

Pacific Earthquake Engineering Research Center

NGA WEST 2

Damping Scaling Models for Elastic Response Spectra

Sanaz Rezaeian

U.S. Geological Survey, Golden, CO

Y. Bozorgnia, I.M. Idriss, N. Abrahamson, K. Campbell, W. Silva

NGA-West2 Preliminary Results Workshop November 15, 2012

Outline

- Background
- Database
- Model Development: "Average" Horizontal Component
 - Median DSF (Damping Scaling Factor)
 - Variability
- **Comparison with Existing Models**
- Model for Vertical Component
- **Deliverables / Products**

Background

 Motivation: GMPEs are traditionally developed for 5% damping. Real structures can have damping ratios other than 5%.

Stress Level	Type and Condition of Structure	Percentage Critical Damping
Working stress, 10 more than about 2 yield point	 Vital piping Welded steel, prestressed concrete, well reinforced concrete (only slight cracking) Reinforced concrete with 	1 to 2 2 to 3 3 to 5
	 considerable cracking Bolted and/or riveted steel, wood structures with nailed or bolted joints 	5 to 7
or just below eld point	 Vital piping Welded steel, prestressed concrete (without complete loss in prestress) 	2 to 3 5 to 7
	 Prestressed concrete with no prestress left 	7 to 10
	 Reinforced concrete Bolted and/or riveted steel, wood structures, with holted joints 	7 to 10 10 to 15
	 Wood structures with nailed joints 	15 to 20

TABLE 3 RECOMMENDED DAMPING VALUES

2.4.4.1 Selection of Target Damping

In linear-elastic response history analyses, using either modal response history or direct integration, the magnitude of damping is chosen to represent, in an approximate sense, the amount of energy dissipation at the

expected deformation levels. At low deformation levels, prior to significant yielding or damage to structural components, damping values are typically in the range of 0.5% to 5% critical damping in the primary vibration modes. At higher deformation levels, damping values up to 20% of critical (or more) may be specified to approximate hysteretic effects that are not otherwise represented in the analysis.

Background

 Goal: Develop scaling factors to translate existing GMPEs for spectral ordinates at 5% damping to spectral ordinates at other damping ratios from 0.5 to 30%.

• **Definition** $\mathcal{D}SF = PSA(\beta)/PSA(5\%)$

Background

 Goal: Develop scaling factors to translate existing GMPEs for spectral ordinates at 5% damping to spectral ordinates at other damping ratios from 0.5 to 30%.

• **Definition** $\mathcal{D}SF = PSA(\beta)/PSA(5\%)$

• **Develop:** $\ln (DSF) = \mu (\beta, T, earthquake, site, b) + \varepsilon; \varepsilon N(0,\sigma)$ Distribution? Predictor Variables? Variability? Functional Form?

 \rightarrow Existing <u>literature</u> dating all the way back to Newmark and Hall 1982 \rightarrow <u>Database</u> of over 8,000 recorded motions

Extra

Reviewed and summarized over 25 related papers (see the PEER report).

Taken from the PEER report:

