at 1 atm. The damage left by the mild explosion at 23 atm.,
shown at center, was much less than that from the brisant det-
onation at 1 atm., shown at right,

The apparatus, nevertheless, was damaged by the mild det-
onation at 23 atm. The control experiment with liguid Ny
Oz was made at the same pressure, 23 atm., to assess how much
damage was unique to NO. The inside appearance of the
two pipes after shocking N¢-O; and NO, both at 23 aum,, is
shown in Figure 4. Both pipes in this picture have been sawed
down their mid-planes through the instrument ports. The
inside of the pipe that contained NO was severely oxidized
and bulged, while the control shows no evidence of oxidation
or explosion in the liquid.

The bulges caused by the low order explosion in NO art 23
atm, (Figure 4, right) are interesting because they occur at,
or a short distance past, the instrument ports in the pipe. The
sensing devices seem to have momentarily increased the reac-
tion rate, causing strong pressure surges at these locations, The
pressure surges, roughly estimated from the strength properties
of 304 stainless steel, were about 2000 atm. A velocity of
roughly 2000 meters per second was indicated in the second
half of the low order propagaton in NO at 23 atm, Very
inefficient conversion of NO to N: and Oz was shown by the
copious quantities of NO, fumes that remained after this
explosion.

In each experiment with NO, the pressure in the pipe, after
condensation of NO, was significantly higher than the vapor
pressure of NO; considerable gassing at 1 atm. occurred in
each experiment even while N, was still in the coolant jacket.

COMMUNICATION

A simple explanation is that the NO contained more than
enough N2 impurity to saturate the liquid and solid phases of
NO.

The explosion behavior of all three experiments with NO
can now be explained by gas-bubble initiation theory as fol-
lows: When NO was boiling at 1 atm., NO vapor bubbles
were there to form adiabatic hot spots for the fast chemical
initiation reactions required by the brisant mode of propa-
gation. When the pressure was 3 atm. over nonevaporating
liquid-solid NO, bubbles of N, impurity, rather than NO vapor,
made enocugh hot spots to propagate the brisant mode.
When the pressure on liquid NO atits normal boiling point was
elevated to 23 atm., however, both the vapor pressure of NO
and the Henry's law pressure of N; in NO were exceeded, and
no hot-spot—forming bubbles were in the liquid NO. The
chemical rate was too slow for the brisant mode and a lower
order explosion took its place.

Literature Cited

Bowden, F. P., Yoffe, A, D,, “Initiation and Growth of Explosion
in Liquids and Solids,” Cambridge University Press, Cambridge,
England, 1952.

Jo?nstox;, H. L., Giauque, W. F., J. Am. Chem, Soc. 51, 3194

1929).

Lezberg, E. A, Zlatarich, 5. A., National Aeronautics and Space
Administration, NASA Tech. Note D-2878 (1965).

Miller, R. O., “Detonation and Two-Phase Flow,” S. S, Penner
a{gng. A, Williams, eds., p. 65, Academic Press, New York,

RECEIVED for review November 29, 1967
AccepTED April 18, 1968

PERFORATED-PIPE DISTRIBUTORS

A method for calculating the pressure drop in perforated-pipe distributors by separating the pipe into dis-
crete sections and using the summation method is presented. For short distributors or distributors with o
small number of holes, this method gives an applicable equation which is more reliable than prior equations.

T == pressure drop in pipe distributors is calculated by

separating the pipe into discrete sections and using the
summation technique rather than the integral approach to
arrive at the solution. For long distributors with a large
number of holes, the final solution presented here does not
contradict prior correlations such as those presented by Lapple
(1951) and Acrivos ef al. (1959); however, for short distribu-
tors and/or distributors with a small number of holes, this
development gives rise to an extremely applicable equation
and one more reliable than the prior equations.

Although the theory is not new, it is presented to clarify the
development.

To describe appropriately the pressure forces existing in the
pipe distributor, friction terms, flow inefliciencies, and momen-
tum recovery contributions must be considered. If the dis-
tributor is divided into n equal sections, the length of each
section is represented by L/n where L is the distributor length,
If there is no maldistribution and if the orifice holes are of the
same size, 4,, the volumetric flow rate from each side port will
be A4,V,.

For section 1 in the flow distributor, a mass balance can be
written for the fluid stream (see Figure 1).

