General Welding Information

Welding Information

- AISC Spec. J1 General provisions for connection design
- AISC Spec. J2 Welds
- AISC Spec. K HSS & Box Member Connections
- AISC Part 8 Design Considerations for Welds
- AISC Part 10 Design of Simple Shear Connections
- AISC Part 11 Design of Partially Restrained Moment Connections
- AISC Part 12 Design of Fully Restrained Moment Connections
- AWS D1.1 Structural Welding Code Steel

Fillet Weld Size	Number of
(in)	Rod Passes
3/16	1
1/4	1
5/16	1
3/8	3
7/16	4
1/2	4
5/8	6
3/4	8

Table J2.4		
Material Thickness of Thinner Part (in)	Minimum Size (in)	
X ≤ 1/4	1/8	
$1/4 < X \le 1/2$	3/16	
1/2 < X ≤ 3/4	1/4	
3/4 < X	5/16	

Tables

- AISC Table J2.1 Effective Throat of PJP Groove Welds
- AISC Table J2.2 Effective Throat of Flare Groove Welds
- AISC Table J2.3 Min. Effective Throat of PJP Groove Welds
- AISC Table J2.4 Min. Size of Fillet Welds
- AISC Table J2.5 Ø values and Available Strength of Welded Joints
- AISC Table 8-1 Coefficient, C, for Conc. Loaded Weld Groups
- AISC Table 8-2 Prequalified Welded Joints
 - Root tolerances, backing, etc.. From AWS.
- AISC Table 8-3 Electrode Strength Coefficient, C_1
- AISC Table 8-4 to 8-11a Coefficients, C, for Eccentric Loaded Weld Groups

Strength of PJP welds $\rightarrow t_e L$ (Weld Metal Strength) \emptyset values and Weld Metal Strength taken from Table J2.5. t_e can be determined from Tables 8-2.

General Welding Information

 Size Requirements for Fillet Welds Effective Area = (effective length) x (effective throat) Minimum Size of Fillet Welds Table J2.4 – By material thickness of parts joined Maximum Size of Fillet Welds For mtrl ≤ ¼" thick → Not greater than the mtrl Thickness 	 Weld Strength Function of a) base metal, b) weld metal, c) welding process, & d) weld penetration Nominal resistance of a weld (R_n) For Base Metal R_n = F_{n,BM}A_{BM} For Weld Metal R_n = F_{nw}A_{We} For Tensile Members → R_{ne} = UF_{nw}A_{we} Don't forget shear lag
 For mtrl ≥ ¼" thick → Not greater than the mtrl thickness For mtrl ≥ ¼" thick → Not greater than the mtrl thickness - 1/16" Effective Length of fillet weld must be at least 4x nominal size. (e.g. ¼" fillet weld must be 1" long) **or min of 1-1/2" for intermittent welds, whichever is greater** 	• Fillet Weld Strength • $F_w = 0.60F_{EXX}$ • $V_n = t_e F_{nw}L = 0.707 \text{ w } 0.60F_{EXX}L = 0.707 \left(\frac{1}{16} \text{ in}\right) 0.6 \left(70 \frac{k}{\text{in}}\right) 1 \text{ in}$ • Per inch of fillet weld $\rightarrow 1.86 \text{ k/in}/16^{\text{th}}$
• Minimum Thickness of Connected Elements • Base member in tension $t_{min} = \frac{0.6F_{EXX}0.707(w)}{F_{u(base)}}$ • Base member in shear $t_{min} = \frac{0.6F_{EXX}0.707(w)}{0.6F_{u(base)}} \rightarrow \frac{F_{EXX}0.707(w)}{F_{u(base)}}$	•
 Intermittent Fillet Welds Minimum length is larger of 4x nominal size or 1-1/2" Built-up tension members → max spacing is 300xr_s Where r_s =radius of gyration of smaller member being welded AISC D4 Built-up compression members → max spacing is To connect two rolled shapes = 24 in See AISC Spec E6.2 	 Table J2.1 – Effective throat of PJP welds Table J2.2 – Effective Weld Sizes of Flare Groove Welds (common w/ HSS) Table J2.3 – Minimum Eff. Throat Thickness of PJP groove welds Table J2.5 – Available Strength of Welded Joints (Very Important!!) Limitations Longitudinal fillet weld lengths may not be less than the distance between them because of Shear Lag (Case 4 Table D3.1). In Lap Joints, minimum amount of lap permitted is 5x thickness of thinner part, but not less than 1 inch.

