

## **INTERPRETATION 1:**

The usual all-around profile (no datums to interfere with the surface)



## **INTERPRETATION 2:**

The datums on the left and bottom force the entire zone to be shifted



## **INTERPRETATION 3:**

The datums on the left and bottom don't shift the tolerance zone, but they blot out the bilateral portion that goes "into" the datum



## FOR THE DRAWING GIVEN ON THE PREVIOUS PAGE, THE CONSENSUS IS THAT THE CORRECT INTERPRETATION WOULD BE INTERPRETATION 3.

From a practical point of view, however, a callout should usually avoid referencing datums that are part of the surface being toleranced. Instead, each datum surface should have a distinct geometric tolerance tying it back to the previous datum(s). So for the drawing on the previous page, the bottom surface could have a perpendicularity tolerance relating it back to A, and the left side could have perpendicularity (or profile of a surface) tying it back to A and B. Then the given profile of 0.4 would be noted to extend only between the top-left and bottom-right corners.