% load 5% load 5% load 4004 4004 1 1.0 1.0 1.0 1.0 1	1 ANY OTHER 1 2 CONVERTER CONSIGURATION () 5-H LIX CONTROLLED / 3-H SEMI 3-H-LIX CONTROLLED 3 NO. OF PLISE 54 3 NO. OF PLISE 54 4 NO. OF PLISE 54 5 MORE PARAMETER 100% 6 NO. OF PLISE 54 7 VENDOS SHUL FURNATIONE THE PERFORMANCE FIGURE FOR 54 7 VENDOS SHUL FURNATIONE THE PERFORMANCE FIGURE FOR 54 7 VENDOS SHUL FURNATIONE THE PERFORMANCE FIGURE FOR 55% LOAD 8 TOTAL INPUT FINE CURRENT 50% LOAD 9 NO. OF PLISE 50% LOAD 9 NO. OF PLISE 54 9 NO. OF PLISE 50% LOAD 9 CONVERTER EFFICIENCY 0.96 9 OVENETER EFFICIENCY 0.96 9 OVENETER EFFICIENCY 0.96 10 0.01 MMS	14	1	SEMICONDUCT	OR DE	VICES (DI	DDE / TH	HYRIST	DR / IGE	3T / IG	CT			IGBT			
1 2 CONVERTE CONFIGURATION LEP / 3-PH SEM 3-PH UNCONTROLLED CONTROLLED / 3-PH FULLY CONTROLLED / 3-PH SEM 36 Image: Set of the set of	In 2 CONVERTER CONFIGURATION OF PLUEOD WITH NO. OF Image: Configuration of process of the second s	15		/ ANY OTHER)													
11 CONTROLED 3-PH FULLY CONTROLED WITH NO. OF 38 3 NO. OF PULSE 54 3 NO. OF PULSE 64 4 IRPUT PERFORMANCE 54 4 IRPUT PERFORMANCE 57 4 VENDORS SHALL FUNKTINE THE PERFORMANCE FIGURE FOR 57 5 PERFORMANCE PARAMETER 0.00 6 100% 577 4 VENDORS VICL FUNKTINE THE PERFORMANCE FIGURE FOR 577 4 CURRENT TO 0.03 6 0.03 0.035 7 100.13 0.035 7 K-CURRENT TOD 8 0.05 0.97 9 FUNDAMENTAL FOWER 7 0.96 0.95 9 CONVERTER EFFICIENCY 100% INDE TWING TWO CONTROLED WITH THE PERFORMANCE PROFILE (Not-10) 100% INDE TWING TWO CONTROLED WITH THE PERFORMANCE PROFILE (Not-10) 100% INDE TWING TWO CONTROLED WITH TOD 100% INDE TWING TWO CONTROLED WITH PERFORMANCE PROFILE (Not-10) 100% INDE TWING TWO CONTROLED WITH PROFILE (Not-10) 100% INDE TWING TWO CONTROL TWO WITH PROFILE (NOT-10)	17 CONTROLLED / 3-PH FULLY CONTROLLED / WITH NO. OF 36 13 NO. OF PLUSE 54 14 INDUT FERFORMANCE 54 15 MO OF PLUSE 54 16 WENDOR SNAL FURNISH THE PERFORMANCE FIGURE FOR 59% LOAD 16 PERFORMANCE PARAMETER 100% 17 VENDOR SNAL FURNISH THE PERFORMANCE FIGURE FOR 59% LOAD 17 PERFORMANCE PARAMETER 100% 10 VENDOR SNAL FURNISH THE PERFORMANCE FIGURE FOR 59% LOAD 17 VENDOR SNAL FURNISH THE PERFORMANCE FIGURE FOR 59% LOAD 17 VENDOR SNAL FURNISH THE PERFORMANCE FIGURE FOR 59% LOAD 17 VENDOR SNAL FURNISH THE PERFORMANCE FIGURE FOR 59% LOAD 17 VENDOR SNAL FURNISH THE PERFORMANCE FIGURE FOR 59% LOAD 18 S. CURRENT THANKING PERFECTION 0.92 0.92 19 CONVERTER EFFICIENCY 0.96 0.955 0.95 10 MSE MSEC MSEC MSEC 11 1.42 10%	16	2	CONVERTER CO	ONFIG	URATION	(3-PH U)	NCONT	ROLLED) / 3-Pł	H SEM	I		3-PH UNCO	NTROLLED		
1 SEMICONDUCTORS PER BRANCH 38 3 NOV OF PULSE 64 4 INPUT PERFORMANCE: 54 4 VENDOR SHALL FURNISH THE PERFORMANCE FIGURE FOR 575 7 VENDOR SHALL FURNISH THE PERFORMANCE FIGURE FOR 575 7 NOUTOULD DRIVE REST 000% 7 100% 757 8 100% 757 9 0.03 0.035 9 FURDOR SHALL FURNISH THE PERFORMANCE FIGURE FOR 9 CONVERTING 0.03 9 CONVERTING 0.03 9 CONVERTING 0.03 9 FURDARENTING 0.92 9 FACTOR (OPF) 0.92 9 CONVERTE FFICENCY 0.96 9 CONVERTE FFICENCY 0.96 9 CURRENT TARMONIC PROFILE (Venet 10) 9 AMPS 100% 10 10 100% 11 142 12 10% 13 138 13 10% 13 138	10 SEMICONDUCTORS FER BRANCH 30 2 MOVT FERSORMACE: 54 4 INDIT FERSORMACE: 54 2 VERDOR SHALL FURNISH THE PERFORMANCE FIGURE FOR 59% LOAD 2 NERVIDUL, DRIVE AS FOLLOWS: 25% LOAD 2 PERFORMANCE PARAMETER 100/r (j) 4 100/r (j) 577 4 33 288 10 100/r (j) 577 4 33 288 10 0.03 0.035 10 0.03 0.035 10 0.09 0.92 10 0.92 0.92 10 0.92 0.92 10 100/r 10 100/r	17		CONTROLLED / 3-	PH FUL	LY CONTI	ROLLED) WITH	NO. OF								
19 3 NO.OF PULSE 54 4 INPUT PERFORMANCE INDUTO PULSE 54 2 INDUTO SHALL FURNISH THE PERFORMANCE FIGURE FOR INDUTO PULSE INDUTO PULSE 2 INDUTO PULSE 100% 55% LOAD 25% LOAD 3 DEFERORMANCE PARAMETER 100% 75% LOAD 25% LOAD 4 INDUTO PULSE 577 433 288 145 5 SCURRENT THO 0.03 0.035 0.07 INDUTO PULSE 5 % CURRENT TO 0.92 0.92 0.92 0.99 6 FACTOR (DPF) 0.92 0.92 0.95 0.95 6 CURRENT HARMONIC PROFILE (Not-10) INDUE INDUE INDUE 6 CURRENT HARMONIC PROFILE (Not-10) INDUE INDUE INDUE 7 1.08 1.09% INDUE INDUE INDUE 8 5 2.10% INDUE INDUE INDUE 9 CURRENT HARMONIC PROFILE (Not-10) INDUE INDUE INDUE 1000% INDUE INDUE INDUE </td <td>10 3 NO. OF PLUSE 54 4 INSUPT PERFORMANCE FIGURE FOR INSUPERATIONAL FUNDAME FIGURE