		Relation	Model	Notes					
GMPEs for $\beta \neq 5\%$	Akka	r and Bommer, 2007	Geometric mean elastic spectral displacement (SD): $log[SD(T, \beta)] = b_1 + b_2M + b_3M^2 + (b_4 + b_5M)log\sqrt{R_{jb}^2 + b_6^2} + b_7S_5 + b_8S_4 + b_9F_N + b_{10}F_R$ Regression coefficients b_i , $i = 1,, 10$, and standard deviations are given in tables at specified periods for damping ratios of 2, 5, 10, 20, and 30%	 Applicability: Periods up to 4s Magnitudes between 5 and 7.6 Distances up to 100km Database: 532 accelerograms from Europe and the Middle East Acknowledge dependence of <i>DSF</i> on magnitude, distance, and therefore duration. 					
	(See Bommer and Mendis, 2005 for a review and comparison of these relations)	Berge-Thierry et al., 2003	GMPE for pseudo acceleration response spectrum (PSA) is provided for damping ratios of 5, 7, 10, and 20%	 Applicability: Periods up to 10s Magnitudes between 4 and 7.9 Distances up to 330km Database: 965 horizontal and 485 vertical components from Europe (83%) and California (17%) 					
		Bommer et al., 1998	GMPE for relative displacement response spectrum (SD) is provided for damping ratios of 5, 10, 15, 20, 25, and 30%	 Applicability: Magnitudes between 5.5 and 7.9 Distances up to 260km Database: 183 records from Europe 					
		ommer and Men comparison of	ommer and Men comparison of	ommer and Men comparison o	ommer and Men comparison of	ommer and Men comparison of	Boore et al., 1993	GMPE for pseudo velocity response spectrum (PSV) is provided for damping ratios of 5, 10, and 20%	 Applicability: Periods up to 2s Magnitudes between 5.3 and 7.7 Distances up to 100km Database: 271 records from western North America
		Trifunac and Lee, 1989	GMPEs for pseudo velocity response spectrum (PSV) are provided with regression coefficients tabulated at specified periods for damping ratios of 0, 2, 5, 10, and 20%	 Applicability: Periods between 0.04 and 14s Database: 438 records from 104 earthquakes, mostly from California up to the year 1981 					

Taken from the PEER report:

GMPEs for $\beta \neq 5\%$	Faccioli et al., 2004	Propose a model for the displacement spectra. Consider damping ratios of 0 and 5% only.	 Applicability: Periods between 0.01 and 10s Magnitudes between 5.4 and 7.6 Distances up to 50km Database: 253 records (3 components each) from Taiwan, Japan, Italy, and Greece Conclude that the influence of damping ratio is limited at long periods
----------------------------	-----------------------	--	---

	Relation	Model	Predictive Variables	Notes
spo	White-Noise Assumption	$DSF \cong \sqrt{\frac{5}{\beta}}$	1. Damping ratio, β	• A white-noise process is wide- band and stationary, which is not necessarily true for a real earthquake ground motion
Random Vibration Methe	Recommended method by McGuire et al., 2001 (NUREG/CR-6728)	$\frac{\text{If } 1 \le f < 5 \text{ Hz :}}{\text{Using Rosenblueth (1980)}}$ $SA(f, \beta)$ $= SA(f, 0.05) \left[\frac{1 + 4.9\beta fD}{1 + 4.9 \times 0.05 fD} \right]^{-0.41}$ $\frac{\text{If } f \ge 5 \text{ Hz :}}{\text{Using Vanmarcke (1976)}}$ $SA(f, \beta)$ $= \left\{ PGA^{2} + [SA(f, 0.05)^{2} - PGA^{2}] \left[\frac{1 + 4.9\beta fD}{1 + 4.9 \times 0.05 fD} \right]^{-0.82} \right\}^{0.5}$	 Damping ratio, β Frequency, f Duration, D (distance dependent; use Abrahamson and Silva 1997 model for Western U.S.; and Atkinson and Boore 1997 model for Central Eastern U.S.) 	 Applicability: Horizontal and vertical components β = 0.5 - 20% The most theoretically consistent method SA: spectral acceleration

Taken from the PEER report:

