
 
 

1.2. Basic Heat Exchanger Equations 

1.2.1. The Overall Heat Transfer Coefficient
 
Consider the situation in Fig. (1.18). Heat is being transferred from the fluid inside (at a local bulk or average 
temperature of Ti), through a dirt or fouling film, through the tube wall, through another fouling film to the outside fluid 
at a local bulk temperature of To.  Ai and Ao are respectively inside and outside surface areas for heat transfer for a 
given length of tube.  For a plain or bare cylindrical tube, 
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The heat transfer rate between the fluid inside the tube 
and the surface of the inside fouling film is given by an 
equation of the form Q/A = h(Tf - Ts) where the area is 
Ai and similarly for the outside convective process 
where the area is Ao . The values of hi and ho have to be 
calculated from appropriate correlations. 
 
On most real heat exchanger surfaces in actual service, a 
film or deposit of sediment, scale, organic growth, etc., 
will sooner or later develop. A few fluids such as air or 
liquefied natural gas are usually clean enough that the 
fouling is absent or small enough to be neglected. Heat 
transfer across these films is predominantly by conduc-
tion, but the designer seldom knows enough about either 
the thickness or the thermal conductivity of the film to 
treat the heat transfer resistance as a conduction 
problem. Rather, the designer estimates from a table of 
standard values or from experience a fouling factor Rf.  
Rf is defined in terms of the heat flux Q/A and the 
temperature difference across the fouling ΔTf by the 
equation: 
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From Eq.1.14, it is clear that Rf is equivalent to a reciprocal heat transfer coefficient for the fouling, hf:  
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and in many books, the fouling is accounted for by a "fouling heat transfer coefficient," which is still an estimated 
quantity. The effect of including this additional resistance is to provide an exchanger somewhat larger than required 
when it is clean, so that the exchanger will still provide the desired service after it has been on stream for some time and 
some fouling has accumulated. 
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The rate of heat flow per unit length of tube must be the same across the inside fluid film, the inside dirt film, the wall, 
the outside dirt film, and the outside fluid film. If we require that the temperature differences across each of these 
resistances to heat transfer add up to the overall temperature difference, (Ti - To), we obtain for the case shown in 
Fig.1.18 the equation 
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In writing Eq. (1.16), the fouling is assumed to have negligible thickness, so that the values of ri, ro, Ai and Ao are those 
of the clean tube and are independent of the buildup of fouling.  Not only is this convenient – we don't know enough 
about the fouling to do anything else. 
 
Now we define an overall heat transfer coefficient U* based on any convenient reference area A*: 
 

( oi TTAUQ −≡ ∗∗ )            (1.17) 
 
Comparing the last two equations gives: 
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Frequently, but not always, A* is chosen to be equal to Ao, in which case U* = Uo, and Eq. (1.18) becomes: 
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If the reference area A* is chosen to be A i , the corresponding overall heat transfer coefficient U i  is given by: 
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The equation as written applies only at the particular point where (Ti - To) is the driving force. The question of applying 
the equation to an exchanger in which Ti and To vary from point to point is considered in the next section. 
 
The wall resistance is ordinarily relatively small, and to a sufficient degree of precision for bare tubes, we may usually 
write  
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Inspection of the magnitudes of the terms in the denominator of Eqs. 1. 19 or 1.20 for any particular design case quickly 
reveals which term or terms (and therefore which heat transfer resistance) predominates. This term (or terms) controls 
the size of the heat exchanger and is the one upon which the designer should concentrate his attention. Perhaps the 
overall heat transfer coefficient can be significantly improved by a change in the design or operating conditions of the 
heat exchanger. In any case, the designer must give particular attention to calculating or estimating the value of the 
largest resistance, because any error or uncertainty in the data, the correlation, or the calculation of this term has a 
disproportionately large effect upon the size of the exchanger and/or the confidence that can be placed in its ability to 
do the job. 
 

1.2.2. The Design Integral 
 
In the previous section, we obtained an equation 
that related the rate of heat transfer to the local 
temperature difference (T-t) and the heat transfer 
area A, through the use of an overall heat transfer 
coefficient U. In most exchanger applications, 
however, one or both of the stream temperatures 
change from point to point through the flow paths 
of the respective streams. The change in 
temperature of each stream is calculated from the 
heat (enthalpy) balance on that stream and is a 
problem in thermodynamics. 
 
Our next concern is to develop a method applying 
the equations already obtained to the case in which 
the temperature difference between the two streams 
is not constant. We first write Eq. (1. 17) in 
differential form 
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and then formally integrate this equation over the entire heat duty of the exchanger, Q t : 
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This is the basic heat exchanger design equation, or the design integral. 
 
U* and A* may be on any convenient consistent basis, but generally we will use Uo and Ao. U* may be, and in practice 
sometimes is, a function of the amount of heat exchanged. If 1/U*(T-t) may be calculated as a function of Q, then the 
area required may be calculated either numerically or graphically, as shown in Fig. (1.19). 
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The above procedure involving the evaluation of Eq. (1.23) is, within the stated assumptions, exact, and may always be 
used. It is also very tedious and time consuming. We may ask whether there is not a shorter and still acceptably accurate 
procedure that we could use. As it happens, if we make certain assumptions, Eq. (1.23) can be analytically integrated to 
the form of Eq. (1.24) 
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where U* is the value (assumed constant) of the overall heat transfer coefficient and MTD is the "Mean Temperature 
Difference," which is discussed in detail in the following section. 
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