FOR 2 VENDOR SHALL FUNDAME FIGURE FOR 100% 75% LOAD 25% LOAD 2 FORTAL FUNDAME AS FOLLOWS: 100% 75% LOAD 25% LOAD 25% LOAD 2 FORTAL FUNDAME FIGURE FOR 777 433 288 145 </td> <td>18</td> <td></td> <td>SEMICONDUCTOR</td> <td>S PER</td> <td>BRANCH</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>36</td> <td></td> <td></td> <td></td>	10 3 NO. OF PLUSE 54 4 INSUPT PERFORMANCE FIGURE FOR INSUPERATIONAL FUNDAME FIGURE FOR 2 VENDOR SHALL FUNDAME FIGURE FOR 100% 75% LOAD 25% LOAD 2 FORTAL FUNDAME AS FOLLOWS: 100% 75% LOAD 25% LOAD 25% LOAD 2 FORTAL FUNDAME FIGURE FOR 777 433 288 145	18		SEMICONDUCTOR	S PER	BRANCH								36			
4 INPUT PERFORMANCE: VENDER SHALL PERFORMANCE PROMMACE FIGURE FOR INDIVIDUAL DRIVE AS FOLLOWS: PERFORMANCE PRAVMETER 100% 7% LOAD 2% LOAD 7 100 VIDUAL DRIVE AS FOLLOWS: 8 0(h) 577 433 288 145 7 100 VIDUAL DRIVE AS FOLLOWS: 0.03 0.035 0.07 8 % CURRENT TOD 0.92 0.92 0.92 0.93 9 FACTOR (DPF) 0.92 0.92 0.92 0.93 100 VIDUAL DRIVE PROVER 0.92 0.92 0.93 0.95 100 VIDUAL DRIVE PROVER 0.92 0.92 0.93 0.95 100 VIDUAL DRIVE POWER 0.92 0.92 0.95 0.95 100 VIDUAL DRIVE POWER 0.92 0.92	4 INPUT PERFORMANCE INPUT PERFORMANCE VENDONS SHALL FORMSH THE PERFORMANCE FIGURE FOR INDIVIDUAL ORIVE AS FOLLOWS: PERFORMANCE PARAMETER 100/h 79% LOAD 29% LOAD INDIVIDUAL ORIVE AS FOLLOWS: INDIVIDUAL ORIVE AS FOLLOWS: INDIVIDUAL ORIVE AS FOLLOWS: INDIVIDUAL ORIVE AS FOLLOWS: 577 433 288 145 INDIVIDUAL ORIVE AS CURRENT THD 0.03 0.035 0.07 INDIVIDUAL ORIVER % CURRENT THD 0.03 0.035 0.07 INDIVIDUAL ORIVER FUNDAMENTAL POWER 0.92 0.92 0.92 0.92 CONVERTER FFICIENCY 0.96 0.955 0.95 INDIVIDUAL ORIVER INDIVIDUAL ORIVER 0.92 0.92 0.92 INDIVIDUAL ORIVER INDIVIDUAL ORIVER 0.96 0.955 0.95 INDIVIDUAL ORIVER INDIVIDUAL ORIVER 0.96 0.955 0.95 INDIVIDUAL ORIVER INDIVIDUAL ORIVER 0.96 0.955 INDIVIDUAL ORIVER INDIVIDUAL ORIVER INDIVIDUAL ORIVER INDIVIDUAL ORIVER INDIVIDUAL ORIVER INDIVIDUAL ORIVER INDIVIDUAL ORIVIDUAL ORIVER	19	3	NO. OF PULSE										54			
1 VENOR SHUL FURNSH THE PERFORMANCE FOLUME: SUPERATION STATES AND STATES AN	1 VENDOR SHULL FURNSH THE PERFORMANCE FOLUER FOR INNUTURAL DRIVE ASTOLLAWS: 00% 25% LOAD PERFORMANCE PARAMETER 00% 25% LOAD 0 0,0 577 433 288 10TAL INPUT RMS CURRENT 0.03 0.035 0.07 0 % CURRENT THD 0.03 0.035 0.07 1 % CURRENT TDD 1 1 1 Korken TDD 1 1 1 Korken TDD 1 1 1 CONVERTER EFFICIENCY 0.96 0.95 0.95 1 MPS MRS MRS MRS MRS 1 1.00% 1 1 1 1 1 1.2 1.00% 1 1 1 1 1.2 <td>20</td> <td>4</td> <td>INPUT PERFOR</td> <td>MANC</td> <td>E:</td> <td></td>	20	4	INPUT PERFOR	MANC	E:											
IDMUDUAL DRIVE AS FOLLOWS: 100% 25% LOAD 25% LOAD PERFORMANCE PARAMETER LOAD 50% LOAD 25% LOAD TOTAL INPUT RMS CURRENT 0.03 0.035 0.05 0.07 W. CURRENT THD 0.03 0.035 0.05 0.07 W. CURRENT TDO 0.92 0.92 0.92 0.95 FUNDAMENTAL POWER 0.92 0.92 0.95 0.95 CONVERTER EFFICIENCY 0.96 0.955 0.95 0.95 CONVERTER EFFICIENCY 0.96 0.955 0.95 0.95 CONVERTER EFFICIENCY 0.96 0.955 0.95 0.95 CURRENT HARMONE PROFILE (Note-10) 0.95 0.95 0.95 CURRENT HARMONE PROFILE (Note-10) 0.95 0.95 0.95 CURRENT HARMONE PROFILE (Note-10) 0.96 0.95 0.95 CURRENT HARMONE PROFILE (Note-10) 0.96 0.95 0.95 CURRENT HARMONE PROFILE (Note-10) 0.95 0.95 0.95 CURRENT HARMONE PROFILE (Note-10) 0.95	INDIVIDUAL BUYE AS FOLLOWS: 100% 75% LOAD 2% LOAD 2% LOAD PERFORMANCE PARAMETER 100A 7% LOAD 2% LOAD	21		VENDOR SHALL F	URNIS	H THE PER	RFORMA	NCE FI	GURE F	OR							
PERFORMANCE PARAMETER 100% 7% LOAD 5% LOAD 5% LOAD TOTALINET INS CURRENT 577 4.33 2.88 145 (1) 577 4.33 2.88 145 % CURRENT THD 0.03 0.035 0.07 % CURRENT THD 0.92 0.92 0.92 0.9 FACTOR (DPF) 0.92 0.92 0.95 0.95 CONVERTER EFFICIENCY 0.96 0.96 0.95 0.95 100% load 75% load 50% load 25% load 5 2.2 100% 0.95 MAPS CREENT HARMONC PROFILE (Non-10) NOLE NOLE NOLE 100% load 75% load 50% load 25% load S 100% 0.95 100% 101 100% 1 1 1 1 1 101 100% 1 1 1 1 1 11 1.42 100% 1 1 1 1 11 1.42 100% 1 1 1 <	PERFORMANCE PARAMETER 100% 75% LOAD 29% LOAD 29% LOAD TOTAL INPUT NBS CURRENT 577 433 288 145 (h) 577 433 288 145 % CURRENT TUD 0.03 0.035 0.07	22		INDIVIDUAL DRIVE	AS FO	DLLOWS:											