	Relation	Model	Predictive Variables	Notes
Empirical DSF Models	Hatzigeorgiou, 2010	$\begin{split} DSF &= 1 + (\beta - 5)[1 + b_1 \ln(\beta) \\ &+ b_2 (\ln(\beta))^2][b_3 \\ &+ b_4 \ln(T) \\ &+ b_5 (\ln(T))^2] \end{split}$ Regression coefficients $b_i, i = 1,, 5$, are tabulated for different soil conditions for acceleration, velocity and displacement response spectra.	 Damping ratio, β Period, T Soil conditions 	 Applicability: T = 0.1 - 5s β = 0.5 - 50% Magnitudes between 5-8 Distances up to 60km Database: 100 far-fault records, 110 near- fault records, 100 artificial accelerograms States that fault distance has no impact on DSF Performs nonlinear regression analysis test on about 8000 mathematical equations (i.e., DSF models)
	Stafford et al., 2008	$DSF = 1 - \frac{b_1 + b_2 \ln(\beta) + b_3 \ln(\beta)^2}{1 + \exp\{-[\ln(x) + b_4]/b_5\}}$ x is a measure of duration and can be any of the following parameters: D_{5-75} : significant duration D_{5-95} : significant duration $N_{rr}(2.0)$: number of equivalent load cycles Regression coefficients b_i , $i = 1,, 5$, and standard deviations are given in Table 2 for relative displacement spectra	 Damping ratio, β Duration, x Data are averaged over periods of 1.5 to 3s. 	 Applicability: T = 1.5 - 3s β = 2 - 55% Magnitudes between 4.2-7.9 Distances up to 300km Database: 1699 records from NGA database excluding Chi-Chi and records with missing metadata Confirm and quantify the strong dependence on Duration, which is strongly related to Magnitude. Mild dependence on Period is reported. A modified logistic model is used in modeling.

Extra

Taken from the PEER report:

	Relation	Model	Predictive Variables	Notes
lding Codes	Eurocode 8, 2004 (see Bommer and Mendis, 2005, page 148; see Akkar and Bommer, 2007, page 1291)	$\left(\frac{10}{5+\beta}\right)^{0.5} \ge 0.55$ Original form (1994): $\sqrt{\frac{7}{2+\beta}}$	1. Damping ratio, β	T = 0.2 - 6s Unity at very low (i.e., 0s) and very high periods (i.e., 10s used in Bommer and Menis, 2005) is imposed. Should not apply to β resulting in DSF < 0.55. Records represent European strong ground motions with magnitudes between 4.0 and 7.5 and distances up to 200 km.
	NEHRP, 2003 (FEMA 450) (see Table 13 of Cameron and Green 2007)	Tabulated for seismically isolated buildings and structures with damping devices.	 For seismic isolation: (Table 13.3-1) 1. Damping ratio, β For damping devices: (Table 15.6-1) 1. Damping ratio, β 2. Period, T 	
Bu	Caltrans, 2001 (Reviewed in Bommer and Mendis, 2005)	$\frac{1.5}{0.4\beta + 1} + 0.5$	1. Damping ratio, β	For $\beta = 5 - 10\%$ on bridges. Based on Kawashima and Aizawa, 1986 for absolute acceleration.
-	U.S. codes that are based on Newmark and Hall, 1982, and are reviewed in Naeim and Kircher, 2001.	 SEAOC Blue Book, 1990: based on Net 1991 UBC (ICBO 1991): based on 1990 Tabulated for base-isolated building ATC 1996, NEHRP/FEMA 1997: Extension to both velocity and accele short T. (B_L is for base-isolated build pushover analysis using capacity-spe ATC-40, 1996 FEMA 273, 1997 1997 UBC (see ICBO 1997), 2000 IBC (See Table 2 of Naeim and Kircher, 2 	wmark and Hall, 1982) Blue Book (s (velocity domain) eration domains: Tabulated lings. B _S is for buildings wi ctrum method). (see ICC 1999): Based on 1 001, or Table II of Lin et al	B_L and B_1 for long T , and B_S for th damper systems and for nonlinear NEHRP1997 /FEMA 1998 ., 2005)

- 4/21
- Elastic Response Spectrum calculated for horizontal (RotD50, GMRotI50) and vertical components: over 8,000 records each DSF=PSA (β)/PSA (5%)
- 11 damping ratios: 0.5, 1, 2, 3, 5, 7, 10, 15, 20, 25, and 30%
- 21 NGA periods: 0.01 10 s