Transverse/Angled Loading of Fillet Welds

A)

J2.4 allows transverse loading allows an increase of strength

Loaded Fillet Welds

&

• A) For a linear weld group w/ uniform leg size, loaded through center of gravity,

C)

 $R_n = F_{nw}A_{we} \quad \text{w/} \quad \phi = 0.75$ $F_{nw} = 0.60F_{EXX}(1.0 + 0.50sin^{1.5}\theta)$ θ measured off longitudinal axis.

- B) For weld elements analyzed w/ ICR, R_{nx} , R_{ny} , & M_n are permitted to be determined as given on AISC pg 16.1-116
- C) Fillet weld groups concentrically loaded w/ longitudinal and transverse elements. R_n= greater of: w/ Ø = 0.75
 1. R_n = R_{nwl} + R_{nwt} Or
 2. R_n = 0.85R_{nwl} + 1.5R_{nwt} Note: Don't use F_{nw} = 0.60F_{EXX}(1.0 + 0.50sin^{1.5}θ) for these cases b/c transverse & longitudinal fillet welds have different deformation properties and limits. Use R_{nwl}&R_{nwt} = F_wA_w F_w → commonly 0.60F_{EXX} & A_w → (0.707)w(Length)

Eccentrically Loaded Weld Groups

- Eccentrically Loaded Weld Groups
- Two commonly used methods
 - Elastic Method
 - Instantaneous Center of Rotation Method

Elastic Method

- Very Conservative
- More simplistic method when deign aids are unavailable
- Statics-based
- · Pieces welded together are assumed to be completely rigid
 - All deformation is in the weld
- Based on a summation of forces in 3-D space from $P_{xyz} \& M_{xyz}$
- There are two ways to approach this method
 - 1) Express/simplified methods for weld group shapes where location of max stress is known.
 - 2) General method intensive hand calc, but applicable to all planar weld groups

ICR Method Ultimate Strength Method

- More accurate
- AISC Table 8-3 to 8-11 can be used to aid the design
- Nominal strength of weld group $\rightarrow R_{n,kips} = CC_1DL_{in}$ w/ $\emptyset = 0.75$
 - C = coefficient from AISC Table 8-#
 - C_1 = electrode coefficient from AISC Table 8-3 ($C_1 = 1.0 \text{ for } F_{EXX}$)
 - D = number of 1/16ths of an inch of fillet weld size
 - L_{in} = characteristic length of weld group in inches
- Available strength must be greater than required strength
 - $P_u \le \emptyset R_n \Rightarrow P_u \le \emptyset C C_1 D L_{in}$
- Minimum required values for C, D, & L are given in the Tables 8-#

•
$$C_{min} = \frac{P_u}{\phi C_1 DL}$$
 $D_{min} = \frac{P_u}{\phi C_1 CL}$ $L_{min} = \frac{P_u}{\phi C_1 CD}$

y-axis $e_x = aL$ e' P_u e' P_u C_{xL} kL

Welded Bracket w/ Eccentric Shear

Express/Simplified Elastic Method Workflow (Max stress assumed @ point i): Size of required fillet weld • Variables for Elastic Method Total weld length: L_{wt} Centroid Location (xL): use AISC Table 8-# for this if needed MOI about X&Y-axis& Polar w/ unit weld lengths: $I_x = \sum \frac{bh^3}{12} + Ad^2 \Rightarrow \frac{L^3}{12} + 2(KL) \left(\frac{L}{2}\right)^2$ $I_y = \sum \frac{bh^3}{12} + Ad^2 \Rightarrow 2 \frac{(KL)^3}{12} + 2(KL) \left(\frac{KL}{2} - (xL)\right)^2 + L(xL)^2$ $J = I_0 = I_x + I_y$ • Forces @ points a & b $f_h = \frac{Tv}{J} \Rightarrow \frac{((P_u)(e_x))\frac{L}{2}}{J} \quad f_v = \frac{Th}{J} \Rightarrow \frac{((P_u)(e_x))((KL) - (xL))}{J} \quad f_s = \frac{P_u}{L_{wt}} \quad f_r = \sqrt{f_h^2 + f_v^2 + f_s^2}$ Required weld size $= \frac{f_r \left(\frac{kips}{inch}\right)}{1.392 \frac{kips}{in}/sixteenth} =$ ______ sixteenths of fillet weld. Check vs AISC Table J2-4