2 TOTAL INPUT RMS CURRENT 577 433 288 145 2 % CURRENT THD 0.03 0.035 0.05 0.07 3 FUNOMENTAL POWER 0.92 0.92 0.92 0.9 4 FUNOMENTAL POWER 0.92 0.92 0.92 0.95 5 CONVERTER EFFICIENCY 0.96 0.955 0.95 4 CONVERTER EFFICIENCY 0.96 0.955 0.95 5 CURRENT THARMONIC PROFILE (Note-10) 100% load 25% load 25% load 100% 4 MM* AM* AM* AM* AM* 100% load 75% load 25% load 25% load 100% 1 1 5 2.2 100% 1 1 1 6 11 1.42 100% 1 1 41 13 1.36 100% 1 1 42 17 0.11 100% 1 1 43 19 0.07 100% 1 1 44 23 0.03 100% 1 1 45 0.03 100% 1 1 1 46 29 0.3 100% 1 1 <td< td=""><td>TOTAL INPUT RMS CURRENT 577 4.3 288 14.5 0(1) % CURRENT THO 0.03 0.035 0.07 % CURRENT TOD 0.03 0.025 0.09 FUNDAMENTAL POWER 0.92 0.92 0.92 0.9 FUNDAMENTAL POWER 0.92 0.92 0.92 0.9 CONVERTER EFFICIENCY 0.96 0.955 0.95 CURRENT TARMONIC PROFILE (Note: 10) 000% load 5% load 2% load 0 MIRE MIRE MIRE MIRE MIRE 100% load 5% load 5% load 2% load 0 0 0 0 11 1.42 1.045 1 0 0 13 1.32 1.00% 1 0 0 13 1.32 1.00% 1 0 0 13 1.32 1.00% 1 0 0 13 1.32 1.00% 1 0 0 14 1.03 1.04 1.04 0 <</td><td>2</td><td></td><td>PERFORMANCE PARA</td><td>METE</td><td>R</td><td>100 LOA</td><td>% AD 7</td><td>5% LOA</td><td>AD</td><td>50%</td><td>LOAD</td><td>25% LOAD</td><td></td><td></td><td></td><td></td></td<>	TOTAL INPUT RMS CURRENT 577 4.3 288 14.5 0(1) % CURRENT THO 0.03 0.035 0.07 % CURRENT TOD 0.03 0.025 0.09 FUNDAMENTAL POWER 0.92 0.92 0.92 0.9 FUNDAMENTAL POWER 0.92 0.92 0.92 0.9 CONVERTER EFFICIENCY 0.96 0.955 0.95 CURRENT TARMONIC PROFILE (Note: 10) 000% load 5% load 2% load 0 MIRE MIRE MIRE MIRE MIRE 100% load 5% load 5% load 2% load 0 0 0 0 11 1.42 1.045 1 0 0 13 1.32 1.00% 1 0 0 13 1.32 1.00% 1 0 0 13 1.32 1.00% 1 0 0 13 1.32 1.00% 1 0 0 14 1.03 1.04 1.04 0 <	2		PERFORMANCE PARA	METE	R	100 LOA	% AD 7	5% LOA	AD	50%	LOAD	25% LOAD				
India in the second	Indextraction 577 433 288 145 Image: state of the s	2			IDDEN	т											
No. No. <td>% CURRENT THD 0.03 0.03 0.05 0.07 % CURRENT THD 0.92 0.92 0.92 0.9 FACTOR (0PF) 0.92 0.92 0.95 0.95 CONVERTER EFFICIENCY 0.96 0.955 0.95 0.95 CONVERTER EFFICIENCY 0.96 0.955 0.95 0.95 CURRENT HARMONG PROFILE (Note-10) 100% load 5% load 5% load AMPS AMPS MAPS OKALE SM AMPS AMPS 100% load 7% load 5% load 2% load SMCLE AMPS AMPS 101 100% I I I I 101 100% I I I I 101 1.42 I I I I 101 1.42 I I I I 101 1.42 I I I I 101 1.00% I I I I 101 1.00% I I<td>26</td><td></td><td>(la)</td><td></td><td></td><td>577</td><td>2</td><td>433</td><td>2</td><td colspan="3">288 145</td><td></td><td></td><td></td><td></td></td>	% CURRENT THD 0.03 0.03 0.05 0.07 % CURRENT THD 0.92 0.92 0.92 0.9 FACTOR (0PF) 0.92 0.92 0.95 0.95 CONVERTER EFFICIENCY 0.96 0.955 0.95 0.95 CONVERTER EFFICIENCY 0.96 0.955 0.95 0.95 CURRENT HARMONG PROFILE (Note-10) 100% load 5% load 5% load AMPS AMPS MAPS OKALE SM AMPS AMPS 100% load 7% load 5% load 2% load SMCLE AMPS AMPS 101 100% I I I I 101 100% I I I I 101 1.42 I I I I 101 1.42 I I I I 101 1.42 I I I I 101 1.00% I I I I 101 1.00% I I <td>26</td> <td></td> <td>(la)</td> <td></td> <td></td> <td>577</td> <td>2</td> <td>433</td> <td>2</td> <td colspan="3">288 145</td> <td></td> <td></td> <td></td> <td></td>	26		(la)			577	2	433	2	288 145						
3 % CURRENT TDD 0.000 0.000 0.000 29 FUNDAMENTAL POWER FACTOR (0PF) 0.92 0.92 0.92 0.9 3 CONVERTER EFFICIENCY 0.96 0.955 0.95 3 CURRENT HARMONIC PROFILE (Note-10) 0.96 0.955 0.95 3 CURRENT HARMONIC PROFILE (Note-10) 0.96 0.955 0.95 3 CURRENT HARMONIC PROFILE (Note-10) 0.96 0.955 0.95 4 100% load 75% load 25% load 0.95 0.95 0.95 5 2.2 100% 0.96 0.96 0.95 6 5 2.2 100% 0.96 0.96 11 1.42 100% 0.96 0.96 0.96 41 13 1.36 100% 0.96 0.96 42 17 0.11 100% 0.96 0.96 43 19 0.07 100% 0.96 0.96 44 23 0.03 100% 0.96 0.96 45 29 0.96 0.96 0.96 46 29 0.96 0.96 0.96 47 0.97 0.96 0.96 0.96 <t< td=""><td>No. CURRENT TDD Order Order</td><td>27</td><td colspan="5">6 (I_s) 7 % CURRENT THD</td><td colspan="2">0.035</td><td></td><td>0.05</td><td></td><td>0.07</td><td></td><td></td><td></td><td></td></t<>	No. CURRENT TDD Order	27	6 (I _s) 7 % CURRENT THD					0.035			0.05		0.07				