- Elastic Response Spectrum calculated for horizontal (RotD50, GMRotI50) and vertical components: over 8,000 records each DSF=PSA (β)/PSA (5%)
- 11 damping ratios: 0.5, 1, 2, 3, 5, 7, 10, 15, 20, 25, and 30%
- 21 NGA periods: 0.01 10 s

Selected records used in modeling:

- $0 \le R_{rup} < 50 \text{ km}$
- 4.2 ≤ M ≤ 7.9
- $116 \le V_{S30} \le 2016 \text{ m/s}$

Horizontal:

- 2,250 records
- $0.25 \le D_{5-75} \le 59.32 \text{ s}$

Vertical:

- 2,229 records
- $0.48 \le D_{5-75} \le 89.29 \text{ s}$

Horizontal Component (records used in regression)

Distribution of *DSF*

Lognormal at a given period and damping (with few exceptions)

Predictor Variables (in literature)

Existing models have looked at dependence of DSF on

Influence of <u>duration</u>, magnitude, and distance

Figures are for data w/ R<50km

Influence of duration, <u>magnitude</u>, and distance

Figures are for data w/ R<50km

Influence of duration, magnitude, and <u>distance</u>

Figures are for data w/ R<50km

Model Development

Extra

Step 0: $ln(DSF) = c_0 + \varepsilon$; $\varepsilon \sim N(0,\sigma)$

Step 1:

 $ln(DSF) = c_0 + c_1M + \varepsilon$

Step 2:

 $ln(DSF) = c_0 + c_1M + c_2M^2 + \varepsilon_1$

Step 3:

 $ln(DSF) = c_0 + c_1 M + c_2 ln(R_{rup} + 1) + \varepsilon$ Express $c_0 c_1$ and c_2 in terms of β

 $\ln(\text{DSF}) = c_0 + c_1 M + c_2 \ln\{(R_{rup}^2 + c_3^2)^{1/2}\} + \epsilon$

Step 4:

 $\ln(DSF) = c_0 + c_1 \ln(D_{5-75}) + c_2 \ln(D_{5-75})^2 + \varepsilon_2 \ln(D_{5-$

Proposed Model

Median DSF

$$\begin{split} \blacksquare \ln(DSF) &= b \downarrow 0 + b \downarrow 1 \ln(\beta) + b \downarrow 2 (\ln(\beta)) \\ \uparrow 2 & @ + [b \downarrow 3 + b \downarrow 4 \\ \ln(\beta) + b \downarrow 5 (\ln(\beta)) \uparrow 2 \] \mathbf{M} & @ \blacksquare \\ + [b \downarrow 6 + b \downarrow 7 \ln(\beta) + b \downarrow 8 (\ln(\beta)) \uparrow 2 \] \ln(R \downarrow rup + 1) @ + \epsilon \end{split}$$

11/21

Variability of DSF

 $\sigma \ln(DSF) = |a \downarrow 0 \ln(\beta/5) + a \downarrow 1 \ln$

Proposed Model

Taken from Rezaeian et al. 2012 (PEER report):

Table 1 Regression coefficients for the horizontal component RotD50.