Mass in = mass out

prVidy = pilVady = pLV,4, (1)

Since equal distribution is assumed, the velocity in section 2 is:

Va= (1 — 1/n) Vi (2)
For the case of n holes, the general form of the velocity in sec-
tion ¢ can be written as:

Vi = (1 . !-:—1) " (3)

The equation representing the frictional pressure loss in each
section can be written using the Fanning friction factor in the

form
(fs:_*"ff) - LilaVd 4)
P 1 Deg,
where ¢ = sectioh number.

Section : Section 1 Section : Section

I 1 1
' . | . |
I
I 1 | 2 | i) I N *
Vl | I : 1 I
—_— : :——-Vz 1 :——--Vnt
: 1*: T 1 l Il—‘—_‘ﬂi
Ve o Vo '

Figure 1, Exponded schematic of pipe distributor
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The total pressure drop over the distributor due to friction
can then be found by summing the pressure drops over each
section.

(&P) 2f1(L/n) Vi* | 2fo(L/n) Vo
— I R o
2/ triction Dg. Dg.
o
zf“(L,."n, Vit (5}
Deg,
where AP = (P, — Pg).

For a given distributor diameter, and fluid density and
viscosity, the friction factors are solely functons of velocity in
the respective sections using smooth tube correlations. There-
fore, f may be written as a function of ¥y, Vs, ...V, in Equa-
tion 5. Although this seems to complicate calculations, a
simple computer program can easily handle the computations.
To facilitate hand calculations, an approximate average
friction factor may be defined. One method is to calculate
an average fluid velocity in the distributer and calculate f,.
Therefore, Equation 5 reduces to:

(gf) _ Yull/m) V| 2fulVE
P [ tzistion Dgc Dgc

zfnv{L!’:ﬁ) Vnz
Dg,

Simplifying Equation 6:

AP\ 2T
(—;’ )l:!:tlun Dg, [1?1 VtsJ ke

Combining Equations 3 and 6 and simplifying, the result is:

REY Tl [L—U} / 8
( e )irietion ng I.;l n i ( )

Equation 8 has the unique advantage over other equations
reported in the literature for calculating frictional losses in pipe
distributors that it is a function of the number of holes, n.
In other equations previously presented, either an integral
approach was used which reduces to a continuous slot dis-
tributor, or the expression for the pressure drop through the
orifices was substituted in the equation for distriburor pressure
drop to obtain a solution.

At each side port, two additional phenomena contribute to
the pressure drop calculation. There is a fluid momentum
effect at each port. The fluid flowing out each port ideally
decelerates to zero in the main direction of flow in the dis-
tributor, makes a right-angle turn, and flows ourt the side port.
At each side port, a momentum balance can be made over
a control volume as in Figure 2. Because of a loss of mass of
fluid changing direction from X t ¥, the conservation of
linear momentum dictates that momentum in the X direction

- - —X
-

o< Pl =Vie1 l

-» -

oo '.'*'.""-" y

Vo

Figure 2. Pressure and velocity vectors over a control
velume at a port
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must be conserved. Hence the velocity decrease must be
accompanied by a pressure increase.  For section i,

(f?"'l = Pf) - (V‘! = Vi-i-li) (9)
P ey de

Since the fluid at each port does not exactly make a 90°
change in direction and does not decelerate exactly to zero,
Equation 9 must be modified to take this inefficiency into
account. By incorporating into Equation 9 a constant £,
where 1 > & > 0, the momentum recovery and fluid flow
inefficiencies may be written in the form

(M) =X wa -
P

e

For the entire distributor,

s — P k
(f..____p 3) - .g_. [(Vi2 = V&) + (Vi — V) +

Vet = V] (10)

Although £ is assumed to be a constant for the entire distributor,
it is recognized that practical situations exist—e.g., ¥, not
constant—which lead to varying velocity and pressure profiles
along the pipe length, hence varying values for £.  Simplifying
and combining Equations 3 and 10, the total pressure recovery
for n holes is:

i (‘s_f) - 1 — 1/n] ¥ (11)

mamentum
L TecovETY Ec

Adding the pressure drop due to friction and that due to
momentum recovery and fluid inefficiencies, the total change in
pressure over the perforated pipe distributor is:

D) UVt [am G 0T
( ] )tuul Dg, {r;l [ R ]/”

f- (1 - 1/mVe (12)

Equation 12 can be simplified for practical applications.
The summation in the first term can be carried ourt explicidy
and is given for all values of n by the quantity (2 + 1)(22 + 1)/
6nt.  This quantity obviously has the limit 1,3 for large values
of n. If the summation term is taken and plotted with respect
to the number of holes, an asymptote of 0.33 exists for large
values of n (Figure 3). When the number of holes reaches 20,