PUNDAMENTAL POWER FACTOR (DPF) 0.92 0.92 0.92 0.92 0.92 0.93 CONVERTER EFFICIENCY 0.96 0.96 0.955 0.95 0.95 CONVERTER EFFICIENCY 0.96 0.96 0.955 0.95 0.95 CONVERTER EFFICIENCY 0.96 0.96 0.955 0.95 0.95 CURRENT HARMONIC PROFILE (Mote-10) 100% load 5% load 5% load	20 FUNDAMENTAL POWER FACTOR (DF) 0.92 0.92 0.92 0.93 0.95 0.95 30 CONVERTER EFFICIENCY 0.96 0.95 0.95 0.95 0.95 31 CURRENT HARMONIC POFILE (Note-10) TONK Ioad 75% Ioad 90% Ioad 95% Ioad TONK Ioad 75% Ioad 90% Ioad 95% Ioad TONK Ioad 75% Ioad 90% Ioad 95% Ioad 36 TONK Ioad 75% Ioad 90% Ioad 95% Ioad 37 AMPS MAPS MAPS MAPS MAPS MAPS 38 5 2.2 100% Ioad 90% Ioad 95% Ioad TONK Ioad 95% Ioad TONK Ioad 95% Ioad 39 7 1.06 100% Ioad Ioa Ioad Ioa Ioad Ioa 4 13 1.38 100% Ioad Ioa Ioad Ioa Ioad Ioa 4 19 0.07 100% Ioad Ioa Ioad Ioa Ioad Ioa 4 23 0.03 100% Ioad Ioa Ioad Ioa Ioad Ioad Ioa 4<	28		% CURRENT	TDD		0.05	Ť		Ť	0.05		0.07				
Sector (DPF) 0.92 0.92 0.92 0.92 0.92 0.93 3 CONVERTER EFFICIENCY 0.96 0.96 0.955 0.95 3 CURRENT HARMONIC PROFILE (Note-10) Imps (Note) 75% load 50% load 25% load Imps (Note) 75% load 50% load 25% load 3 CURRENT HARMONIC PROFILE (Note-10) Imps (Note) 75% load 50% load 25% load Imps (Note) 75% load 50% load 25% load 3 Imps (Note) 75% load 50% load 25% load Imps (Note) 75% load 25% load Imps (Note) 75% load 25% load 3 Imps (Note) 75% load 50% load 25% load Imps (Note) 75% load 25% load Imps (Note) 75% load 25% load 3 Imps (Note) 75% load 25% load Imps (Note) 75% load 25% load Imps (Note) 75% load 25% load 3 Imps (Note) 75% load 25% load Imps (Note) 75% load 25% load Imps (Note) 75% load 25% load 3 Imps (Note) 75% load 25% load Imps (Note) 75% load 25% load Imps (Note) 75% load 25% load 3 Imps (Note) 75% load 25% load Imps (Note) 75% load 25% load Imps (Note) 75% load 25% load 4 Imps (Note) 75% load 25% load Imps (Note) 75% load 25% load Imps (Note) 75% load 25% load 4 Imps (Note) 75% load 25% load 25% load Imps (Note) 75% load 25% loa	PACTOR (DPF) 0.92 0.92 0.92 0.92 0.92 0.93 CONVERTER EFFICIENCY 0.96 0.96 0.955 0.95 0.95 CONVERTER EFFICIENCY 0.96 0.96 0.955 0.95 0.95 CURRENT HARMONIC PROFILE (Note-10) 100% load 75% load 25% load	29		FUNDAMENTAL PC	WER												
3 CONVERTER EFFICIENCY 0.96 0.96 0.955 0.95 3 CURRENT HARMONIC PROFILE (Note-10) 100% load 75% load 25%	3 CONVERTER EFFICIENCY 0.96 0.96 0.95 0.95 0.95 3 CURRENT HARMONIC PROFILE (Note: 10) 100% load 75% load 50% load 25% load AMPS ANGLE 3 AMPS AMPS AMPS AMPS AMPS CURRENT HARMONIC PROFILE (Note: 10) 3 AMPS AMPS AMPS AMPS AMPS CURRENT 3 5 2.2 100% I I I I 4 11 1.42 100% I I I 4 13 1.38 100% I I I 4 23 0.03 100% I I I 5 0.03 100% I I I I <tr< td=""><td>30</td><td></td><td>FACTOR (DF</td><td>PF)</td><td></td><td>0.92</td><td>(</td><td>).92</td><td>- 19</td><td>0.92</td><td></td><td>0.9</td><td></td><td></td><td></td><td></td></tr<>	30		FACTOR (DF	PF)		0.92	().92	- 19	0.92		0.9				
Sector CURRENT HARMONIC PROFILE (Note-10) Sector 100% load 75% load 50% load 25% load Sector AMPS ANGLE (NEG) AMPS ANGLE (DEG) AMPS ANGLE (DEG) Sector AMPS ANS NAGLE (DEG) AMPS ANGLE (DEG) AMPS ANGLE (DEG) Sector AMPS AL AMPS NAGLE (DEG) AMPS ANGLE (DEG) AMPS ANGLE (DEG) Sector AMPS AL A C A ANGLE (DEG) AMPS ANGLE (DEG) Sector A AMPS NAGLE (DEG) AMPS ANGLE (DEG) AMPS ANGLE (DEG) Sector T L L L L L L L Sector T L L L L L L Sector T L L L L L L L Sector T L L L L L L L Sector L L L L <thl< th=""> L L</thl<>	American Current Hardonic PROFILE (Note: 1) Current Hardonic PROFILE (Note: 1) 100% Ioad 75% I	31		CONVERTER EFFI	CIENC	Y	0.96	().96	(0.955	5	0.95				
CURRENT HARMONIC PROFILE (Note-10) 100% load 75% load 25% load a AMPS AMSLE AMPS AMPS CUE AMPS AMSLE AMPS AMPS CUE AMPS AMSLE AMPS AMPS CUE AMPS AMPS CUE AMPS AMPS CUE AMPS AMPSLE AMPSLE </td <td>33 CURRENT HARMONIC PROFILE (Note-10) 34 OW/ load 75% load 50% load 25% load Amp NOLE Amps NOLE 35 Amp Nole Amps Nole Amps Nole Amps Nole 37 Amps Nole Amps Nole Amps Nole Amps Nole 37 Image: State of the stat</td> <td>32</td> <td colspan="6">32 CONVENTER EFFICIENCE 0.20 0.20</td> <td colspan="4"></td> <td></td> <td></td> <td></td> <td></td> <td></td>	33 CURRENT HARMONIC PROFILE (Note-10) 34 OW/ load 75% load 50% load 25% load Amp NOLE Amps NOLE 35 Amp Nole Amps Nole Amps Nole Amps Nole 37 Amps Nole Amps Nole Amps Nole Amps Nole 37 Image: State of the stat	32	32 CONVENTER EFFICIENCE 0.20 0.20														