T, s	b0	b1	b2	b3	b4	b5	b6	b7	b8	a0	a1	$SE(\sigma)^*$
0.01	1.73E-03	-2.07E-04	-6.29E-04	1.08E-06	-8.24E-05	7.36E-05	-1.07E-03	9.08E-04	-2.02E-04	-3.70E-03	2.30E-04	1.88E-04
0.02	5.53E-02	-3.77E-02	2.15E-03	-4.30E-03	3.21E-03	-3.32E-04	-4.75E-03	2.52E-03	2.29E-04	-2.19E-02	2.11E-03	4.99E-04
0.03	1.22E-01	-7.02E-02	-2.28E-03	-3.21E-03	6.91E-05	9.82E-04	-1.30E-02	7.82E-03	2.27E-04	-5.21E-02	4.60E-03	1.04E-03
0.05	2.39E-01	-1.06E-01	-2.63E-02	-8.57E-04	-7.43E-03	4.87E-03	-1.69E-02	8.08E-03	1.71E-03	-9.57E-02	1.31E-03	4.70E-03
0.075	3.05E-01	-7.32E-02	-7.29E-02	2.02E-04	-1.64E-02	1.03E-02	-9.26E-04	-6.40E-03	4.42E-03	-1.21E-01	-5.79E-03	4.60E-03
0.1	2.69E-01	4.18E-03	-1.07E-01	5.80E-03	-2.49E-02	1.34E-02	2.35E-02	-2.37E-02	5.84E-03	-1.24E-01	-1.08E-02	3.80E-03
0.15	1.41E-01	1.00E-01	-1.18E-01	3.01E-02	-4.09E-02	1.41E-02	3.16E-02	-2.47E-02	3.15E-03	-1.15E-01	-1.14E-02	3.97E-03
0.2	5.01E-02	1.45E-01	-1.11E-01	4.69E-02	-4.77E-02	1.18E-02	3.10E-02	-2.29E-02	2.41E-03	-1.08E-01	-8.85E-03	4.64E-03
0.25	2.28E-02	1.43E-01	-9.73E-02	5.20E-02	-4.70E-02	9.47E-03	2.71E-02	-2.02E-02	1.31E-03	-1.04E-01	-7.35E-03	4.66E-03
0.3	-1.58E-02	1.48E-01	-8.83E-02	5.21E-02	-4.36E-02	7.33E-03	3.87E-02	-2.66E-02	1.76E-03	-1.01E-01	-6.90E-03	5.31E-03
0.4	2.24E-02	1.03E-01	-7.41E-02	4.63E-02	-3.58E-02	4.65E-03	3.63E-02	-2.45E-02	1.18E-03	-1.02E-01	-6.71E-03	6.21E-03
0.5	3.19E-02	7.04E-02	-5.57E-02	4.25E-02	-2.94E-02	1.88E-03	3.87E-02	-2.47E-02	3.13E-04	-1.01E-01	-6.22E-03	7.13E-03
0.75	1.04E-02	5.33E-02	-3.72E-02	4.47E-02	-2.40E-02	-2.40E-03	3.47E-02	-2.59E-02	2.90E-03	-1.01E-01	-5.86E-03	6.85E-03
1	-8.84E-02	8.92E-02	-2.14E-02	4.98E-02	-2.36E-02	-4.70E-03	5.02E-02	-3.43E-02	2.32E-03	-1.02E-01	-7.31E-03	6.66E-03
1.5	-1.57E-01	9.33E-02	3.28E-03	5.85E-02	-2.36E-02	-8.02E-03	4.81E-02	-3.30E-02	2.10E-03	-1.02E-01	-8.75E-03	6.66E-03
2	-2.96E-01	1.50E-01	2.09E-02	7.30E-02	-2.96E-02	-9.95E-03	5.24E-02	-3.32E-02	6.86E-04	-1.03E-01	-9.22E-03	6.04E-03
3	-4.07E-01	1.97E-01	3.28E-02	8.35E-02	-3.54E-02	-1.01E-02	5.57E-02	-2.91E-02	-3.17E-03	-9.63E-02	-1.07E-02	6.03E-03
4	-4.49E-01	2.07E-01	4.42E-02	8.75E-02	-3.59E-02	-1.14E-02	5.07E-02	-2.43E-02	-4.67E-03	-9.83E-02	-1.37E-02	3.37E-03
5	-4.98E-01	2.17E-01	5.36E-02	9.03E-02	-3.48E-02	-1.29E-02	5.19E-02	-2.30E-02	-5.68E-03	-9.42E-02	-1.53E-02	2.99E-03
7.5	-5.25E-01	2.06E-01	7.79E-02	9.88E-02	-3.76E-02	-1.51E-02	2.91E-02	-4.93E-03	-9.02E-03	-8.95E-02	-1.63E-02	2.59E-03
10	-3.89E-01	1.43E-01	6.12E-02	7.14E-02	-2.36E-02	-1.30E-02	2.33E-02	-5.46E-03	-5.92E-03	-6.89E-02	-1.43E-02	1.94E-03

* Standard error in modeling σ according to Equation (12).