[ A —— e

=NE 3 4
2T .
I F -
0 i q ; : 4 . .
0 5 10 15 20 25 30 35
n

Figure 3. Summation term plotted as a
function of the number of side ports



the value of the summation is approximately 0.35; however,
as n decreases below 10, the value sharply increases. Further-
more, when n is sufficiently large, [1 — 1/n] in the second
term in Equation 12 goes o 1. For sufficiently large numbers
of side ports, Equation 12 reduces to

AP 2f LV ? k V2
(_) = udVi (0.33) — L (13)
P J totel Dg: £e

Lapple (1951) has derived the pressure drop through a
perforated pipe distributor assuming ideal momentum re-
covery—i.e., k = 1—and uniform flow of fluid along the entire
length of the pipe distributor—i.e., the ports are very close to
one another, simulating a continuous slot distributor.  Lapple’s
pressure drop equation for a horizontal distributor is given as:

AP _ V2 [1 (4_[L _ > (14)
P B 2z 3\ D

This is equivalent to Equation 13 for £ = 1 and # very large,
For small values of n—i.e., less than 10—Equation 12 would
be more appropriate to use than Equation 14.

The value of k 1o be used in the momentum recovery term in
Equation 12 still needs additional investigation. Acrivos ef al.
(1959) present some values of & for air systems, ranging from
approximately 0.6 to 0.9 and apparently not correlating with
fluid maldistribution. On the same basis, data based on the
work of Soucek and Zelnick (19453) in long 6-inch square
channels with square side ports were compared with the air
system, The value of £ for water varied from approxi-
mately 0.7 to 0.4 with increasing maldistribution. It has been
suggested that £ may be better correlated with fluid velocity
or pressure drop through the side ports; however, additional
data are needed to substantiate this.

CORRESPONDENCE

Nomenclature

4; = distributor cross-sectional area, sq. ft.

4, = port cross-sectional area, sq. ft.

D = distributor diameter, ft.

f = Fanning friction factor

g = gravitational constant, 32.2 (ft. lb.) (Ib. force sec.?)
! = section number

k = momentum recovery correction factor

L = distributor length, ft.

n = number of side ports or orifices

Py = pressure at distributor inlet, p.s.i.

P, = pressure at closed end of distributor, p.s.i.
AP = total pressure drop over distributor, p.s.i,
Vv = velocity, ft./sec.

V, = velocity through side ports, ft. /sec.

V, = inlet velocity to distributor, ft./sec.

X, ¥ = direction vectors

pr = liquid density, lb./cu. ft.
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OPTIMAL ADIABATIC BED REACTOR WITH COLD SHOT COOLING

Sir: The optimal design of adiabatic bed reactors with
cold shot cooling has been treated in detail by Lec and
Aris (1963). In arecent communication Malengé and Viller-
maux (1967} have shown that the optimizing algerithm pro-
posed by Lee and Aris does not lead to the optimal design
conditions; in fact, by a direct search method on the set of
six decision variables appearing in the expression for the profit
of a three-bed reactor they could substantially improve the
profit as obtained by Lee and Aris. However, here it is
shown that even the solution of Malengé and Villermaux does
not yield the true optimum and that neither of the previous
solutions, although giving a profit close to the maximum profit,
leads to the optimal design conditions,

Although the optimizing algorithm used by Lee and Aris
fails, their mathematical formulation of the problem is correct
and it suits perfectly a discrete maximum principle approach.
In this note we use the notation of Lee and Aris, although this
notation is more appropriate to a dynamic programming
formulation than to the maximum principle formulation used
by us. A stage consists of the catalyst bed and the preceding
bypass mixing chamber or the preceding heater (for the Nth

stage).

The state of the process stream at each stage can be de-
scribed by the set of state variables: entrance conversion g,
exit conversion g', exit temperature ¢’, cumulative relative
mass flow rate A/Ay, cumulative profit per unit of mass flow
through that stage P. The decisions to be made at each stage
are the entrance temperature, £, and the holding time, 4.

The following set of equations results, corresponding to
Equations 15, 14, 16, and 18 of Lee and Aris, respectively:

e,,=__“”‘"—“fg" . (1)
GO/ /(M/Ay) o, Rale)

t'n =ty + (8's = &n) )

Aa/Aw = st/ At 10 (3)

& = @'ne1(tn/t'ns1) 4)

Py = (g'y — gx) — 86y — uty (5"

Bow B MM G aye g, aEN ®

A/ Ay

Equations 1 to 5 are implicit forms of the “performance
equations” of Fan and Wang (1964). Since the total mass
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