4	34 100% load 75% load 55% load AMPS AMPS <th< td=""><td>33</td><td></td><td></td><td>CU</td><td>RRENT HA</td><td>RMONI</td><td>C PROF</td><td>ILE <mark>(N</mark>o</td><td>te-10)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	33			CU	RRENT HA	RMONI	C PROF	ILE <mark>(N</mark> o	te-10)							
3 4 $ANGE$ AMP	Amps	34				100% load	75% loa	nd 50% l	oad 25%	% load							
3	3 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	3			AMPS	ANGLE (DEG)	AMPS	ANGLE	AMP	ANGI	LE	AMPS	ANGLE (DEG)				
37 1 0 0 0 0 0 38 5 2.2 100% 0 0 0 0 39 7 1.06 100% 0 0 0 0 40 11 1.42 100% 0 0 0 0 41 1.3 1.36 100% 0 0 0 0 42 1.7 0.11 100% 0 0 0 0 43 1.9 0.07 100% 0 0 0 0 44 2.3 0.03 100% 0 0 0 0 45 2.5 0.03 100% 0 0 0 0 46 2.9 0 0 0 0 0 0 47 3.1 0 0 0 0 0 0 49 3.7 0 0 0 0 0 0 5 DCLINK VOLTAGE 0 0 0	37 1 1 1 1 38 5 2.2 100% 0 0 39 7 1.06 100% 0 0 41 1.12 100% 0 0 0 42 17 0.11 100% 0 0 43 19 0.07 100% 0 0 44 23 0.03 100% 0 0 45 25 0.3 100% 0 0 46 29 0 0 0 0 47 31 0 0 0 0 48 35 0 0 0 0 49 37 0 0 0 0 5 DC LINK VOLTAGE 0 0 0 6 MAX. DC LINK CURRENT 380A 7 INPUT REACTOR (IF ANY) NO 8 D CLINK REATOR (REACTOR/CAPACITOR) NO	3				(BEG)		(DEO)	Ŭ	(DEC	·)		(BEG)				
38 5 2.2 100% Image: Constraint of the symbol of t	38 5 2.2 100% 0 0 39 7 1.06 100% 0 0 0 41 1.32 1.36 100% 0 0 0 42 177 0.11 100% 0 0 0 44 1.33 0.03 100% 0 0 0 44 2.3 0.03 100% 0 0 0 45 2.55 0.03 100% 0 0 0 46 2.9 0 0 0 0 0 47 3.16 0 0 0 0 0 48 3.56 0 0 0 0 0 49 3.5 0 0 0 0 0 40 3.5 0 0 0 0 0 5 DC LINK VOLTAGE 0 0 0 0 5 DC LINK VOLTAGE 1800V 300A 5 DC LINK KOLTOR (IF ANY) 300A 6 MAX DC LINK CURRENT 1800V 6 MAX DC LINK CURREATOR (REACTOR	37															
39 7 1.06 100% 100% 1 100% 100	3 7 1.06 100% 1 1.42 100%	38		5	2.2	100%											
40 11 1.42 10% 6 6 6 41 13 1.36 10% 6 6 6 42 17 0.11 10% 6 6 6 43 19 0.07 10% 6 6 6 44 23 0.03 10% 6 6 6 45 25 0.03 10% 6 6 6 46 29 6 6 6 6 6 47 31 6 6 6 6 6 6 48 35 7 7 7 7 7 7 7 49 37 8 7 7 7 7 7 7 7 7 49 37 9 1 <td>11 1.42 100% Image: constraint of the second second</td> <td>39</td> <td></td> <td>1</td> <td>1.06</td> <td>100%</td> <td></td>	11 1.42 100% Image: constraint of the second	39		1	1.06	100%											
1 1.36 1.36 10% Image: Constraint of the symbol of	1 1.3 100% 1 42 17 0.11 100% 1 43 19 0.07 100% 1 44 23 0.03 100% 1 45 25 0.03 100% 1 46 29 1 1 1 47 31 1 1 1 48 35 1 1 1 49 37 1 1 1 49 37 1 1 1 50 41 1 1 1 51 43 1 1 1 52 47 1 1 1 54 1 1 1 1 55 1 1 1 1 56 1 1 1 1 57 7 1 1 1 56 MAX DC LINK VOLTAGE 1800V 56 MAX DC LINK CRACTOR (REACTOR/CAPACITOR) NO 58 DC LINK REACTOR (REACTOR/CAPACITOR) NO 59 9 CONVERTER EFFICIENCY 1800X	40		17	1.42	100%	<u> </u>					<u> </u>					
43 19 0.07 100% 1 1 1 44 23 0.03 100% 1 1 1 45 25 0.03 100% 1 1 1 46 29 1 1 1 1 1 47 31 1 1 1 1 1 48 35 1 1 1 1 1 1 49 37 1 1 1 1 1 1 1 50 41 1 1 1 1 1 1 1 1 51 43 1	43 19 0.07 100% 1 1 1 44 23 0.03 100% 1 1 1 45 25 0.03 100% 1 1 1 46 29 1 1 1 1 1 47 31 1 1 1 1 1 48 35 1 1 1 1 1 1 49 37 1 1 1 1 1 1 1 50 41 1 1 1 1 1 1 1 1 51 43 1	42		17	1.36	100%			+	\vdash							
44 23 0.03 100% Image: Constraint of the second sec	44 23 0.03 100% Image: Constraint of the second sec	43		19	0.11	100%			+	+							
45 25 0.03 100% Image: Constraint of the second sec	45 25 0.03 100% 0 0 0 0 46 29 0 0 0 0 0 0 47 31 0 0 0 0 0 0 48 35 0 0 0 0 0 0 49 37 0 0 0 0 0 50 41 0 0 0 0 0 51 43 0 0 0 0 0 52 47 0 0 0 0 0 54 1 0 0 0 0 0 55 DC LINK VOLTAGE 1800V 1800V 1800V 6 MAX. DC LINK CURRENT 380A 1800V 56 DC LINK CURRENT 380A 1800V 58 DC LINK REACTOR (REACTOR/CAPACITOR) NO 1800V 9 CONVERTER EFFICIENCY @ 75% LOAD % 100% LOAD	44	_	23	0.07	100%			+	+			-				
46 29 0 0 0 0 47 31 0 0 0 0 48 35 0 0 0 0 49 37 0 0 0 0 50 41 0 0 0 0 51 43 0 0 0 0 52 47 0 0 0 0 53 49 0 0 0 0 54 5 DC LINK VOLTAGE 1800V 56 MAX. DC LINK CURRENT 380A	46 29 0 0 47 31 0 0 0 48 35 0 0 0 49 37 0 0 0 50 41 0 0 0 51 43 0 0 0 52 47 0 0 0 53 49 0 0 0 54 5 DC LINK VOLTAGE 1 55 DC LINK CURRENT 380A 57 7 INPUT REACTOR (IF ANY) 58 DC LINK REACTOR (REACTOR/CAPACITOR) NO 59 CONVERTER EFFICIENCY @ 75% LOAD % . @ 100% LOAD	45	-	25	0.03	100%			+	+			-				
47 31 0 0 0 48 35 0 0 0 49 37 0 0 0 50 41 0 0 0 51 43 0 0 0 52 47 0 0 0 53 49 0 0 0 54 5 DC LINK VOLTAGE 1800V 56 MAX. DC LINK CURRENT 380A	47 31 <	46	-	29					+	\vdash							