Proposed Model: Example Application

Proposed Model: Example Application

13/21

The geometric mean of the five NGA-West1 GMPEs (red) is scaled to adjust for various damping ratios from 0.5 to 30%. The model for RotD50 component is used. Assumptions to estimate the NGA-GMPEs: reverse fault, dip = 45°, hanging wall, fault rupture width = 15km, Rjb=0km, Rx=7km.

Proposed Model: Standard Deviation

Period, s

Variation with Magnitude

Variation with Distance

The proposed model is plotted for all 11 damping ratios from 0.5 to 30%. (0.5,1,2,3,5,7,10,15,20,25,30)

Newmark and Hall (1982) is plotted for β =0.5,1,2,3,5,7,10,15,20%. It is applicable to T=0.125-10s, and is not a function of M or R_{rup}.

17/21

The proposed model is plotted for all 11 damping ratios from 0.5 to 30%. (0.5,1,2,3,5,7,10,15,20,25,30)

Idriss (1993) is plotted for β =1,2,3,5,7,10,15%. It is applicable to T=0.03-5s, and is not a function of M or R_{rup}.

The proposed model is plotted for all 11 damping ratios from 0.5 to 30%. (0.5,1,2,3,5,7,10,15,20,25,30)

Abrahamson and Silva (1996) is plotted for β =0.5,1,2,3,7,10,15,20%. It is applicable to T=0.02-5s, and is a function of M, but not R_{rup}.

The proposed model is plotted for all 11 damping ratios from 0.5 to 30%. (0.5,1,2,3,5,7,10,15,20,25,30)

The model by Eurocode 8 (2004) is plotted for all 11 damping ratios. It is not a function of M or R_{rup}.

Vertical Component

Functional forms are similar to those of the horizontal component

Taken from the PEER

Table 3 Regrees of coefficients for the vertical component.