ICR Method Workflow:Use AISC Tables 8-5 to 8-11 depending on the shape of the weld groupA) Givens: L, e', kL \rightarrow Determine required fillet weld sizeInfer: $k = \frac{kL}{L} \rightarrow$ Table 8-# for "X" coefficient \rightarrow "xL" to get $e_x \rightarrow e_x$ to get $a = \frac{e_x}{L} \rightarrow C$ from tableSolution: $D_{\min 1/16ths} = \frac{P_u}{\phi c_1 cL}$ compare w/ AISC Table J2.4 mtrl thickness req.B) Givens: e_x , $L \rightarrow$ Determine kL & required fillet weld size (D # of sixteenths)Infer: Select initial D from steel thicknesses $\rightarrow C_{min} = \frac{P_u}{\phi c_1 DL} \rightarrow$ k from Table 8-# \rightarrow kL for that "D"Solution: $D_{\min 1/16ths} = \frac{P_u}{\phi c_1 cL}$ compare w/ AISC Table size (D # of sixteenths)

Welded Group Eccentrically Loaded Normal to Faying Surface

 $\begin{array}{l} \underline{\text{Express/Simplified Elastic Method Workflow (Max stress assumed @ point i): Size of required fillet weld}\\ \bullet \quad \text{Variables for Elastic Method}\\ \hline \text{Total weld length: } L_{wt} \quad (L_{wt} = 2L \quad in \ this \ case)\\ \text{MOI about X-axis w/ unit weld lengths:}\\ I_x = \sum \frac{bh^3}{12} \Rightarrow 2 \frac{L^3}{12}\\ \bullet \quad \text{Forces @ point I}\\ f_v = \frac{P_u}{L_{wt}} \qquad f_h = \frac{P_u \ e \ Y_i}{I_x} \qquad f_r = \sqrt{f_h^2 + f_v^2} \quad \frac{kips}{inch}\\ \text{Required weld size} = \frac{f_r(\frac{kips}{inch})}{1.392 \frac{kips}{in}/sixteenth} = \underline{\qquad} \text{ sixteenths of fillet weld. Check vs AISC Table J2-4} \end{array}$

<u>ICR Method Workflow</u>: A) Givens: e_x , *L* → Determine required fillet weld size (D # of sixteenths) Infer: Assumption that K=0 (not ideal), $a = \frac{e_x}{L}$ Solution: $D_{1/16ths} = \frac{P_u}{\emptyset C_1 CL} =$ _____ sixteenths of fillet weld. Check vs AISC Table J2-4

HSS connections

Welding Information

- AISC Spec. K1 Concentrated Forces on HSS
- AISC Spec. K2 HSS to HSS Truss Connections
- AISC Spec. K3 HSS to HSS Moment Connections
- AISC Spec. K4 Welds of Plates & Branches to Rectangular HSS

Tables

- AISC Table K1.1 Available Strength of Plate-to-Round HSS Connections
- AISC Table K1.2 Available Strength of Plate-to-Rectangle HSS Connections
- AISC Table K2.1 Available Strengths of Round HSS-to-HSS Truss Connections
- AISC Table K2.2 Available Strengths of Rectangular HSS-to-HSS Truss Connections
- AISC Table K3.1 Available Strengths of Round HSS-to-HSS Moment Connections
- AISC Table K3.2 Available Strengths of Rectangular HSS-to-HSS Moment Connections
- AISC Table K3.3 Effective Weld Properties for Connections to Rectangular HSS

Note: Each table is followed by the applicable limit states. If all criterion can't be met, you can't use that particular table.

Method For Using Tables in AISC Spec. K To Determine Weld Sizes and Whether the HSS Must Be Reinforced

Check the Limits of Applicability in Table K#.#A

Compute Nominal Strength and Design Strength for given Connection type.

• Lowest Limit State Governs

Select welds based on the allowable load in previous step.

Sometimes CJPs are needed if the plate is small.