48 35 0 0 0 0 49 37 0 0 0 0 50 41 0 0 0 0 51 43 0 0 0 0 52 47 0 0 0 0 53 49 0 0 0 0 54	48 35 35 35 35 49 37 37 37 37 50 41 37 37 37 51 43 37 37 37 52 47 37 37 37 53 49 37 37 37 54 380A 37 380A 55 5 5 5 5 5 5 5 6 MAX. DC LINK CURRENT 380A 57 7 INPUT REACTOR (IF ANY) 58 DC LINK REACTOR (REACTOR/CAPACITOR) NO 59 CONVERTER EFFICIENCY @ 75% LOAD % ,@ 100% LOAD %	47		31		1				\mathbf{t}							
49 37 0 0 0 50 41 0 0 0 51 43 0 0 0 52 47 0 0 0 53 49 0 0 0 54 5 DC LINK VOLTAGE 1800V 56 MAX. DC LINK CURRENT 380A	49 37 0 0 0 0 50 41 0 0 0 0 51 43 0 0 0 0 52 47 0 0 0 0 53 49 0 0 0 0 54 5 DC LINK VOLTAGE 1800V 56 6 MAX. DC LINK CURRENT 380A 57 7 INPUT REACTOR (IF ANY) NO 58 DC LINK REACTOR (REACTOR/CAPACITOR) NO 59 CONVERTER EFFICIENCY @ 75% LOAD % ,@ 100% LOAD %	48		35		1	1			t		1	1				
50 41 0 0 0 51 43 0 0 0 52 47 0 0 0 53 49 0 0 0 54 5 5 DC LINK VOLTAGE 1800V 56 6 MAX. DC LINK CURRENT 380A	50 41 6 6 MAX. DC LINK VOLTAGE 1800V 55 5 DC LINK VOLTAGE 1800V 56 6 MAX. DC LINK CURRENT 380A 57 7 INPUT REACTOR (IF ANY) NO 58 DC LINK REACTOR (REACTOR/CAPACITOR) NO 59 CONVERTER EFFICIENCY @ 75% LOAD % .@ 100% LOAD	49		37		Ī	İ					İ					
51 43 1 1 52 47 1 1 53 49 1 1 54 1 1 55 5 DC LINK VOLTAGE 56 6 MAX. DC LINK CURRENT 380A	51 43 1 1 52 47 1 1 53 49 1 1 54 1 1 55 DC LINK VOLTAGE 1800V 66 MAX. DC LINK CURRENT 380A 57 7 INPUT REACTOR (IF ANY) NO 58 DC LINK REACTOR (REACTOR/CAPACITOR) NO 59 CONVERTER EFFICIENCY @ 75% LOAD %	50		41					T	Ĺ							
52 47 1 53 49 1 54 1 55 5 56 6 6 MAX. DC LINK CURRENT 380A	52 47 47 53 49 49 54 1800V 55 5 56 MAX. DC LINK CURRENT 56 MAX. DC LINK CURRENT 57 7 58 DC LINK REACTOR (REACTOR/CAPACITOR) 58 DC LINK REACTOR (REACTOR/CAPACITOR) 59 CONVERTER EFFICIENCY	51		43													
53 49 54 55 5 56 6 MAX. DC LINK CURRENT 380A	53 49 54 55 55 5 5 6 MAX. DC LINK CURRENT 380A 57 7 INPUT REACTOR (IF ANY) 8 DC LINK REACTOR (REACTOR/CAPACITOR) 9 CONVERTER EFFICIENCY @ 75% LOAD %	52		47													
54 1800V 55 5 DC LINK VOLTAGE 1800V 56 6 MAX. DC LINK CURRENT 380A	54 54 55 DC LINK VOLTAGE 1800V 6 MAX. DC LINK CURRENT 380A 77 INPUT REACTOR (IF ANY) NO 8 DC LINK REACTOR (REACTOR/CAPACITOR) NO 9 CONVERTER EFFICIENCY @ 75% LOAD % _ @ 100% LOAD %	53		49													
Dot LINK VOLTAGE 1800V 56 6 MAX. DC LINK CURRENT 380A	30 5 DC LINK VOLTAGE 1800V 56 6 MAX. DC LINK CURRENT 380A 57 7 INPUT REACTOR (IF ANY) NO 58 8 DC LINK REACTOR (REACTOR/CAPACITOR) NO 59 9 CONVERTER EFFICIENCY @ 75% LOAD % _ @ 100% LOAD %	54			<u> </u>												
NAX. UC LINK CURRENT 380A	o MAX. DC LINK CURKENI 380A 57 7 INPUT REACTOR (IF ANY) NO 58 8 DC LINK REACTOR (REACTOR/CAPACITOR) NO 59 9 CONVERTER EFFICIENCY @ 75% LOAD % @ 100% LOAD %	55	5	DC LINK VOLTA	GE	NT.								1800V			
	or INPUT REACTOR (IF ANY) NU 58 DC LINK REACTOR (REACTOR/CAPACITOR) NO 59 9 CONVERTER EFFICIENCY @ 75% LOAD % , @ 100% LOAD %	56	10 7	MAX. DC LINK C		NI								380A			
3/ / INFUL NU 58 8 DC LINK PEACTOR (PEACTOR) NO	50 DG LINK REACTOR (REACTOR/CAPACITOR) NO 59 9 CONVERTER EFFICIENCY @ 75% LOAD %	5/	2		K (IF A									NU			
V D D NU 59 9 CONVERTER FEEICIENCY @ 75% LOAD %	er 5% LOAD % , er 10% LOAD %	50	o Q				AFACII	UK)						INU @ 75% I OA	0 %	@ 100% 040	%
S S SONVENTER EFFICIENCE ₩ 75% LUAD % , @ 100% LUAD %	58	58	J	GONVERTERE										w /5% LUA	υ 70 ,	⊌ 100% LUAD	70

					STAGE						
			PROJECT		DOC NO		_				
					200.110.						
			AREA		PAGE NO.	7 OF 8					
			DOCUMENT	DATA SHEET FOR 11kV VFD		Rev. 0	-				
1	MANUL						077/				
2	MANU	FACTURER:		SERVICE:		EQUIPMENT NO.:					
3				INF	ORMATION BY V	/ENDOR					
4	Е	DC - AC INVERTE	R DETAILS								
5	1	SEMICONDUCTOR	R DEVICES (THYRIS	TOR / IGBT / IGCT / ANY OTHER)		IGBT					
6	2	INVERTER CONFI	GURATION WITH N	O. OF SEMICONDUCTORS PER BRANC	ЭН	36					
7	3	TYPE OF INVERT	ER			VSI					
8	4	TYPE OF CONTRO	DL			FOC					
9	5	SWITCHING FREC	QUENCY RANGE			800Hz~2000Hz					
10	6	MAX. OUTPUT VO	LTAGE (AT MIN10)%)		5%	-				
11	7	MAX OUTPUT CUI	RRENT (AT MIN10	%)		5%					
12	8	OUTPUT FREQUE	NCY RANGE			0~120Hz					
13	9	ACCURACY OUTF	UT FREQUENCY			1%					
14	10	VOLTAGE THD				3%					
15	11	CURRENT THD				3%					
16	12	VFD OUTPUT VOL	TAGE SURGE (dv/d	t) AT MOTOR TERMINAL							
17		a) PH-PH				1kV(peak)/sec。					
18	Ľ	b) PH-GND				0.6kV ((peak)/sec.					