T, s	b0	b1	b2	b3	b4	b5	b6	b7	b8	a0	a1	$SE(\sigma)^*$
0.01	5.82E-03	-3.31E-03	-3.64E-04	-3.81E-04	2.15E-04	2.92E-05	-1.82E-03	1.54E-03	-2.48E-04	-6.15E-03	5.21E-04	4.17E-04
0.02	1.36E-01	-8.77E-02	1.65E-03	-1.02E-02	6.91E-03	-2.83E-04	-1.23E-02	6.98E-03	3.60E-04	-4.50E-02	3.16E-03	5.64E-04
0.03	3.49E-01	-1.94E-01	-1.19E-02	-1.61E-02	6.48E-03	1.95E-03	-2.59E-02	1.22E-02	2.19E-03	-1.06E-01	3.16E-03	4.25E-03
0.05	4.34E-01	-1.68E-01	-6.08E-02	-1.15E-03	-1.01E-02	6.59E-03	-1.37E-02	-3.18E-03	6.97E-03	-1.47E-01	-8.28E-03	8.02E-03
0.075	3.48E-01	-6.40E-02	-9.47E-02	1.69E-02	-2.37E-02	8.31E-03	6.22E-03	-1.97E-02	9.83E-03	-1.39E-01	-9.96E-03	6.85E-03
0.1	3.06E-01	-3.80E-02	-9.44E-02	2.63E-02	-2.96E-02	8.20E-03	1.14E-02	-1.80E-02	6.93E-03	-1.34E-01	-1.02E-02	8.38E-03
0.15	1.87E-01	6.67E-02	-1.16E-01	4.32E-02	-4.50E-02	1.15E-02	1.66E-02	-1.73E-02	4.82E-03	-1.23E-01	-6.66E-03	8.44E-03
0.2	1.86E-01	4.16E-02	-9.66E-02	3.55E-02	-3.56E-02	8.37E-03	2.73E-02	-2.37E-02	4.13E-03	-1.22E-01	-6.52E-03	9.09E-03
0.25	1.21E-01	7.76E-02	-9.75E-02	4.13E-02	-3.96E-02	8.98E-03	3.10E-02	-2.22E-02	1.97E-03	-1.20E-01	-5.99E-03	8.70E-03
0.3	1.41E-01	5.39E-02	-8.91E-02	3.79E-02	-3.61E-02	7.91E-03	2.76E-02	-1.85E-02	1.02E-03	-1.22E-01	-5.78E-03	9.76E-03
0.4	1.72E-01	1.29E-02	-7.08E-02	2.97E-02	-2.58E-02	4.42E-03	2.93E-02	-2.13E-02	1.05E-03	-1.20E-01	-5.74E-03	8.83E-03
0.5	2.21E-01	-3.86E-02	-6.00E-02	2.18E-02	-1.90E-02	3.21E-03	2.72E-02	-1.64E-02	-2.29E-04	-1.23E-01	-6.08E-03	1.03E-02
0.75	1.68E-01	-2.35E-02	-5.40E-02	2.49E-02	-1.57E-02	6.34E-04	3.10E-02	-2.21E-02	2.01E-03	-1.22E-01	-6.75E-03	9.14E-03
1	8.65E-02	2.28E-02	-5.28E-02	3.47E-02	-2.11E-02	4.55E-04	3.53E-02	-2.43E-02	1.75E-03	-1.24E-01	-8.33E-03	9.33E-03
1.5	-3.62E-02	7.02E-02	-3.20E-02	4.82E-02	-2.57E-02	-2.44E-03	3.63E-02	-2.24E-02	2.93E-04	-1.25E-01	-1.04E-02	8.14E-03
2	-8.29E-02	9.13E-02	-2.57E-02	5.37E-02	-2.64E-02	-4.34E-03	3.16E-02	-2.30E-02	2.38E-03	-1.22E-01	-1.11E-02	8.20E-03
3	-2.26E-01	1.21E-01	1.05E-02	6.50E-02	-2.59E-02	-8.86E-03	3.45E-02	-2.00E-02	-9.44E-04	-1.16E-01	-1.29E-02	6.07E-03
4	-4.08E-01	2.02E-01	3.12E-02	8.61E-02	-3.44E-02	-1.19E-02	4.15E-02	-2.23E-02	-2.25E-03	-1.11E-01	-1.63E-02	4.96E-03
5	-2.54E-01	1.11E-01	2.96E-02	6.37E-02	-2.13E-02	-1.15E-02	2.86E-02	-1.34E-02	-2.90E-03	-1.07E-01	-1.68E-02	3.89E-03
7.5	-4.41E-01	1.73E-01	6.26E-02	7.73E-02	-2.58E-02	-1.39E-02	3.84E-02	-1.44E-02	-5.92E-03	-9.36E-02	-1.63E-02	2.20E-03
10	-3.95E-01	1.23E-01	7.79E-02	7.10E-02	-2.12E-02	-1.43E-02	2.13E-02	-4.42E-03	-6.15E-03	-8.17E-02	-1.53E-02	2.16E-03

* Standard error in modeling σ according to Equation (12).

Vertical Component: Median DSF

Vertical Component: Standard Deviation

Deliverables / Products

• **PEER Report :** available for free download

http://peer.berkeley.edu/publications/peer_reports/ reports_2012/webPEER-2012-01-REZAEIAN.pdf

- **Conference Paper:** 15WCEE Paper Number 0421
- Excel File and Matlab Codes : available upon request

This project was sponsored by PEER and funded by: California Earthquake Authority California Department of Transportation Pacific Gas & Electric Company

Thank You