36th Conference of Slovak Society of Chemical Engineering May 25 - 29, 2009 Tatranské Matliare

SHAPE AND RISING VELOCITY OF BUBBLES

Kamil Wichterle, Kateřina Smutná, Marek Večeř

VSB-Technical University of Ostrava

Faculty of Metallurgy and Material Engineering
Department of Chemistry,
70833 Ostrava Poruba, CR
Phone: 420 596 994 328, Fax: 420 596 918 647, e-mail:

kamil.wichterle@vsb.cz

Everyting is known about bubbles

Clift, R., Grace, J.R. and Weber, M.E., 1978: Bubbles, Drops, and Particles. Academic Press, New York.

Classes of bubbles

- Small bubbles in high-viscosity liquids
- Small bubbles in low-viscosity liquids
- Medium bubbles in high-viscosity liquids
- Medium bubbles in pure low-viscosity liquids
- Medium bubbles in contamined lowviscosity liquids
- Large bubbles

SIZE OF RISING BUBBLES

LIQUID VISCOSITY

Low– and medium-viscosity Re > 50

$$Re \equiv \frac{d_B U_B \rho}{\mu}$$

PURE OR CONTAMINED LIQUID

- Pure liquid (surface-active components carefully removed)
 - Mobil surface
 - Lower drag resistance
 - ·Higher rising velocity
- Contamined liquid
 - Immobile surface
 - Drag like for solid bodies
 - Lower rising velocity

NO QUANTITATIVE PARAMETER !!!

Focus of our interest

Small bubbles

- EASY EXPERIMENTS, SIMPLE THEORY Stokes (or Hadamard-Rybczinski) -law
- Medium bubbles in pure low-viscosity liquids
 COMPLICATED EXPERIMENTS
- Medium bubbles in contamined lowviscosity liquids ELLIPSOIDAL BUBBLES, THE MOST COMMON IN BUBBLE COLUMNS
- Large bubbles

PULSATING BUBBLE SHAPE AND VELOCITY, FREQUENT BREAKUP

LOWER DRAG (hypothetical)

Why not ??

BUBBLE SHAPE

Surface tension

Hydrostatics

SYMMETRIC OBLATE BUBBLE

DETERMINATION OF THE SHAPE OF BUBBLES

Bubble levitating in dowstream flow

IDEAL OBLATE ELLIPSOID semiaxes a, b

Standard procedure how to approximate the bubble:

- Determination of the projected bubble area
- Determination of perimeter (usually overestimated)

IDEAL OBLATE ELLIPSOID semiaxes a, b

Improved procedure:

Determination of the object width, height and inclination

- In front view
- In side view

Untreated data

Reynolds number?

Weber number?

$$We \equiv \frac{d_B u_B^2 \rho_L}{\sigma}$$

Eötvös number

$$Eo \equiv \frac{d_B^2 \ \Delta \rho \ g}{\sigma}$$

Static bubble profile (under a wetted plate)

"Laplace length!"

Normalized semiaxes of rising bubbles

Theoretical prediction for static bubbles

$$\left(\frac{2a}{d}\right)^2 = 1 + 0.095Eo^{0.75}$$
 for $Eo < 20$

RISING VELOCITY

Time = 10 s, (corresponding path 2,3 m)

RISING VELOCITY for medium contaminated bubbles

Our data compared with that of Clift

Fig. 7.3 Terminal velocity of air bubbles in water at 20 C.

Our data compared with that of Tomiyama

RISING VELOCITY dimensional analysis

$$u = f(d, g, \rho, \Delta \rho, \mu, \sigma)$$

Rising velocity

- Bubble equivalent diameter
- Gravity acceleration
- Liquid density
- Density difference
- Liquid viscosity
- Surface tension

RISING VELOCITY effect of surface tension

Morton number

$$Mo \equiv \frac{\mu^4 g}{\sigma^3 \rho}$$

Dimensionless bubble diameter

$$D_{\sigma} \equiv \frac{d}{\left(\frac{\sigma}{\rho g}\right)^{1/2}} = \frac{d}{L} = Eo^{1/2}$$

"Laplace velocity"

$$W \equiv \left(\frac{\sigma g}{\rho}\right)^{1/4}$$

Dimensionless bubble velocity

RISING VELOCITY classical variables

Drag coefficient

$$C_D = \frac{4dg}{3u^2} \frac{\Delta \rho}{\rho} \approx \frac{4dg}{3u^2}$$

RISING VELOCITY effect of viscosity

Drag coefficient

$$C_D = \frac{4dg}{3u^2} \frac{\Delta \rho}{\rho} \approx \frac{4dg}{3u^2}$$

Dimensionless bubble diameter

$$D_{\mu} \equiv \frac{d}{\left(\frac{\mu}{\rho}\right)^{2/3} \left(\frac{4g}{3}\right)^{1/3}} = Re^{2/3} C_D^{1/3}$$

Dimensionless bubble velocity

urface tension!!

RISING BUBBLE

Oscillatory movement of a bubble

Bubble front area is $S = \pi a^2$

New definition of the drag coefficient

$$C_A \equiv C_D \left(\frac{d}{2a}\right)^2 \approx \frac{4d \ g}{3u^2} \left(\frac{d}{2a}\right)^2$$

New dimensionless variables

$$D_{\mu a} = D_{\mu} \left(\frac{d}{2a}\right)^{2/3}$$

$$U_{\mu a} \equiv U_{\mu} \left(\frac{d}{2a}\right)^{-2/3}$$

RESULTING FORMULAS

Correlation of the bubble shape

$$\left(\frac{2a}{d}\right)^2 = 1 + 0.095Eo^{0.75}$$
 for $Eo < 20$

Correlation of the bubble velocity

$$C_D = 0.365Re^{0.143} (1 + 0.095Eo^{0.75})$$

for $1 < Eo < 20, Re \ge 30$

This correlation fits well the data for medium size bubbles in contaminated lowand medium- viscosity liquids. In carefully prepared pure liquids, the rising velocity of can be somewhat higher.