19	13	OUTPUT REACTO	R			NO					
20	14	INVERTER EFFICI	ENCY			@75%load%	, @100%load%				
21	15	OVERLOAD CAPA	BILITY OF DRIVE:								
22		a) 125% IN FOR:				1 min					
23		b) 150% IN FOR				0.1 min					
24		c) INRUSH CURREN	T 250% IN FOR			3s					
25	16	OVERALL EFFICIE	ENCY OF DRIVE (EX	CL. MOTOR) AT:							
26		a) 100% LOAD				96%					
27		b) 75% LOAD				96%					
28		c) 50% LOAD				96%					
29	17	0) 25% LOAD		= AT-		95%					
30	17	a) 100% LOAD	FACTOR OF DRIVI	E A1.		0.92					
32		b) 75% LOAD				0.92					
33		c) 50% LOAD				0.94					
34		d) 25% LOAD				0.95					
35	18	TRANSIENT TORO	QUE			200%					
36	19	TORQUE BOOST	AVAILABLE			130%					
37	20	MAX TRANSIENT	TORQUE / DURATIO	DN		1s					
38	21	OUTPUT SHORT (CKT. CAPABILITY A	ND DURATION		7us					
39											
40	н	RECOMMENDED	TYPE, VOLTAGE GI	RADE AND SIZE OF CABLES							
41	1	11kV SWITCHBO	ARD TO SHIFT TRA	NSFORMER		by EPC					
42	2	INPUTSHIFT TRAF	NSFORMER TO VFD	CABINET		by EPC					
43	3	VFD SWGR OR TR	RANSFORMER TO N	IOTOR		by EPC					
44	4		<u>د</u>			5,50					
44	- † 5	SIGNAL CARLES	0			by EPC					
46	6	MISC. ALIXII IARV	POWER SUPPLY C	ABLES							
47	ľ										
48		ADDITIONAL DOC		ED WITH BID							
49	1	REFERENCE LIST	OF PROJECTS SU	BMITTED		YES					
50	2	SPARES LIST AS	REQUESTED IN MR	SUBMITTED (YES/NO)		YES					
51	3	VENDOR'S VFD S	OFT STARTER INSF	PECTION TEST PLAN OFFERED		YES					
52		FOR THIS PROJE	CT SUBMITTED.								
53	4	PRELIMINARY CA	LCULATION & CONI	FIRMATION REGARDING		No need					
54		REQUIREMENT OF	HARMONIC RESON	IANCE FILTERS SUBMITTED (YES/NO)							
55	5	LIST OF DEVIATIO	ONS WITH JUSTIFIC	ATION SUBMITTED (YES/NO)		YES					
56		FOR ALL MRQ ATT	ACHMENTS								
57	6	SLD OF VFDS INC	L. ALL EQUIPMENT	(YES/NO)		YES					
58											

				STAGE	Det	ailed Design		
	PROJECT			DOC. NO.				
	AREA			PAGE NO.		8 OF 8		
	DOCUMENT	DATA SHEET FOR 11k	V VFD			Rev. 0		
MANUFACTURER:			SERVICE:			EQUIPMENT NO .:	QTY	:
						SIZE:		
NOTES :								
1. VFD VENDOR to fur	nish data marked as	* with the Technical Bid Sul	bmission as a Mi	nimum requireme	ent. Also refer to Tech	inical.		
Bid Tabulation (atta	ached to MR) to be fi	illed in by VENDOR and sub	mitted with Bid.					
2."HOLD" is a tentative va	alue. If there is any c	hange later, this value will b	e corrected. Foll	ow this value befo	ore receiving the corr	ection,		
3. VFD VENDOR to include	de Cable sizing calcu	lation for all cables within hi	is battery limit ar	d provide the cat	les information. EPC	CONTRACTOR will supply and instal	the cables as per VEND	OR's des
4.VFD VENDOR to include	e any series comper	sation devices if required du	ue to the motor p	ower cable length	n specified in this data	a sheet (Note 15).		
5.An interlocks feature to	prevent access to liv	e parts in VFD panel to be p	provided.					
6. All protection and alarm	n (refer to "999-ELE-	SPC-0005 Specification for	Variable Frequer	cy Drive(VFD)")	equipment for VFDS	shall be advised by VFD VEBDOR.		
7.Spares supply shall be a	as per MR.							
8.Earthing facility for pow	er cables to be provi	ded in the VFD panels.						
9. Language on equipmer	t and on document	ation shall be English.						
10 Type of Cooling for th	e VFD (Air) shall be	decided by Manufacturer C	Cooling system st	all be redundant				
11 Current Harmonic prof	ile unto order 50 sha	I be furnished for the VED b	w the VED VEN	OR at drive tran	sformer primary which	s the Point of Common Coupling (P	C) for VED	
12 VED VENDOR to confi	irm if torsional vibrat	ion study and any precaution		ting torques is re	commended for starti	ng applications		
13 VED VENDOR to com	torface with EPC Co	ntractor/ Rower Study Const	ultant regarding of	arrying out the H	armonic Measuremen	ng applications.	this activity under his so	000
13.VFD VENDOR Shall In	d manifesting lagin al	nilacioi/ Fower Study Const	unant regarding t	arrying out the H		trianing of the VEDC Vendor shall include	this activity under his so	ppe.
14. The fault diagnostic an		tali be equipped with a mem		alan mormation	regarding the cause t	in tripping of the VFDS vendor shall of		penou io
15.Application of VFD sha	an be as per ronowing	j lable :						
16.Rating shown are indic	ative. Final rating sh	all be selected based on driv	ven equipment re	equirements.				
				1		•		1
			RATING (KW) STAF	RTING/SPEED	ESTIMATED 11kV POWER CABL	E	1
TAG	NO.	DRIVEN EQUIPMENT	RATING (KW (Note-16)) STAF AD	RTING/SPEED JUSTMENT	ESTIMATED 11kV POWER CABL LENGTH(FROM VFD TO MOTOR	E REMARKS	⊢
TAG I	NO.	DRIVEN EQUIPMENT	RATING (KW (Note-16)) STAF AD	RTING/SPEED JUSTMENT	ESTIMATED 11kV POWER CABL LENGTH(FROM VFD TO MOTOF	E REMARKS	
TAG I	NO.	DRIVEN EQUIPMENT	RATING (KW (Note-16) 1200) STAF AD SPEED	RTING/SPEED JUSTMENT	ESTIMATED 11kV POWER CABL LENGTH(FROM VFD TO MOTOF 360m	E REMARKS	
TAG I	NO. -01	DRIVEN EQUIPMENT KM-02A	RATING (KW (Note-16) 1200) STAF AD SPEED	RTING/SPEED JUSTMENT ADJUSTMENT	ESTIMATED 11kV POWER CABL LENGTH(FROM VFD TO MOTOF 360m	E REMARKS	
TAG I	NO. -01	DRIVEN EQUIPMENT KM-02A	RATING (KW (Note-16) 1200) STAF AD SPEED	RTING/SPEED JUSTMENT ADJUSTMENT	ESTIMATED 11kV POWER CABL LENGTH(FROM VFD TO MOTOF 360m	E REMARKS	
TAG I SS02-VFD SS02-VFD	-01	DRIVEN EQUIPMENT KM-02A KM-02B	RATING (KW (Note-16) 1200 1200) STAF AD SPEED SPEED	RTING/SPEED JUSTMENT ADJUSTMENT	ESTIMATED 11kV POWER CABL LENGTH(FROM VFD TO MOTOR 360m 360m	E REMARKS	
TAG I SS02-VFD	NO. -01 -02	DRIVEN EQUIPMENT KM-02A KM-02B	RATING (KW (Note-16) 1200 1200) STAF AD SPEEC SPEEC	TING/SPEED JUSTMENT P ADJUSTMENT	ESTIMATED 11kV POWER CABL LENGTH(FROM VFD TO MOTOR 360m 360m	E REMARKS	
TAG I SS02-VFD SS02-VFD	-01	DRIVEN EQUIPMENT KM-02A KM-02B	RATING (KW (Note-16) 1200) STAF AD SPEED SPEED	RTING/SPEED JUSTMENT ADJUSTMENT	ESTIMATED 11kV POWER CABL LENGTH(FROM VFD TO MOTOR 360m 360m	E REMARKS	
TAG SS02-VFD SS02-VFD SS02-VFD	NO. -01 -02 -03	DRIVEN EQUIPMENT KM-02A KM-02B KM-02C	RATING (KW (Note-16) 1200 1200 1200) STAP AD SPEED SPEED SPEED	RTING/SPEED JUSTMENT ADJUSTMENT ADJUSTMENT	ESTIMATED 11kV POWER CABL LENGTH(FROM VFD TO MOTOR 360m 360m 360m	E REMARKS	
TAG SS02-VFD SS02-VFD SS02-VFD	NO. -01 -02 -03	DRIVEN EQUIPMENT KM-02A KM-02B KM-02C	RATING (KW (Note-16) 1200 1200 1200) STAF AD SPEEC SPEEC SPEEC	RTING/SPEED JUSTMENT ADJUSTMENT ADJUSTMENT ADJUSTMENT	ESTIMATED 11kV POWER CABL LENGTH(FROM VFD TO MOTOR 360m 360m 360m	E REMARKS	
TAG SS02-VFD SS02-VFD SS02-VFD SS02-VFD	NO. -01 -02 -03	DRIVEN EQUIPMENT KM-02A KM-02B KM-02C PM-04A	RATING (KW (Note-16) 1200 1200 1200 2200) STAR AD SPEED SPEED SPEED SPEED	ADJUSTMENT	ESTIMATED 11kV POWER CABL LENGTH(FROM VFD TO MOTOR 360m 360m 360m 470m	E REMARKS	
TAG SS02-VFD SS02-VFD SS02-VFD SS02-VFD	NO. -01 -02 -03 -04	DRIVEN EQUIPMENT KM-02A KM-02B KM-02C PM-04A	RATING (KW (Note-16) 1200 1200 1200 2200) STAR AD SPEED SPEED SPEED SPEED	ADJUSTMENT	ESTIMATED 11kV POWER CABL LENGTH(FROM VFD TO MOTOF 360m 360m 470m	E REMARKS	
TAG SS02-VFD SS02-VFD SS02-VFD SS02-VFD SS02-VFD	NO. -01 -02 -03 -04	DRIVEN EQUIPMENT KM-02A KM-02B KM-02C PM-04A	RATING (KW (Note-16) 1200 1200 1200 2200) STAR AD SPEED SPEED SPEED SPEED	ADJUSTMENT	ESTIMATED 11kV POWER CABL LENGTH(FROM VFD TO MOTOF 360m 360m 470m	E REMARKS	
TAG SS02-VFD SS02-VFD SS02-VFD SS02-VFD SS02-VFD SS02-VFD	NO. -01 -02 -03 -04	DRIVEN EQUIPMENT KM-02A KM-02B KM-02C PM-04A PM-04B	RATING (KW (Note-16) 1200 1200 1200 2200 2200) STAR AD SPEED SPEED SPEED SPEED SPEED	ADJUSTMENT	ESTIMATED 11kV POWER CABL LENGTH(FROM VFD TO MOTOR 360m 360m 470m 470m	E REMARKS	
TAG SS02-VFD SS02-VFD SS02-VFD SS02-VFD SS02-VFD SS02-VFD	NO. -01 -02 -03 -04	DRIVEN EQUIPMENT KM-02A KM-02B KM-02C PM-04A PM-04B	RATING (KW (Note-16) 1200 1200 1200 2200 2200) STAR AD SPEED SPEED SPEED SPEED SPEED	RTING/SPEED JUSTMENT P ADJUSTMENT P ADJUSTMENT P ADJUSTMENT P ADJUSTMENT	ESTIMATED 11kV POWER CABL LENGTH(FROM VFD TO MOTOR 360m 360m 470m 470m	E REMARKS	
TAG SS02-VFD SS02-VFD SS02-VFD SS02-VFD SS02-VFD	NO. -01 -02 -03 -04 -05	DRIVEN EQUIPMENT KM-02A KM-02B KM-02C PM-04A PM-04B	RATING (KW (Note-16) 1200 1200 1200 2200 2200) STAP AD SPEED SPEED SPEED SPEED SPEED	RTING/SPEED JUSTMENT P ADJUSTMENT P ADJUSTMENT P ADJUSTMENT P ADJUSTMENT	ESTIMATED 11kV POWER CABL LENGTH(FROM VFD TO MOTOR 360m 360m 470m 470m	E REMARKS	
TAG SS02-VFD SS02-VFD SS02-VFD SS02-VFD SS02-VFD SS02-VFD	NO. -01 -02 -03 -04 -05	DRIVEN EQUIPMENT KM-02A KM-02B KM-02C PM-04A PM-04B	RATING (KW (Note-16) 1200 1200 2200 2200) STAP AD SPEED SPEED SPEED SPEED	RTING/SPEED JUSTMENT P ADJUSTMENT P ADJUSTMENT P ADJUSTMENT P ADJUSTMENT P ADJUSTMENT	ESTIMATED 11kV POWER CABL LENGTH(FROM VFD TO MOTOR 360m 360m 470m 470m	E REMARKS	
TAG SS02-VFD SS02-VFD SS02-VFD SS02-VFD SS02-VFD SS02-VFD	NO. -01 -02 -03 -04 -05	DRIVEN EQUIPMENT KM-02A KM-02B KM-02C PM-04A PM-04B	RATING (KW (Note-16) 1200 1200 1200 2200 2200) STAR AD SPEED SPEED SPEED SPEED	ADJUSTMENT ADJUSTMENT ADJUSTMENT ADJUSTMENT ADJUSTMENT ADJUSTMENT ADJUSTMENT	ESTIMATED 11kV POWER CABL LENGTH(FROM VFD TO MOTOR 360m 360m 470m 470m	E REMARKS	
TAG SS02-VFD SS02-VFD SS02-VFD SS02-VFD SS02-VFD SS02-VFD	NO. -01 -02 -03 -04 -05	DRIVEN EQUIPMENT KM-02A KM-02B KM-02C PM-04A PM-04B	RATING (KW (Note-16) 1200 1200 2200 2200) STAR AD SPEED SPEED SPEED SPEED	ADJUSTMENT ADJUSTMENT ADJUSTMENT ADJUSTMENT ADJUSTMENT ADJUSTMENT ADJUSTMENT	ESTIMATED 11kV POWER CABL LENGTH(FROM VFD TO MOTOF 360m 360m 470m 470m	E) REMARKS	
TAG SS02-VFD SS02-VFD SS02-VFD SS02-VFD SS02-VFD	NO. -01 -02 -03 -04 -05	DRIVEN EQUIPMENT KM-02A KM-02B KM-02C PM-04A PM-04B	RATING (KW (Note-16) 1200 1200 2200 2200) STAR AD SPEED SPEED SPEED SPEED	ADJUSTMENT ADJUSTMENT ADJUSTMENT ADJUSTMENT ADJUSTMENT ADJUSTMENT ADJUSTMENT	ESTIMATED 11kV POWER CABL LENGTH(FROM VFD TO MOTOF 360m 360m 470m 470m	E REMARKS	